linux_dsm_epyc7002/drivers/net/wireless/ath/ath10k/ce.c
Brian Norris 38faed1504 ath10k: perform crash dump collection in workqueue
Commit 25733c4e67 ("ath10k: pci: use mutex for diagnostic window CE
polling") introduced a regression where we try to sleep (grab a mutex)
in an atomic context:

[  233.602619] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:254
[  233.602626] in_atomic(): 1, irqs_disabled(): 0, pid: 0, name: swapper/0
[  233.602636] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G        W         5.1.0-rc2 #4
[  233.602642] Hardware name: Google Scarlet (DT)
[  233.602647] Call trace:
[  233.602663]  dump_backtrace+0x0/0x11c
[  233.602672]  show_stack+0x20/0x28
[  233.602681]  dump_stack+0x98/0xbc
[  233.602690]  ___might_sleep+0x154/0x16c
[  233.602696]  __might_sleep+0x78/0x88
[  233.602704]  mutex_lock+0x2c/0x5c
[  233.602717]  ath10k_pci_diag_read_mem+0x68/0x21c [ath10k_pci]
[  233.602725]  ath10k_pci_diag_read32+0x48/0x74 [ath10k_pci]
[  233.602733]  ath10k_pci_dump_registers+0x5c/0x16c [ath10k_pci]
[  233.602741]  ath10k_pci_fw_crashed_dump+0xb8/0x548 [ath10k_pci]
[  233.602749]  ath10k_pci_napi_poll+0x60/0x128 [ath10k_pci]
[  233.602757]  net_rx_action+0x140/0x388
[  233.602766]  __do_softirq+0x1b0/0x35c
[...]

ath10k_pci_fw_crashed_dump() is called from NAPI contexts, and firmware
memory dumps are retrieved using the diag memory interface.

A simple reproduction case is to run this on QCA6174A /
WLAN.RM.4.4.1-00132-QCARMSWP-1, which happens to be a way to b0rk the
firmware:

  dd if=/sys/kernel/debug/ieee80211/phy0/ath10k/mem_value bs=4K count=1
of=/dev/null

(NB: simulated firmware crashes, via debugfs, don't trigger firmware
dumps.)

The fix is to move the crash-dump into a workqueue context, and avoid
relying on 'data_lock' for most mutual exclusion. We only keep using it
here for protecting 'fw_crash_counter', while the rest of the coredump
buffers are protected by a new 'dump_mutex'.

I've tested the above with simulated firmware crashes (debugfs 'reset'
file), real firmware crashes (the 'dd' command above), and a variety of
reboot and suspend/resume configurations on QCA6174A.

Reported here:
http://lkml.kernel.org/linux-wireless/20190325202706.GA68720@google.com

Fixes: 25733c4e67 ("ath10k: pci: use mutex for diagnostic window CE polling")
Signed-off-by: Brian Norris <briannorris@chromium.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-29 17:24:37 +03:00

2036 lines
56 KiB
C

// SPDX-License-Identifier: ISC
/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
* Copyright (c) 2018 The Linux Foundation. All rights reserved.
*/
#include "hif.h"
#include "ce.h"
#include "debug.h"
/*
* Support for Copy Engine hardware, which is mainly used for
* communication between Host and Target over a PCIe interconnect.
*/
/*
* A single CopyEngine (CE) comprises two "rings":
* a source ring
* a destination ring
*
* Each ring consists of a number of descriptors which specify
* an address, length, and meta-data.
*
* Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target)
* controls one ring and the other side controls the other ring.
* The source side chooses when to initiate a transfer and it
* chooses what to send (buffer address, length). The destination
* side keeps a supply of "anonymous receive buffers" available and
* it handles incoming data as it arrives (when the destination
* receives an interrupt).
*
* The sender may send a simple buffer (address/length) or it may
* send a small list of buffers. When a small list is sent, hardware
* "gathers" these and they end up in a single destination buffer
* with a single interrupt.
*
* There are several "contexts" managed by this layer -- more, it
* may seem -- than should be needed. These are provided mainly for
* maximum flexibility and especially to facilitate a simpler HIF
* implementation. There are per-CopyEngine recv, send, and watermark
* contexts. These are supplied by the caller when a recv, send,
* or watermark handler is established and they are echoed back to
* the caller when the respective callbacks are invoked. There is
* also a per-transfer context supplied by the caller when a buffer
* (or sendlist) is sent and when a buffer is enqueued for recv.
* These per-transfer contexts are echoed back to the caller when
* the buffer is sent/received.
*/
static inline u32 shadow_sr_wr_ind_addr(struct ath10k *ar,
struct ath10k_ce_pipe *ce_state)
{
u32 ce_id = ce_state->id;
u32 addr = 0;
switch (ce_id) {
case 0:
addr = 0x00032000;
break;
case 3:
addr = 0x0003200C;
break;
case 4:
addr = 0x00032010;
break;
case 5:
addr = 0x00032014;
break;
case 7:
addr = 0x0003201C;
break;
default:
ath10k_warn(ar, "invalid CE id: %d", ce_id);
break;
}
return addr;
}
static inline u32 shadow_dst_wr_ind_addr(struct ath10k *ar,
struct ath10k_ce_pipe *ce_state)
{
u32 ce_id = ce_state->id;
u32 addr = 0;
switch (ce_id) {
case 1:
addr = 0x00032034;
break;
case 2:
addr = 0x00032038;
break;
case 5:
addr = 0x00032044;
break;
case 7:
addr = 0x0003204C;
break;
case 8:
addr = 0x00032050;
break;
case 9:
addr = 0x00032054;
break;
case 10:
addr = 0x00032058;
break;
case 11:
addr = 0x0003205C;
break;
default:
ath10k_warn(ar, "invalid CE id: %d", ce_id);
break;
}
return addr;
}
static inline unsigned int
ath10k_set_ring_byte(unsigned int offset,
struct ath10k_hw_ce_regs_addr_map *addr_map)
{
return ((offset << addr_map->lsb) & addr_map->mask);
}
static inline unsigned int
ath10k_get_ring_byte(unsigned int offset,
struct ath10k_hw_ce_regs_addr_map *addr_map)
{
return ((offset & addr_map->mask) >> (addr_map->lsb));
}
static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
return ce->bus_ops->read32(ar, offset);
}
static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
ce->bus_ops->write32(ar, offset, value);
}
static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
ath10k_ce_write32(ar, ce_ctrl_addr +
ar->hw_ce_regs->dst_wr_index_addr, n);
}
static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
u32 ce_ctrl_addr)
{
return ath10k_ce_read32(ar, ce_ctrl_addr +
ar->hw_ce_regs->dst_wr_index_addr);
}
static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
ath10k_ce_write32(ar, ce_ctrl_addr +
ar->hw_ce_regs->sr_wr_index_addr, n);
}
static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
u32 ce_ctrl_addr)
{
return ath10k_ce_read32(ar, ce_ctrl_addr +
