mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
05a6b4cae8
The code that detects a failed soft reset of Octeon is comparing the wrong value against the reset value of the Octeon SLI_SCRATCH_1 register, resulting in an inability to detect a soft reset failure. Fix it by using the correct value in the comparison, which is any non-zero value. Fixes:f21fb3ed36
("Add support of Cavium Liquidio ethernet adapters") Fixes:c0eab5b358
("liquidio: CN23XX firmware download") Signed-off-by: Derek Chickles <derek.chickles@cavium.com> Signed-off-by: Satanand Burla <satananda.burla@cavium.com> Signed-off-by: Raghu Vatsavayi <raghu.vatsavayi@cavium.com> Signed-off-by: Felix Manlunas <felix.manlunas@cavium.com> Reviewed-by: Leon Romanovsky <leonro@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
748 lines
22 KiB
C
748 lines
22 KiB
C
/**********************************************************************
|
|
* Author: Cavium, Inc.
|
|
*
|
|
* Contact: support@cavium.com
|
|
* Please include "LiquidIO" in the subject.
|
|
*
|
|
* Copyright (c) 2003-2016 Cavium, Inc.
|
|
*
|
|
* This file is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, Version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
|
|
* NONINFRINGEMENT. See the GNU General Public License for more details.
|
|
***********************************************************************/
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include "liquidio_common.h"
|
|
#include "octeon_droq.h"
|
|
#include "octeon_iq.h"
|
|
#include "response_manager.h"
|
|
#include "octeon_device.h"
|
|
#include "octeon_main.h"
|
|
#include "cn66xx_regs.h"
|
|
#include "cn66xx_device.h"
|
|
|
|
int lio_cn6xxx_soft_reset(struct octeon_device *oct)
|
|
{
|
|
octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
|
|
|
|
dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n");
|
|
|
|
lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST);
|
|
octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL);
|
|
|
|
lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST);
|
|
lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST);
|
|
|
|
/* make sure that the reset is written before starting timer */
|
|
mmiowb();
|
|
|
|
/* Wait for 10ms as Octeon resets. */
|
|
mdelay(100);
|
|
|
|
if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1)) {
|
|
dev_err(&oct->pci_dev->dev, "Soft reset failed\n");
|
|
return 1;
|
|
}
|
|
|
|
dev_dbg(&oct->pci_dev->dev, "Reset completed\n");
|
|
octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct)
|
|
{
|
|
u32 val;
|
|
|
|
pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
|
|
if (val & 0x000c0000) {
|
|
dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n",
|
|
val & 0x000c0000);
|
|
}
|
|
|
|
val |= 0xf; /* Enable Link error reporting */
|
|
|
|
dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n");
|
|
pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
|
|
}
|
|
|
|
void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct,
|
|
enum octeon_pcie_mps mps)
|
|
{
|
|
u32 val;
|
|
u64 r64;
|
|
|
|
/* Read config register for MPS */
|
|
pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
|
|
|
|
if (mps == PCIE_MPS_DEFAULT) {
|
|
mps = ((val & (0x7 << 5)) >> 5);
|
|
} else {
|
|
val &= ~(0x7 << 5); /* Turn off any MPS bits */
|
|
val |= (mps << 5); /* Set MPS */
|
|
pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
|
|
}
|
|
|
|
/* Set MPS in DPI_SLI_PRT0_CFG to the same value. */
|
|
r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
|
|
r64 |= (mps << 4);
|
|
lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
|
|
}
|
|
|
|
void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct,
|
|
enum octeon_pcie_mrrs mrrs)
|
|
{
|
|
u32 val;
|
|
u64 r64;
|
|
|
|
/* Read config register for MRRS */
|
|
pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
|
|
|
|
if (mrrs == PCIE_MRRS_DEFAULT) {
|
|
mrrs = ((val & (0x7 << 12)) >> 12);
|
|
} else {
|
|
val &= ~(0x7 << 12); /* Turn off any MRRS bits */
|
|
val |= (mrrs << 12); /* Set MRRS */
|
|
pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
|
|
}
|
|
|
|
/* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */
|
|
r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port));
|
|
r64 |= mrrs;
|
|
octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64);
|
|
|
|
/* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */
|
|
r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
|
|
r64 |= mrrs;
|
|
lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
|
|
}
|
|
|
|
u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct)
|
|
{
|
|
/* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier
|
|
* for SLI.
|
|
*/
|
|
return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50;
|
|
}
|
|
|
|
u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct,
|
|
u32 time_intr_in_us)
|
|
{
|
|
/* This gives the SLI clock per microsec */
|
|
u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct);
|
|
|
|
/* core clock per us / oq ticks will be fractional. TO avoid that
|
|
* we use the method below.
|
|
*/
|
|
|
|
/* This gives the clock cycles per millisecond */
|
|
oqticks_per_us *= 1000;
|
|
|
|
/* This gives the oq ticks (1024 core clock cycles) per millisecond */
|
|
oqticks_per_us /= 1024;
|
|
|
|
/* time_intr is in microseconds. The next 2 steps gives the oq ticks
|
|
* corressponding to time_intr.
|
|
*/
|
|
oqticks_per_us *= time_intr_in_us;
|
|
oqticks_per_us /= 1000;
|
|
|
|
return oqticks_per_us;
|
|
}
|
|
|
|
void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct)
|
|
{
|
|
/* Select Round-Robin Arb, ES, RO, NS for Input Queues */
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL,
|
|
CN6XXX_INPUT_CTL_MASK);
|
|
|
|
/* Instruction Read Size - Max 4 instructions per PCIE Read */
|
|
octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE,
|
|
0xFFFFFFFFFFFFFFFFULL);
|
|
|
|
/* Select PCIE Port for all Input rings. */
|
|
octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT,
|
|
(oct->pcie_port * 0x5555555555555555ULL));
|
|
}
|
|
|
|
static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct)
|
|
{
|
|
u64 pktctl;
|
|
|
|
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
|
|
|
|
pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL);
|
|
|
|
/* 66XX SPECIFIC */
|
|
if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4)
|
|
/* Disable RING_EN if only upto 4 rings are used. */
|
|
pktctl &= ~(1 << 4);
|
|
else
|
|
pktctl |= (1 << 4);
|
|
|
|
if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf))
|
|
pktctl |= 0xF;
|
|
else
|
|
/* Disable per-port backpressure. */
|
|
pktctl &= ~0xF;
|
|
octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl);
|
|
}
|
|
|
|
void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct)
|
|
{
|
|
u32 time_threshold;
|
|
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
|
|
|
|
/* / Select PCI-E Port for all Output queues */
|
|
octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64,
|
|
(oct->pcie_port * 0x5555555555555555ULL));
|
|
|
|
if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) {
|
|
octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32);
|
|
} else {
|
|
/* / Set Output queue watermark to 0 to disable backpressure */
|
|
octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0);
|
|
}
|
|
|
|
/* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0);
|
|
|
|
/* Select ES, RO, NS setting from register for Output Queue Packet
|
|
* Address
|
|
*/
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF);
|
|
|
|
/* No Relaxed Ordering, No Snoop, 64-bit swap for Output
|
|
* Queue ScatterList
|
|
*/
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0);
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0);
|
|
|
|
/* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64,
|
|
0x5555555555555555ULL);
|
|
#else
|
|
octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL);
|
|
#endif
|
|
|
|
/* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0);
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0);
|
|
octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64,
|
|
0x5555555555555555ULL);
|
|
|
|
/* / Set up interrupt packet and time threshold */
|
|
octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
|
|
(u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf));
|
|
time_threshold =
|
|
lio_cn6xxx_get_oq_ticks(oct, (u32)
|
|
CFG_GET_OQ_INTR_TIME(cn6xxx->conf));
|
|
|
|
octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
|
|
}
|
|
|
|
static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct)
|
|
{
|
|
lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT);
|
|
lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B);
|
|
lio_cn6xxx_enable_error_reporting(oct);
|
|
|
|
lio_cn6xxx_setup_global_input_regs(oct);
|
|
lio_cn66xx_setup_pkt_ctl_regs(oct);
|
|
lio_cn6xxx_setup_global_output_regs(oct);
|
|
|
|
/* Default error timeout value should be 0x200000 to avoid host hang
|
|
* when reads invalid register
|
|
*/
|
|
octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL);
|
|
return 0;
|
|
}
|
|
|
|
void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
|
|
{
|
|
struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
|
|
|
|
octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0);
|
|
|
|
/* Write the start of the input queue's ring and its size */
|
|
octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no),
|
|
iq->base_addr_dma);
|
|
octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count);
|
|
|
|
/* Remember the doorbell & instruction count register addr for this
|
|
* queue
|
|
*/
|
|
iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no);
|
|
iq->inst_cnt_reg = oct->mmio[0].hw_addr
|
|
+ CN6XXX_SLI_IQ_INSTR_COUNT(iq_no);
|
|
dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
|
|
iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
|
|
|
|
/* Store the current instruction counter
|
|
* (used in flush_iq calculation)
|
|
*/
|
|
iq->reset_instr_cnt = readl(iq->inst_cnt_reg);
|
|
}
|
|
|
|
static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
|
|
{
|
|
lio_cn6xxx_setup_iq_regs(oct, iq_no);
|
|
|
|
/* Backpressure for this queue - WMARK set to all F's. This effectively
|
|
* disables the backpressure mechanism.