ar->hw_ce_regs->sr_wr_index_addr);
}
static inline u32 ath10k_ce_src_ring_read_index_from_ddr(struct ath10k *ar,
u32 ce_id)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
return ce->vaddr_rri[ce_id] & CE_DDR_RRI_MASK;
}
static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
u32 ce_ctrl_addr)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
u32 index;
if (ar->hw_params.rri_on_ddr &&
(ce_state->attr_flags & CE_ATTR_DIS_INTR))
index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_id);
else
index = ath10k_ce_read32(ar, ce_ctrl_addr +
ar->hw_ce_regs->current_srri_addr);
return index;
}
static inline void
ath10k_ce_shadow_src_ring_write_index_set(struct ath10k *ar,
struct ath10k_ce_pipe *ce_state,
unsigned int value)
{
ath10k_ce_write32(ar, shadow_sr_wr_ind_addr(ar, ce_state), value);
}
static inline void
ath10k_ce_shadow_dest_ring_write_index_set(struct ath10k *ar,
struct ath10k_ce_pipe *ce_state,
unsigned int value)
{
ath10k_ce_write32(ar, shadow_dst_wr_ind_addr(ar, ce_state), value);
}
static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
u32 ce_id,
u64 addr)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
u32 addr_lo = lower_32_bits(addr);
ath10k_ce_write32(ar, ce_ctrl_addr +
ar->hw_ce_regs->sr_base_addr_lo, addr_lo);
if (ce_state->ops->ce_set_src_ring_base_addr_hi) {
ce_state->ops->ce_set_src_ring_base_addr_hi(ar, ce_ctrl_addr,
addr);
}
}
static void ath10k_ce_set_src_ring_base_addr_hi(struct ath10k *ar,
u32 ce_ctrl_addr,
u64 addr)
{
u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
ath10k_ce_write32(ar, ce_ctrl_addr +
ar->hw_ce_regs->sr_base_addr_hi, addr_hi);
}
static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
ath10k_ce_write32(ar, ce_ctrl_addr +
ar->hw_ce_regs->sr_size_addr, n);
}
static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
ctrl_regs->addr);
ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
(ctrl1_addr & ~(ctrl_regs->dmax->mask)) |
ath10k_set_ring_byte(n, ctrl_regs->dmax));
}
static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
ctrl_regs->addr);
ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
(ctrl1_addr & ~(ctrl_regs->src_ring->mask)) |
ath10k_set_ring_byte(n, ctrl_regs->src_ring));
}
static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
ctrl_regs->addr);
ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
(ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) |
ath10k_set_ring_byte(n, ctrl_regs->dst_ring));
}
static inline
u32 ath10k_ce_dest_ring_read_index_from_ddr(struct ath10k *ar, u32 ce_id)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
return (ce->vaddr_rri[ce_id] >> CE_DDR_DRRI_SHIFT) &
CE_DDR_RRI_MASK;
}
static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
u32 ce_ctrl_addr)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
u32 index;
if (ar->hw_params.rri_on_ddr &&
(ce_state->attr_flags & CE_ATTR_DIS_INTR))
index = ath10k_ce_dest_ring_read_index_from_ddr(ar, ce_id);
else
index = ath10k_ce_read32(ar, ce_ctrl_addr +
ar->hw_ce_regs->current_drri_addr);
return index;
}
static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
u32 ce_id,
u64 addr)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
u32 addr_lo = lower_32_bits(addr);
ath10k_ce_write32(ar, ce_ctrl_addr +
ar->hw_ce_regs->dr_base_addr_lo, addr_lo);
if (ce_state->ops->ce_set_dest_ring_base_addr_hi) {
ce_state->ops->ce_set_dest_ring_base_addr_hi(ar, ce_ctrl_addr,
addr);
}
}
static void ath10k_ce_set_dest_ring_base_addr_hi(struct ath10k *ar,
u32 ce_ctrl_addr,
u64 addr)
{
u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
u32 reg_value;
reg_value = ath10k_ce_read32(ar, ce_ctrl_addr +
ar->hw_ce_regs->dr_base_addr_hi);
reg_value &= ~CE_DESC_ADDR_HI_MASK;
reg_value |= addr_hi;
ath10k_ce_write32(ar, ce_ctrl_addr +
ar->hw_ce_regs->dr_base_addr_hi, reg_value);
}
static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
ath10k_ce_write32(ar, ce_ctrl_addr +
ar->hw_ce_regs->dr_size_addr, n);
}
static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
(addr & ~(srcr_wm->wm_high->mask)) |
(ath10k_set_ring_byte(n, srcr_wm->wm_high)));
}
static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
(addr & ~(srcr_wm->wm_low->mask)) |
(ath10k_set_ring_byte(n, srcr_wm->wm_low)));
}
static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
(addr & ~(dstr_wm->wm_high->mask)) |
(ath10k_set_ring_byte(n, dstr_wm->wm_high)));
}
static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int n)
{
struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
(addr & ~(dstr_wm->wm_low->mask)) |
(ath10k_set_ring_byte(n, dstr_wm->wm_low)));
}
static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
u32 ce_ctrl_addr)
{
struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
ar->hw_ce_regs->host_ie_addr);
ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
host_ie_addr | host_ie->copy_complete->mask);
}
static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
u32 ce_ctrl_addr)
{
struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
ar->hw_ce_regs->host_ie_addr);
ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
host_ie_addr & ~(host_ie->copy_complete->mask));
}
static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
u32 ce_ctrl_addr)
{
struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
ar->hw_ce_regs->host_ie_addr);
ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
host_ie_addr & ~(wm_regs->wm_mask));
}
static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
u32 ce_ctrl_addr)
{
struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
u32 misc_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
ar->hw_ce_regs->misc_ie_addr);
ath10k_ce_write32(ar,
ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
misc_ie_addr | misc_regs->err_mask);
}
static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
u32 ce_ctrl_addr)
{
struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
u32 misc_ie_addr = ath10k_ce_read32(ar,
ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr);
ath10k_ce_write32(ar,
ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
misc_ie_addr & ~(misc_regs->err_mask));
}
static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
u32 ce_ctrl_addr,
unsigned int mask)
{
struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask);
}
/*
* Guts of ath10k_ce_send.
* The caller takes responsibility for any needed locking.