|
|
*/
|
|
octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no),
|
|
(0xFFFFFFFFULL << 32));
|
|
}
|
|
|
|
void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
|
|
{
|
|
u32 intr;
|
|
struct octeon_droq *droq = oct->droq[oq_no];
|
|
|
|
octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no),
|
|
droq->desc_ring_dma);
|
|
octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count);
|
|
|
|
octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
|
|
droq->buffer_size);
|
|
|
|
/* Get the mapped address of the pkt_sent and pkts_credit regs */
|
|
droq->pkts_sent_reg =
|
|
oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no);
|
|
droq->pkts_credit_reg =
|
|
oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no);
|
|
|
|
/* Enable this output queue to generate Packet Timer Interrupt */
|
|
intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
|
|
intr |= (1 << oq_no);
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr);
|
|
|
|
/* Enable this output queue to generate Packet Timer Interrupt */
|
|
intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
|
|
intr |= (1 << oq_no);
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr);
|
|
}
|
|
|
|
int lio_cn6xxx_enable_io_queues(struct octeon_device *oct)
|
|
{
|
|
u32 mask;
|
|
|
|
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE);
|
|
mask |= oct->io_qmask.iq64B;
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask);
|
|
|
|
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
|
|
mask |= oct->io_qmask.iq;
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
|
|
|
|
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
|
|
mask |= oct->io_qmask.oq;
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void lio_cn6xxx_disable_io_queues(struct octeon_device *oct)
|
|
{
|
|
int i;
|
|
u32 mask, loop = HZ;
|
|
u32 d32;
|
|
|
|
/* Reset the Enable bits for Input Queues. */
|
|
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
|
|
mask ^= oct->io_qmask.iq;
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
|
|
|
|
/* Wait until hardware indicates that the queues are out of reset. */
|
|
mask = (u32)oct->io_qmask.iq;
|
|
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
|
|
while (((d32 & mask) != mask) && loop--) {
|
|
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
|
|
/* Reset the doorbell register for each Input queue. */
|
|
for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
|
|
if (!(oct->io_qmask.iq & BIT_ULL(i)))
|
|
continue;
|
|
octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF);
|
|
d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i));
|
|
}
|
|
|
|
/* Reset the Enable bits for Output Queues. */
|
|
mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
|
|
mask ^= oct->io_qmask.oq;
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
|
|
|
|
/* Wait until hardware indicates that the queues are out of reset. */
|
|
loop = HZ;
|
|
mask = (u32)oct->io_qmask.oq;
|
|
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
|
|
while (((d32 & mask) != mask) && loop--) {
|
|
d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
;
|
|
|
|
/* Reset the doorbell register for each Output queue. */
|
|
for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
|
|
if (!(oct->io_qmask.oq & BIT_ULL(i)))
|
|
continue;
|
|
octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF);
|
|
d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i));
|
|
|
|
d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i));
|
|
octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32);
|
|
}
|
|
|
|
d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
|
|
if (d32)
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32);
|
|
|
|
d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
|
|
if (d32)
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32);
|
|
}
|
|
|
|
void
|
|
lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct,
|
|
u64 core_addr,
|
|
u32 idx,
|
|
int valid)
|
|
{
|
|
u64 bar1;
|
|
|
|
if (valid == 0) {
|
|
bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
|
|
lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
|
|
CN6XXX_BAR1_REG(idx, oct->pcie_port));
|
|
bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
|
|
return;
|
|
}
|
|
|
|
/* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of
|
|
* the Core Addr
|
|
*/
|
|
lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
|
|
CN6XXX_BAR1_REG(idx, oct->pcie_port));
|
|
|
|
bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
|
|
}
|
|
|
|
void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct,
|
|
u32 idx,
|
|
u32 mask)
|
|
{
|
|
lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port));
|
|
}
|
|
|
|
u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx)
|
|
{
|
|
return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
|
|
}
|
|
|
|
u32
|
|
lio_cn6xxx_update_read_index(struct octeon_instr_queue *iq)
|
|
{
|
|
u32 new_idx = readl(iq->inst_cnt_reg);
|
|
|
|
/* The new instr cnt reg is a 32-bit counter that can roll over. We have
|
|
* noted the counter's initial value at init time into
|
|
* reset_instr_cnt
|
|
*/
|
|
if (iq->reset_instr_cnt < new_idx)
|
|
new_idx -= iq->reset_instr_cnt;
|
|
else
|
|
new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;
|
|
|
|
/* Modulo of the new index with the IQ size will give us
|
|
* the new index.