*/
static int _ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
void *per_transfer_context,
dma_addr_t buffer,
unsigned int nbytes,
unsigned int transfer_id,
unsigned int flags)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_ce_ring *src_ring = ce_state->src_ring;
struct ce_desc *desc, sdesc;
unsigned int nentries_mask = src_ring->nentries_mask;
unsigned int sw_index = src_ring->sw_index;
unsigned int write_index = src_ring->write_index;
u32 ctrl_addr = ce_state->ctrl_addr;
u32 desc_flags = 0;
int ret = 0;
if (nbytes > ce_state->src_sz_max)
ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
__func__, nbytes, ce_state->src_sz_max);
if (unlikely(CE_RING_DELTA(nentries_mask,
write_index, sw_index - 1) <= 0)) {
ret = -ENOSR;
goto exit;
}
desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
write_index);
desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
if (flags & CE_SEND_FLAG_GATHER)
desc_flags |= CE_DESC_FLAGS_GATHER;
if (flags & CE_SEND_FLAG_BYTE_SWAP)
desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
sdesc.addr = __cpu_to_le32(buffer);
sdesc.nbytes = __cpu_to_le16(nbytes);
sdesc.flags = __cpu_to_le16(desc_flags);
*desc = sdesc;
src_ring->per_transfer_context[write_index] = per_transfer_context;
/* Update Source Ring Write Index */
write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
/* WORKAROUND */
if (!(flags & CE_SEND_FLAG_GATHER))
ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
src_ring->write_index = write_index;
exit:
return ret;
}
static int _ath10k_ce_send_nolock_64(struct ath10k_ce_pipe *ce_state,
void *per_transfer_context,
dma_addr_t buffer,
unsigned int nbytes,
unsigned int transfer_id,
unsigned int flags)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_ce_ring *src_ring = ce_state->src_ring;
struct ce_desc_64 *desc, sdesc;
unsigned int nentries_mask = src_ring->nentries_mask;
unsigned int sw_index;
unsigned int write_index = src_ring->write_index;
u32 ctrl_addr = ce_state->ctrl_addr;
__le32 *addr;
u32 desc_flags = 0;
int ret = 0;
if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
return -ESHUTDOWN;
if (nbytes > ce_state->src_sz_max)
ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
__func__, nbytes, ce_state->src_sz_max);
if (ar->hw_params.rri_on_ddr)
sw_index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_state->id);
else
sw_index = src_ring->sw_index;
if (unlikely(CE_RING_DELTA(nentries_mask,
write_index, sw_index - 1) <= 0)) {
ret = -ENOSR;
goto exit;
}
desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
write_index);
desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
if (flags & CE_SEND_FLAG_GATHER)
desc_flags |= CE_DESC_FLAGS_GATHER;
if (flags & CE_SEND_FLAG_BYTE_SWAP)
desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
addr = (__le32 *)&sdesc.addr;
flags |= upper_32_bits(buffer) & CE_DESC_ADDR_HI_MASK;
addr[0] = __cpu_to_le32(buffer);
addr[1] = __cpu_to_le32(flags);
if (flags & CE_SEND_FLAG_GATHER)
addr[1] |= __cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER);
else
addr[1] &= ~(__cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER));
sdesc.nbytes = __cpu_to_le16(nbytes);
sdesc.flags = __cpu_to_le16(desc_flags);
*desc = sdesc;
src_ring->per_transfer_context[write_index] = per_transfer_context;
/* Update Source Ring Write Index */
write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
if (!(flags & CE_SEND_FLAG_GATHER)) {
if (ar->hw_params.shadow_reg_support)
ath10k_ce_shadow_src_ring_write_index_set(ar, ce_state,
write_index);
else
ath10k_ce_src_ring_write_index_set(ar, ctrl_addr,
write_index);
}
src_ring->write_index = write_index;
exit:
return ret;
}
int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
void *per_transfer_context,
dma_addr_t buffer,
unsigned int nbytes,
unsigned int transfer_id,
unsigned int flags)
{
return ce_state->ops->ce_send_nolock(ce_state, per_transfer_context,
buffer, nbytes, transfer_id, flags);
}
EXPORT_SYMBOL(ath10k_ce_send_nolock);
void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
{
struct ath10k *ar = pipe->ar;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_ring *src_ring = pipe->src_ring;
u32 ctrl_addr = pipe->ctrl_addr;
lockdep_assert_held(&ce->ce_lock);
/*
* This function must be called only if there is an incomplete
* scatter-gather transfer (before index register is updated)
* that needs to be cleaned up.
*/
if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
return;
if (WARN_ON_ONCE(src_ring->write_index ==
ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
return;
src_ring->write_index--;
src_ring->write_index &= src_ring->nentries_mask;
src_ring->per_transfer_context[src_ring->write_index] = NULL;
}
EXPORT_SYMBOL(__ath10k_ce_send_revert);
int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
void *per_transfer_context,
dma_addr_t buffer,
unsigned int nbytes,
unsigned int transfer_id,
unsigned int flags)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
int ret;
spin_lock_bh(&ce->ce_lock);
ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
buffer, nbytes, transfer_id, flags);
spin_unlock_bh(&ce->ce_lock);
return ret;
}
EXPORT_SYMBOL(ath10k_ce_send);
int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
{
struct ath10k *ar = pipe->ar;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
int delta;
spin_lock_bh(&ce->ce_lock);
delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
pipe->src_ring->write_index,
pipe->src_ring->sw_index - 1);
spin_unlock_bh(&ce->ce_lock);
return delta;
}
EXPORT_SYMBOL(ath10k_ce_num_free_src_entries);
int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
{
struct ath10k *ar = pipe->ar;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
unsigned int nentries_mask = dest_ring->nentries_mask;
unsigned int write_index = dest_ring->write_index;
unsigned int sw_index = dest_ring->sw_index;
lockdep_assert_held(&ce->ce_lock);
return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
}
EXPORT_SYMBOL(__ath10k_ce_rx_num_free_bufs);
static int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
dma_addr_t paddr)
{
struct ath10k *ar = pipe->ar;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
unsigned int nentries_mask = dest_ring->nentries_mask;
unsigned int write_index = dest_ring->write_index;
unsigned int sw_index = dest_ring->sw_index;
struct ce_desc *base = dest_ring->base_addr_owner_space;
struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
u32 ctrl_addr = pipe->ctrl_addr;
lockdep_assert_held(&ce->ce_lock);
if ((pipe->id != 5) &&
CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
return -ENOSPC;
desc->addr = __cpu_to_le32(paddr);
desc->nbytes = 0;
dest_ring->per_transfer_context[write_index] = ctx;
write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
dest_ring->write_index = write_index;
return 0;
}
static int __ath10k_ce_rx_post_buf_64(struct ath10k_ce_pipe *pipe,
void *ctx,
dma_addr_t paddr)
{
struct ath10k *ar = pipe->ar;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
unsigned int nentries_mask = dest_ring->nentries_mask;
unsigned int write_index = dest_ring->write_index;
unsigned int sw_index = dest_ring->sw_index;
struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
struct ce_desc_64 *desc =
CE_DEST_RING_TO_DESC_64(base, write_index);
u32 ctrl_addr = pipe->ctrl_addr;
lockdep_assert_held(&ce->ce_lock);
if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
return -ENOSPC;
desc->addr = __cpu_to_le64(paddr);
desc->addr &= __cpu_to_le64(CE_DESC_ADDR_MASK);
desc->nbytes = 0;
dest_ring->per_transfer_context[write_index] = ctx;
write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
dest_ring->write_index = write_index;
return 0;
}
void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
{
struct ath10k *ar = pipe->ar;
struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
unsigned int nentries_mask = dest_ring->nentries_mask;
unsigned int write_index = dest_ring->write_index;
u32 ctrl_addr = pipe->ctrl_addr;
u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
/* Prevent CE ring stuck issue that will occur when ring is full.
* Make sure that write index is 1 less than read index.
*/
if (((cur_write_idx + nentries) & nentries_mask) == dest_ring->sw_index)
nentries -= 1;
write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
dest_ring->write_index = write_index;
}
EXPORT_SYMBOL(ath10k_ce_rx_update_write_idx);
int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
dma_addr_t paddr)
{
struct ath10k *ar = pipe->ar;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
int ret;
spin_lock_bh(&ce->ce_lock);
ret = pipe->ops->ce_rx_post_buf(pipe, ctx, paddr);
spin_unlock_bh(&ce->ce_lock);
return ret;
}
EXPORT_SYMBOL(ath10k_ce_rx_post_buf);
/*
* Guts of ath10k_ce_completed_recv_next.
* The caller takes responsibility for any necessary locking.
*/
static int
_ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
unsigned int *nbytesp)
{
struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
unsigned int nentries_mask = dest_ring->nentries_mask;
unsigned int sw_index = dest_ring->sw_index;
struct ce_desc *base = dest_ring->base_addr_owner_space;
struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
struct ce_desc sdesc;
u16 nbytes;
/* Copy in one go for performance reasons */
sdesc = *desc;
nbytes = __le16_to_cpu(sdesc.nbytes);
if (nbytes == 0) {
/*
* This closes a relatively unusual race where the Host
* sees the updated DRRI before the update to the
* corresponding descriptor has completed. We treat this
* as a descriptor that is not yet done.
*/
return -EIO;
}
desc->nbytes = 0;
/* Return data from completed destination descriptor */
*nbytesp = nbytes;
if (per_transfer_contextp)
*per_transfer_contextp =
dest_ring->per_transfer_context[sw_index];
/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
* So update transfer context all CEs except CE5.
*/
if (ce_state->id != 5)
dest_ring->per_transfer_context[sw_index] = NULL;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
dest_ring->sw_index = sw_index;
return 0;
}
static int
_ath10k_ce_completed_recv_next_nolock_64(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
unsigned int *nbytesp)
{
struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
unsigned int nentries_mask = dest_ring->nentries_mask;
unsigned int sw_index = dest_ring->sw_index;
struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
struct ce_desc_64 *desc =
CE_DEST_RING_TO_DESC_64(base, sw_index);
struct ce_desc_64 sdesc;
u16 nbytes;
/* Copy in one go for performance reasons */
sdesc = *desc;
nbytes = __le16_to_cpu(sdesc.nbytes);
if (nbytes == 0) {
/* This closes a relatively unusual race where the Host
* sees the updated DRRI before the update to the
* corresponding descriptor has completed. We treat this
* as a descriptor that is not yet done.
*/
return -EIO;
}
desc->nbytes = 0;
/* Return data from completed destination descriptor */
*nbytesp = nbytes;
if (per_transfer_contextp)
*per_transfer_contextp =
dest_ring->per_transfer_context[sw_index];
/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
* So update transfer context all CEs except CE5.
*/
if (ce_state->id != 5)
dest_ring->per_transfer_context[sw_index] = NULL;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
dest_ring->sw_index = sw_index;
return 0;
}
int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
void **per_transfer_ctx,
unsigned int *nbytesp)
{
return ce_state->ops->ce_completed_recv_next_nolock(ce_state,
per_transfer_ctx,
nbytesp);
}
EXPORT_SYMBOL(ath10k_ce_completed_recv_next_nolock);
int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
unsigned int *nbytesp)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
int ret;
spin_lock_bh(&ce->ce_lock);
ret = ce_state->ops->ce_completed_recv_next_nolock(ce_state,
per_transfer_contextp,
nbytesp);
spin_unlock_bh(&ce->ce_lock);
return ret;
}
EXPORT_SYMBOL(ath10k_ce_completed_recv_next);
static int _ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
dma_addr_t *bufferp)
{
struct ath10k_ce_ring *dest_ring;
unsigned int nentries_mask;
unsigned int sw_index;
unsigned int write_index;
int ret;
struct ath10k *ar;
struct ath10k_ce *ce;
dest_ring = ce_state->dest_ring;
if (!dest_ring)
return -EIO;
ar = ce_state->ar;
ce = ath10k_ce_priv(ar);
spin_lock_bh(&ce->ce_lock);
nentries_mask = dest_ring->nentries_mask;
sw_index = dest_ring->sw_index;
write_index = dest_ring->write_index;
if (write_index != sw_index) {
struct ce_desc *base = dest_ring->base_addr_owner_space;
struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
/* Return data from completed destination descriptor */
*bufferp = __le32_to_cpu(desc->addr);
if (per_transfer_contextp)
*per_transfer_contextp =
dest_ring->per_transfer_context[sw_index];
/* sanity */
dest_ring->per_transfer_context[sw_index] = NULL;
desc->nbytes = 0;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
dest_ring->sw_index = sw_index;
ret = 0;
} else {
ret = -EIO;
}
spin_unlock_bh(&ce->ce_lock);
return ret;
}
static int _ath10k_ce_revoke_recv_next_64(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
dma_addr_t *bufferp)
{
struct ath10k_ce_ring *dest_ring;
unsigned int nentries_mask;
unsigned int sw_index;
unsigned int write_index;
int ret;
struct ath10k *ar;
struct ath10k_ce *ce;
dest_ring = ce_state->dest_ring;
if (!dest_ring)
return -EIO;
ar = ce_state->ar;
ce = ath10k_ce_priv(ar);
spin_lock_bh(&ce->ce_lock);
nentries_mask = dest_ring->nentries_mask;
sw_index = dest_ring->sw_index;
write_index = dest_ring->write_index;
if (write_index != sw_index) {
struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
struct ce_desc_64 *desc =
CE_DEST_RING_TO_DESC_64(base, sw_index);
/* Return data from completed destination descriptor */
*bufferp = __le64_to_cpu(desc->addr);
if (per_transfer_contextp)
*per_transfer_contextp =
dest_ring->per_transfer_context[sw_index];
/* sanity */
dest_ring->per_transfer_context[sw_index] = NULL;
desc->nbytes = 0;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
dest_ring->sw_index = sw_index;
ret = 0;
} else {
ret = -EIO;
}
spin_unlock_bh(&ce->ce_lock);
return ret;
}
int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
dma_addr_t *bufferp)
{
return ce_state->ops->ce_revoke_recv_next(ce_state,
per_transfer_contextp,
bufferp);
}
EXPORT_SYMBOL(ath10k_ce_revoke_recv_next);
/*
* Guts of ath10k_ce_completed_send_next.