|
|
*/
|
|
new_idx %= iq->max_count;
|
|
|
|
return new_idx;
|
|
}
|
|
|
|
void lio_cn6xxx_enable_interrupt(struct octeon_device *oct,
|
|
u8 unused __attribute__((unused)))
|
|
{
|
|
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
|
|
u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE;
|
|
|
|
/* Enable Interrupt */
|
|
writeq(mask, cn6xxx->intr_enb_reg64);
|
|
}
|
|
|
|
void lio_cn6xxx_disable_interrupt(struct octeon_device *oct,
|
|
u8 unused __attribute__((unused)))
|
|
{
|
|
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
|
|
|
|
/* Disable Interrupts */
|
|
writeq(0, cn6xxx->intr_enb_reg64);
|
|
|
|
/* make sure interrupts are really disabled */
|
|
mmiowb();
|
|
}
|
|
|
|
static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct)
|
|
{
|
|
/* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register
|
|
* to determine the PCIE port #
|
|
*/
|
|
oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff;
|
|
|
|
dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port);
|
|
}
|
|
|
|
static void
|
|
lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64)
|
|
{
|
|
dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n",
|
|
CVM_CAST64(intr64));
|
|
}
|
|
|
|
static int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct)
|
|
{
|
|
struct octeon_droq *droq;
|
|
int oq_no;
|
|
u32 pkt_count, droq_time_mask, droq_mask, droq_int_enb;
|
|
u32 droq_cnt_enb, droq_cnt_mask;
|
|
|
|
droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
|
|
droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
|
|
droq_mask = droq_cnt_mask & droq_cnt_enb;
|
|
|
|
droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
|
|
droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
|
|
droq_mask |= (droq_time_mask & droq_int_enb);
|
|
|
|
droq_mask &= oct->io_qmask.oq;
|
|
|
|
oct->droq_intr = 0;
|
|
|
|
for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); oq_no++) {
|
|
if (!(droq_mask & BIT_ULL(oq_no)))
|
|
continue;
|
|
|
|
droq = oct->droq[oq_no];
|
|
pkt_count = octeon_droq_check_hw_for_pkts(droq);
|
|
if (pkt_count) {
|
|
oct->droq_intr |= BIT_ULL(oq_no);
|
|
if (droq->ops.poll_mode) {
|
|
u32 value;
|
|
u32 reg;
|
|
|
|
struct octeon_cn6xxx *cn6xxx =
|
|
(struct octeon_cn6xxx *)oct->chip;
|
|
|
|
/* disable interrupts for this droq */
|
|
spin_lock
|
|
(&cn6xxx->lock_for_droq_int_enb_reg);
|
|
reg = CN6XXX_SLI_PKT_TIME_INT_ENB;
|
|
value = octeon_read_csr(oct, reg);
|
|
value &= ~(1 << oq_no);
|
|
octeon_write_csr(oct, reg, value);
|
|
reg = CN6XXX_SLI_PKT_CNT_INT_ENB;
|
|
value = octeon_read_csr(oct, reg);
|
|
value &= ~(1 << oq_no);
|
|
octeon_write_csr(oct, reg, value);
|
|
|
|
/* Ensure that the enable register is written.
|
|
*/
|
|
mmiowb();
|
|
|
|
spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
droq_time_mask &= oct->io_qmask.oq;
|
|
droq_cnt_mask &= oct->io_qmask.oq;
|
|
|
|
/* Reset the PKT_CNT/TIME_INT registers. */
|
|
if (droq_time_mask)
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask);
|
|
|
|
if (droq_cnt_mask) /* reset PKT_CNT register:66xx */
|
|
octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev)
|
|
{
|
|
struct octeon_device *oct = (struct octeon_device *)dev;
|
|
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
|
|
u64 intr64;
|
|
|
|
intr64 = readq(cn6xxx->intr_sum_reg64);
|
|
|
|
/* If our device has interrupted, then proceed.
|
|
* Also check for all f's if interrupt was triggered on an error
|
|
* and the PCI read fails.