* The caller takes responsibility for any necessary locking.
*/
static int _ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp)
{
struct ath10k_ce_ring *src_ring = ce_state->src_ring;
u32 ctrl_addr = ce_state->ctrl_addr;
struct ath10k *ar = ce_state->ar;
unsigned int nentries_mask = src_ring->nentries_mask;
unsigned int sw_index = src_ring->sw_index;
unsigned int read_index;
struct ce_desc *desc;
if (src_ring->hw_index == sw_index) {
/*
* The SW completion index has caught up with the cached
* version of the HW completion index.
* Update the cached HW completion index to see whether
* the SW has really caught up to the HW, or if the cached
* value of the HW index has become stale.
*/
read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
if (read_index == 0xffffffff)
return -ENODEV;
read_index &= nentries_mask;
src_ring->hw_index = read_index;
}
if (ar->hw_params.rri_on_ddr)
read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
else
read_index = src_ring->hw_index;
if (read_index == sw_index)
return -EIO;
if (per_transfer_contextp)
*per_transfer_contextp =
src_ring->per_transfer_context[sw_index];
/* sanity */
src_ring->per_transfer_context[sw_index] = NULL;
desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
sw_index);
desc->nbytes = 0;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
src_ring->sw_index = sw_index;
return 0;
}
static int _ath10k_ce_completed_send_next_nolock_64(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp)
{
struct ath10k_ce_ring *src_ring = ce_state->src_ring;
u32 ctrl_addr = ce_state->ctrl_addr;
struct ath10k *ar = ce_state->ar;
unsigned int nentries_mask = src_ring->nentries_mask;
unsigned int sw_index = src_ring->sw_index;
unsigned int read_index;
struct ce_desc_64 *desc;
if (src_ring->hw_index == sw_index) {
/*
* The SW completion index has caught up with the cached
* version of the HW completion index.
* Update the cached HW completion index to see whether
* the SW has really caught up to the HW, or if the cached
* value of the HW index has become stale.
*/
read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
if (read_index == 0xffffffff)
return -ENODEV;
read_index &= nentries_mask;
src_ring->hw_index = read_index;
}
if (ar->hw_params.rri_on_ddr)
read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
else
read_index = src_ring->hw_index;
if (read_index == sw_index)
return -EIO;
if (per_transfer_contextp)
*per_transfer_contextp =
src_ring->per_transfer_context[sw_index];
/* sanity */
src_ring->per_transfer_context[sw_index] = NULL;
desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
sw_index);
desc->nbytes = 0;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
src_ring->sw_index = sw_index;
return 0;
}
int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp)
{
return ce_state->ops->ce_completed_send_next_nolock(ce_state,
per_transfer_contextp);
}
EXPORT_SYMBOL(ath10k_ce_completed_send_next_nolock);
static void ath10k_ce_extract_desc_data(struct ath10k *ar,
struct ath10k_ce_ring *src_ring,
u32 sw_index,
dma_addr_t *bufferp,
u32 *nbytesp,
u32 *transfer_idp)
{
struct ce_desc *base = src_ring->base_addr_owner_space;
struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
/* Return data from completed source descriptor */
*bufferp = __le32_to_cpu(desc->addr);
*nbytesp = __le16_to_cpu(desc->nbytes);
*transfer_idp = MS(__le16_to_cpu(desc->flags),
CE_DESC_FLAGS_META_DATA);
}
static void ath10k_ce_extract_desc_data_64(struct ath10k *ar,
struct ath10k_ce_ring *src_ring,
u32 sw_index,
dma_addr_t *bufferp,
u32 *nbytesp,
u32 *transfer_idp)
{
struct ce_desc_64 *base = src_ring->base_addr_owner_space;
struct ce_desc_64 *desc =
CE_SRC_RING_TO_DESC_64(base, sw_index);
/* Return data from completed source descriptor */
*bufferp = __le64_to_cpu(desc->addr);
*nbytesp = __le16_to_cpu(desc->nbytes);
*transfer_idp = MS(__le16_to_cpu(desc->flags),
CE_DESC_FLAGS_META_DATA);
}
/* NB: Modeled after ath10k_ce_completed_send_next */
int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp,
dma_addr_t *bufferp,
unsigned int *nbytesp,
unsigned int *transfer_idp)
{
struct ath10k_ce_ring *src_ring;
unsigned int nentries_mask;
unsigned int sw_index;
unsigned int write_index;
int ret;
struct ath10k *ar;
struct ath10k_ce *ce;
src_ring = ce_state->src_ring;
if (!src_ring)
return -EIO;
ar = ce_state->ar;
ce = ath10k_ce_priv(ar);
spin_lock_bh(&ce->ce_lock);
nentries_mask = src_ring->nentries_mask;
sw_index = src_ring->sw_index;
write_index = src_ring->write_index;
if (write_index != sw_index) {
ce_state->ops->ce_extract_desc_data(ar, src_ring, sw_index,
bufferp, nbytesp,
transfer_idp);
if (per_transfer_contextp)
*per_transfer_contextp =
src_ring->per_transfer_context[sw_index];
/* sanity */
src_ring->per_transfer_context[sw_index] = NULL;
/* Update sw_index */
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
src_ring->sw_index = sw_index;
ret = 0;
} else {
ret = -EIO;
}
spin_unlock_bh(&ce->ce_lock);
return ret;
}
EXPORT_SYMBOL(ath10k_ce_cancel_send_next);
int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
void **per_transfer_contextp)
{
struct ath10k *ar = ce_state->ar;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
int ret;
spin_lock_bh(&ce->ce_lock);
ret = ath10k_ce_completed_send_next_nolock(ce_state,
per_transfer_contextp);
spin_unlock_bh(&ce->ce_lock);
return ret;
}
EXPORT_SYMBOL(ath10k_ce_completed_send_next);
/*
* Guts of interrupt handler for per-engine interrupts on a particular CE.