|
|
*/
|
|
if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL))
|
|
return IRQ_NONE;
|
|
|
|
oct->int_status = 0;
|
|
|
|
if (intr64 & CN6XXX_INTR_ERR)
|
|
lio_cn6xxx_process_pcie_error_intr(oct, intr64);
|
|
|
|
if (intr64 & CN6XXX_INTR_PKT_DATA) {
|
|
lio_cn6xxx_process_droq_intr_regs(oct);
|
|
oct->int_status |= OCT_DEV_INTR_PKT_DATA;
|
|
}
|
|
|
|
if (intr64 & CN6XXX_INTR_DMA0_FORCE)
|
|
oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
|
|
|
|
if (intr64 & CN6XXX_INTR_DMA1_FORCE)
|
|
oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
|
|
|
|
/* Clear the current interrupts */
|
|
writeq(intr64, cn6xxx->intr_sum_reg64);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
void lio_cn6xxx_setup_reg_address(struct octeon_device *oct,
|
|
void *chip,
|
|
struct octeon_reg_list *reg_list)
|
|
{
|
|
u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
|
|
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
|
|
|
|
reg_list->pci_win_wr_addr_hi =
|
|
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI);
|
|
reg_list->pci_win_wr_addr_lo =
|
|
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO);
|
|
reg_list->pci_win_wr_addr =
|
|
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64);
|
|
|
|
reg_list->pci_win_rd_addr_hi =
|
|
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI);
|
|
reg_list->pci_win_rd_addr_lo =
|
|
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO);
|
|
reg_list->pci_win_rd_addr =
|
|
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64);
|
|
|
|
reg_list->pci_win_wr_data_hi =
|
|
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI);
|
|
reg_list->pci_win_wr_data_lo =
|
|
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO);
|
|
reg_list->pci_win_wr_data =
|
|
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64);
|
|
|
|
reg_list->pci_win_rd_data_hi =
|
|
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI);
|
|
reg_list->pci_win_rd_data_lo =
|
|
(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO);
|
|
reg_list->pci_win_rd_data =
|
|
(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64);
|
|
|
|
lio_cn6xxx_get_pcie_qlmport(oct);
|
|
|
|
cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64;
|
|
cn6xxx->intr_mask64 = CN6XXX_INTR_MASK;
|
|
cn6xxx->intr_enb_reg64 =
|
|
bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port);
|
|
}
|
|
|
|
int lio_setup_cn66xx_octeon_device(struct octeon_device *oct)
|
|
{
|
|
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
|
|
|
|
if (octeon_map_pci_barx(oct, 0, 0))
|
|
return 1;
|
|
|
|
if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
|
|
dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n",
|
|
__func__);
|
|
octeon_unmap_pci_barx(oct, 0);
|
|
return 1;
|
|
}
|
|
|
|
spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg);
|
|
|
|
oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs;
|
|
oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs;
|
|
|
|
oct->fn_list.soft_reset = lio_cn6xxx_soft_reset;
|
|
oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs;
|
|
oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index;
|
|
|
|
oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup;
|
|
oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write;
|
|
oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read;
|
|
|
|
oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs;
|
|
oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt;
|
|
oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt;
|
|
|
|
oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues;
|
|
oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues;
|
|
|
|
lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list);
|
|
|
|
cn6xxx->conf = (struct octeon_config *)
|
|
oct_get_config_info(oct, LIO_210SV);
|
|
if (!cn6xxx->conf) {
|
|
dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n",
|
|
__func__);
|
|
octeon_unmap_pci_barx(oct, 0);
|
|
octeon_unmap_pci_barx(oct, 1);
|
|
return 1;
|
|
}
|
|
|
|
oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int lio_validate_cn6xxx_config_info(struct octeon_device *oct,
|
|
struct octeon_config *conf6xxx)
|
|
{
|
|
if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) {
|
|
dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
|
|
__func__, CFG_GET_IQ_MAX_Q(conf6xxx),
|
|
CN6XXX_MAX_INPUT_QUEUES);
|
|
return 1;
|
|
}
|
|
|
|
if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) {
|
|
dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
|
|
__func__, CFG_GET_OQ_MAX_Q(conf6xxx),
|
|
CN6XXX_MAX_OUTPUT_QUEUES);
|
|
return 1;
|
|
}
|
|
|
|
if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR &&
|
|
CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) {
|
|
dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
|
|
__func__);
|
|
return 1;
|
|
}
|
|
if (!CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx)) {
|
|
dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
|
|
__func__);
|
|
return 1;
|
|
}
|
|
|
|
if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) {
|
|
dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n",
|
|
__func__);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|