*
* Invokes registered callbacks for recv_complete,
* send_complete, and watermarks.
*/
void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
u32 ctrl_addr = ce_state->ctrl_addr;
spin_lock_bh(&ce->ce_lock);
/* Clear the copy-complete interrupts that will be handled here. */
ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
wm_regs->cc_mask);
spin_unlock_bh(&ce->ce_lock);
if (ce_state->recv_cb)
ce_state->recv_cb(ce_state);
if (ce_state->send_cb)
ce_state->send_cb(ce_state);
spin_lock_bh(&ce->ce_lock);
/*
* Misc CE interrupts are not being handled, but still need
* to be cleared.
*/
ath10k_ce_engine_int_status_clear(ar, ctrl_addr, wm_regs->wm_mask);
spin_unlock_bh(&ce->ce_lock);
}
EXPORT_SYMBOL(ath10k_ce_per_engine_service);
/*
* Handler for per-engine interrupts on ALL active CEs.
* This is used in cases where the system is sharing a
* single interrput for all CEs
*/
void ath10k_ce_per_engine_service_any(struct ath10k *ar)
{
int ce_id;
u32 intr_summary;
intr_summary = ath10k_ce_interrupt_summary(ar);
for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
if (intr_summary & (1 << ce_id))
intr_summary &= ~(1 << ce_id);
else
/* no intr pending on this CE */
continue;
ath10k_ce_per_engine_service(ar, ce_id);
}
}
EXPORT_SYMBOL(ath10k_ce_per_engine_service_any);
/*
* Adjust interrupts for the copy complete handler.
* If it's needed for either send or recv, then unmask
* this interrupt; otherwise, mask it.
*
* Called with ce_lock held.
*/
static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
{
u32 ctrl_addr = ce_state->ctrl_addr;
struct ath10k *ar = ce_state->ar;
bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
if ((!disable_copy_compl_intr) &&
(ce_state->send_cb || ce_state->recv_cb))
ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
else
ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
}
int ath10k_ce_disable_interrupts(struct ath10k *ar)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_state;
u32 ctrl_addr;
int ce_id;
for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
ce_state = &ce->ce_states[ce_id];
if (ce_state->attr_flags & CE_ATTR_POLL)
continue;
ctrl_addr = ath10k_ce_base_address(ar, ce_id);
ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
ath10k_ce_error_intr_disable(ar, ctrl_addr);
ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
}
return 0;
}
EXPORT_SYMBOL(ath10k_ce_disable_interrupts);
void ath10k_ce_enable_interrupts(struct ath10k *ar)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
int ce_id;
struct ath10k_ce_pipe *ce_state;
/* Enable interrupts for copy engine that
* are not using polling mode.
*/
for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
ce_state = &ce->ce_states[ce_id];
if (ce_state->attr_flags & CE_ATTR_POLL)
continue;
ath10k_ce_per_engine_handler_adjust(ce_state);
}
}
EXPORT_SYMBOL(ath10k_ce_enable_interrupts);
static int ath10k_ce_init_src_ring(struct ath10k *ar,
unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
struct ath10k_ce_ring *src_ring = ce_state->src_ring;
u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
nentries = roundup_pow_of_two(attr->src_nentries);
if (ar->hw_params.target_64bit)
memset(src_ring->base_addr_owner_space, 0,
nentries * sizeof(struct ce_desc_64));
else
memset(src_ring->base_addr_owner_space, 0,
nentries * sizeof(struct ce_desc));
src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
src_ring->sw_index &= src_ring->nentries_mask;
src_ring->hw_index = src_ring->sw_index;
src_ring->write_index =
ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
src_ring->write_index &= src_ring->nentries_mask;
ath10k_ce_src_ring_base_addr_set(ar, ce_id,
src_ring->base_addr_ce_space);
ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"boot init ce src ring id %d entries %d base_addr %pK\n",
ce_id, nentries, src_ring->base_addr_owner_space);
return 0;
}
static int ath10k_ce_init_dest_ring(struct ath10k *ar,
unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
nentries = roundup_pow_of_two(attr->dest_nentries);
if (ar->hw_params.target_64bit)
memset(dest_ring->base_addr_owner_space, 0,
nentries * sizeof(struct ce_desc_64));
else
memset(dest_ring->base_addr_owner_space, 0,
nentries * sizeof(struct ce_desc));
dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
dest_ring->sw_index &= dest_ring->nentries_mask;
dest_ring->write_index =
ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
dest_ring->write_index &= dest_ring->nentries_mask;
ath10k_ce_dest_ring_base_addr_set(ar, ce_id,
dest_ring->base_addr_ce_space);
ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"boot ce dest ring id %d entries %d base_addr %pK\n",
ce_id, nentries, dest_ring->base_addr_owner_space);
return 0;
}
static int ath10k_ce_alloc_shadow_base(struct ath10k *ar,
struct ath10k_ce_ring *src_ring,
u32 nentries)
{
src_ring->shadow_base_unaligned = kcalloc(nentries,
sizeof(struct ce_desc_64),
GFP_KERNEL);
if (!src_ring->shadow_base_unaligned)
return -ENOMEM;
src_ring->shadow_base = (struct ce_desc_64 *)
PTR_ALIGN(src_ring->shadow_base_unaligned,
CE_DESC_RING_ALIGN);
return 0;
}
static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_ce_ring *src_ring;
u32 nentries = attr->src_nentries;
dma_addr_t base_addr;
int ret;
nentries = roundup_pow_of_two(nentries);
src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
nentries), GFP_KERNEL);
if (src_ring == NULL)
return ERR_PTR(-ENOMEM);
src_ring->nentries = nentries;
src_ring->nentries_mask = nentries - 1;
/*
* Legacy platforms that do not support cache
* coherent DMA are unsupported
*/
src_ring->base_addr_owner_space_unaligned =
dma_alloc_coherent(ar->dev,
(nentries * sizeof(struct ce_desc) +
CE_DESC_RING_ALIGN),
&base_addr, GFP_KERNEL);
if (!src_ring->base_addr_owner_space_unaligned) {
kfree(src_ring);
return ERR_PTR(-ENOMEM);
}
src_ring->base_addr_ce_space_unaligned = base_addr;
src_ring->base_addr_owner_space =
PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
CE_DESC_RING_ALIGN);
src_ring->base_addr_ce_space =
ALIGN(src_ring->base_addr_ce_space_unaligned,
CE_DESC_RING_ALIGN);
if (ar->hw_params.shadow_reg_support) {
ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
if (ret) {
dma_free_coherent(ar->dev,
(nentries * sizeof(struct ce_desc_64) +
CE_DESC_RING_ALIGN),
src_ring->base_addr_owner_space_unaligned,
base_addr);
kfree(src_ring);
return ERR_PTR(ret);
}
}
return src_ring;
}
static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring_64(struct ath10k *ar, unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_ce_ring *src_ring;
u32 nentries = attr->src_nentries;
dma_addr_t base_addr;
int ret;
nentries = roundup_pow_of_two(nentries);
src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
nentries), GFP_KERNEL);
if (!src_ring)
return ERR_PTR(-ENOMEM);
src_ring->nentries = nentries;
src_ring->nentries_mask = nentries - 1;
/* Legacy platforms that do not support cache
* coherent DMA are unsupported
*/
src_ring->base_addr_owner_space_unaligned =
dma_alloc_coherent(ar->dev,
(nentries * sizeof(struct ce_desc_64) +
CE_DESC_RING_ALIGN),
&base_addr, GFP_KERNEL);
if (!src_ring->base_addr_owner_space_unaligned) {
kfree(src_ring);
return ERR_PTR(-ENOMEM);
}
src_ring->base_addr_ce_space_unaligned = base_addr;
src_ring->base_addr_owner_space =
PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
CE_DESC_RING_ALIGN);
src_ring->base_addr_ce_space =
ALIGN(src_ring->base_addr_ce_space_unaligned,
CE_DESC_RING_ALIGN);
if (ar->hw_params.shadow_reg_support) {
ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
if (ret) {
dma_free_coherent(ar->dev,
(nentries * sizeof(struct ce_desc_64) +
CE_DESC_RING_ALIGN),
src_ring->base_addr_owner_space_unaligned,
base_addr);
kfree(src_ring);
return ERR_PTR(ret);
}
}
return src_ring;
}
static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_ce_ring *dest_ring;
u32 nentries;
dma_addr_t base_addr;
nentries = roundup_pow_of_two(attr->dest_nentries);
dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
nentries), GFP_KERNEL);
if (dest_ring == NULL)
return ERR_PTR(-ENOMEM);
dest_ring->nentries = nentries;
dest_ring->nentries_mask = nentries - 1;
/*
* Legacy platforms that do not support cache
* coherent DMA are unsupported
*/
dest_ring->base_addr_owner_space_unaligned =
dma_alloc_coherent(ar->dev,
(nentries * sizeof(struct ce_desc) +
CE_DESC_RING_ALIGN),
&base_addr, GFP_KERNEL);
if (!dest_ring->base_addr_owner_space_unaligned) {
kfree(dest_ring);
return ERR_PTR(-ENOMEM);
}
dest_ring->base_addr_ce_space_unaligned = base_addr;
dest_ring->base_addr_owner_space =
PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
CE_DESC_RING_ALIGN);
dest_ring->base_addr_ce_space =
ALIGN(dest_ring->base_addr_ce_space_unaligned,
CE_DESC_RING_ALIGN);
return dest_ring;
}
static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring_64(struct ath10k *ar, unsigned int ce_id,
const struct ce_attr *attr)
{
struct ath10k_ce_ring *dest_ring;
u32 nentries;
dma_addr_t base_addr;
nentries = roundup_pow_of_two(attr->dest_nentries);
dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
nentries), GFP_KERNEL);
if (!dest_ring)
return ERR_PTR(-ENOMEM);
dest_ring->nentries = nentries;
dest_ring->nentries_mask = nentries - 1;
/* Legacy platforms that do not support cache
* coherent DMA are unsupported
*/
dest_ring->base_addr_owner_space_unaligned =
dma_alloc_coherent(ar->dev,
(nentries * sizeof(struct ce_desc_64) +
CE_DESC_RING_ALIGN),
&base_addr, GFP_KERNEL);
if (!dest_ring->base_addr_owner_space_unaligned) {
kfree(dest_ring);
return ERR_PTR(-ENOMEM);
}
dest_ring->base_addr_ce_space_unaligned = base_addr;
/* Correctly initialize memory to 0 to prevent garbage
* data crashing system when download firmware
*/
memset(dest_ring->base_addr_owner_space_unaligned, 0,
nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN);
dest_ring->base_addr_owner_space =
PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
CE_DESC_RING_ALIGN);
dest_ring->base_addr_ce_space =
ALIGN(dest_ring->base_addr_ce_space_unaligned,
CE_DESC_RING_ALIGN);
return dest_ring;
}
/*
* Initialize a Copy Engine based on caller-supplied attributes.
* This may be called once to initialize both source and destination
* rings or it may be called twice for separate source and destination
* initialization. It may be that only one side or the other is
* initialized by software/firmware.
*/
int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
const struct ce_attr *attr)
{
int ret;
if (attr->src_nentries) {
ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
if (ret) {
ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
ce_id, ret);
return ret;
}
}
if (attr->dest_nentries) {
ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
if (ret) {
ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
ce_id, ret);
return ret;
}
}
return 0;
}
EXPORT_SYMBOL(ath10k_ce_init_pipe);
static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
{
u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
ath10k_ce_src_ring_base_addr_set(ar, ce_id, 0);
ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
}
static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
{
u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
ath10k_ce_dest_ring_base_addr_set(ar, ce_id, 0);
ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
}
void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
{
ath10k_ce_deinit_src_ring(ar, ce_id);
ath10k_ce_deinit_dest_ring(ar, ce_id);
}
EXPORT_SYMBOL(ath10k_ce_deinit_pipe);
static void _ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
if (ce_state->src_ring) {
if (ar->hw_params.shadow_reg_support)
kfree(ce_state->src_ring->shadow_base_unaligned);
dma_free_coherent(ar->dev,
(ce_state->src_ring->nentries *
sizeof(struct ce_desc) +
CE_DESC_RING_ALIGN),
ce_state->src_ring->base_addr_owner_space,
ce_state->src_ring->base_addr_ce_space);
kfree(ce_state->src_ring);
}
if (ce_state->dest_ring) {
dma_free_coherent(ar->dev,
(ce_state->dest_ring->nentries *
sizeof(struct ce_desc) +
CE_DESC_RING_ALIGN),
ce_state->dest_ring->base_addr_owner_space,
ce_state->dest_ring->base_addr_ce_space);
kfree(ce_state->dest_ring);
}
ce_state->src_ring = NULL;
ce_state->dest_ring = NULL;
}
static void _ath10k_ce_free_pipe_64(struct ath10k *ar, int ce_id)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
if (ce_state->src_ring) {
if (ar->hw_params.shadow_reg_support)
kfree(ce_state->src_ring->shadow_base_unaligned);
dma_free_coherent(ar->dev,
(ce_state->src_ring->nentries *
sizeof(struct ce_desc_64) +
CE_DESC_RING_ALIGN),
ce_state->src_ring->base_addr_owner_space,
ce_state->src_ring->base_addr_ce_space);
kfree(ce_state->src_ring);
}
if (ce_state->dest_ring) {
dma_free_coherent(ar->dev,
(ce_state->dest_ring->nentries *
sizeof(struct ce_desc_64) +
CE_DESC_RING_ALIGN),
ce_state->dest_ring->base_addr_owner_space,
ce_state->dest_ring->base_addr_ce_space);
kfree(ce_state->dest_ring);
}
ce_state->src_ring = NULL;
ce_state->dest_ring = NULL;
}
void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
ce_state->ops->ce_free_pipe(ar, ce_id);
}
EXPORT_SYMBOL(ath10k_ce_free_pipe);
void ath10k_ce_dump_registers(struct ath10k *ar,
struct ath10k_fw_crash_data *crash_data)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_crash_data ce_data;
u32 addr, id;
lockdep_assert_held(&ar->dump_mutex);
ath10k_err(ar, "Copy Engine register dump:\n");
spin_lock_bh(&ce->ce_lock);
for (id = 0; id < CE_COUNT; id++) {
addr = ath10k_ce_base_address(ar, id);
ce_data.base_addr = cpu_to_le32(addr);
ce_data.src_wr_idx =
cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
ce_data.src_r_idx =
cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
ce_data.dst_wr_idx =
cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
ce_data.dst_r_idx =
cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));
if (crash_data)
crash_data->ce_crash_data[id] = ce_data;
ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
le32_to_cpu(ce_data.base_addr),
le32_to_cpu(ce_data.src_wr_idx),
le32_to_cpu(ce_data.src_r_idx),
le32_to_cpu(ce_data.dst_wr_idx),
le32_to_cpu(ce_data.dst_r_idx));
}
spin_unlock_bh(&ce->ce_lock);
}
EXPORT_SYMBOL(ath10k_ce_dump_registers);
static const struct ath10k_ce_ops ce_ops = {
.ce_alloc_src_ring = ath10k_ce_alloc_src_ring,
.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring,
.ce_rx_post_buf = __ath10k_ce_rx_post_buf,
.ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock,
.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next,
.ce_extract_desc_data = ath10k_ce_extract_desc_data,
.ce_free_pipe = _ath10k_ce_free_pipe,
.ce_send_nolock = _ath10k_ce_send_nolock,
.ce_set_src_ring_base_addr_hi = NULL,
.ce_set_dest_ring_base_addr_hi = NULL,
.ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock,
};
static const struct ath10k_ce_ops ce_64_ops = {
.ce_alloc_src_ring = ath10k_ce_alloc_src_ring_64,
.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring_64,
.ce_rx_post_buf = __ath10k_ce_rx_post_buf_64,
.ce_completed_recv_next_nolock =
_ath10k_ce_completed_recv_next_nolock_64,
.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next_64,
.ce_extract_desc_data = ath10k_ce_extract_desc_data_64,
.ce_free_pipe = _ath10k_ce_free_pipe_64,
.ce_send_nolock = _ath10k_ce_send_nolock_64,
.ce_set_src_ring_base_addr_hi = ath10k_ce_set_src_ring_base_addr_hi,
.ce_set_dest_ring_base_addr_hi = ath10k_ce_set_dest_ring_base_addr_hi,
.ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock_64,
};
static void ath10k_ce_set_ops(struct ath10k *ar,
struct ath10k_ce_pipe *ce_state)
{
switch (ar->hw_rev) {
case ATH10K_HW_WCN3990:
ce_state->ops = &ce_64_ops;
break;
default:
ce_state->ops = &ce_ops;
break;
}
}
int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
const struct ce_attr *attr)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
int ret;
ath10k_ce_set_ops(ar, ce_state);
/* Make sure there's enough CE ringbuffer entries for HTT TX to avoid
* additional TX locking checks.
*
* For the lack of a better place do the check here.
*/
BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
(CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
(CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
(CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
ce_state->ar = ar;
ce_state->id = ce_id;
ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
ce_state->attr_flags = attr->flags;
ce_state->src_sz_max = attr->src_sz_max;
if (attr->src_nentries)
ce_state->send_cb = attr->send_cb;
if (attr->dest_nentries)
ce_state->recv_cb = attr->recv_cb;
if (attr->src_nentries) {
ce_state->src_ring =
ce_state->ops->ce_alloc_src_ring(ar, ce_id, attr);
if (IS_ERR(ce_state->src_ring)) {
ret = PTR_ERR(ce_state->src_ring);
ath10k_err(ar, "failed to alloc CE src ring %d: %d\n",
ce_id, ret);
ce_state->src_ring = NULL;
return ret;
}
}
if (attr->dest_nentries) {
ce_state->dest_ring = ce_state->ops->ce_alloc_dst_ring(ar,
ce_id,
attr);
if (IS_ERR(ce_state->dest_ring)) {
ret = PTR_ERR(ce_state->dest_ring);
ath10k_err(ar, "failed to alloc CE dest ring %d: %d\n",
ce_id, ret);
ce_state->dest_ring = NULL;
return ret;
}
}
return 0;
}
EXPORT_SYMBOL(ath10k_ce_alloc_pipe);
void ath10k_ce_alloc_rri(struct ath10k *ar)
{
int i;
u32 value;
u32 ctrl1_regs;
u32 ce_base_addr;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
ce->vaddr_rri = dma_alloc_coherent(ar->dev,
(CE_COUNT * sizeof(u32)),
&ce->paddr_rri, GFP_KERNEL);
if (!ce->vaddr_rri)
return;
ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_low,
lower_32_bits(ce->paddr_rri));
ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_high,
(upper_32_bits(ce->paddr_rri) &
CE_DESC_ADDR_HI_MASK));
for (i = 0; i < CE_COUNT; i++) {
ctrl1_regs = ar->hw_ce_regs->ctrl1_regs->addr;
ce_base_addr = ath10k_ce_base_address(ar, i);
value = ath10k_ce_read32(ar, ce_base_addr + ctrl1_regs);
value |= ar->hw_ce_regs->upd->mask;
ath10k_ce_write32(ar, ce_base_addr + ctrl1_regs, value);
}
memset(ce->vaddr_rri, 0, CE_COUNT * sizeof(u32));
}
EXPORT_SYMBOL(ath10k_ce_alloc_rri);
void ath10k_ce_free_rri(struct ath10k *ar)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
dma_free_coherent(ar->dev, (CE_COUNT * sizeof(u32)),
ce->vaddr_rri,
ce->paddr_rri);
}
EXPORT_SYMBOL(ath10k_ce_free_rri);