linux_dsm_epyc7002/drivers/net/wireless/ath/ath10k/mac.c
Ben Greear 16c1117675 ath10k: use 64-bit vdev map
This can allow more than 32 stations to be supported
without over-running the bitmap.

Signed-off-by: Ben Greear <greearb@candelatech.com>
Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2014-10-01 11:21:43 +03:00

4975 lines
122 KiB
C

/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "mac.h"
#include <net/mac80211.h>
#include <linux/etherdevice.h>
#include "hif.h"
#include "core.h"
#include "debug.h"
#include "wmi.h"
#include "htt.h"
#include "txrx.h"
#include "testmode.h"
/**********/
/* Crypto */
/**********/
static int ath10k_send_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd,
const u8 *macaddr)
{
struct ath10k *ar = arvif->ar;
struct wmi_vdev_install_key_arg arg = {
.vdev_id = arvif->vdev_id,
.key_idx = key->keyidx,
.key_len = key->keylen,
.key_data = key->key,
.macaddr = macaddr,
};
lockdep_assert_held(&arvif->ar->conf_mutex);
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
arg.key_flags = WMI_KEY_PAIRWISE;
else
arg.key_flags = WMI_KEY_GROUP;
switch (key->cipher) {
case WLAN_CIPHER_SUITE_CCMP:
arg.key_cipher = WMI_CIPHER_AES_CCM;
if (arvif->vdev_type == WMI_VDEV_TYPE_AP)
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT;
else
key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
break;
case WLAN_CIPHER_SUITE_TKIP:
arg.key_cipher = WMI_CIPHER_TKIP;
arg.key_txmic_len = 8;
arg.key_rxmic_len = 8;
break;
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
arg.key_cipher = WMI_CIPHER_WEP;
/* AP/IBSS mode requires self-key to be groupwise
* Otherwise pairwise key must be set */
if (memcmp(macaddr, arvif->vif->addr, ETH_ALEN))
arg.key_flags = WMI_KEY_PAIRWISE;
break;
default:
ath10k_warn(ar, "cipher %d is not supported\n", key->cipher);
return -EOPNOTSUPP;
}
if (cmd == DISABLE_KEY) {
arg.key_cipher = WMI_CIPHER_NONE;
arg.key_data = NULL;
}
return ath10k_wmi_vdev_install_key(arvif->ar, &arg);
}
static int ath10k_install_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd,
const u8 *macaddr)
{
struct ath10k *ar = arvif->ar;
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->install_key_done);
ret = ath10k_send_key(arvif, key, cmd, macaddr);
if (ret)
return ret;
ret = wait_for_completion_timeout(&ar->install_key_done, 3*HZ);
if (ret == 0)
return -ETIMEDOUT;
return 0;
}
static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif,
const u8 *addr)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
spin_unlock_bh(&ar->data_lock);
if (!peer)
return -ENOENT;
for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) {
if (arvif->wep_keys[i] == NULL)
continue;
ret = ath10k_install_key(arvif, arvif->wep_keys[i], SET_KEY,
addr);
if (ret)
return ret;
peer->keys[i] = arvif->wep_keys[i];
}
return 0;
}
static int ath10k_clear_peer_keys(struct ath10k_vif *arvif,
const u8 *addr)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
int first_errno = 0;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
spin_unlock_bh(&ar->data_lock);
if (!peer)
return -ENOENT;
for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
if (peer->keys[i] == NULL)
continue;
ret = ath10k_install_key(arvif, peer->keys[i],
DISABLE_KEY, addr);
if (ret && first_errno == 0)
first_errno = ret;
if (ret)
ath10k_warn(ar, "failed to remove peer wep key %d: %d\n",
i, ret);
peer->keys[i] = NULL;
}
return first_errno;
}
static int ath10k_clear_vdev_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
u8 addr[ETH_ALEN];
int first_errno = 0;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
for (;;) {
/* since ath10k_install_key we can't hold data_lock all the
* time, so we try to remove the keys incrementally */
spin_lock_bh(&ar->data_lock);
i = 0;
list_for_each_entry(peer, &ar->peers, list) {
for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
if (peer->keys[i] == key) {
ether_addr_copy(addr, peer->addr);
peer->keys[i] = NULL;
break;
}
}
if (i < ARRAY_SIZE(peer->keys))
break;
}
spin_unlock_bh(&ar->data_lock);
if (i == ARRAY_SIZE(peer->keys))
break;
ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr);
if (ret && first_errno == 0)
first_errno = ret;
if (ret)
ath10k_warn(ar, "failed to remove key for %pM: %d\n",
addr, ret);
}
return first_errno;
}
/*********************/
/* General utilities */
/*********************/
static inline enum wmi_phy_mode
chan_to_phymode(const struct cfg80211_chan_def *chandef)
{
enum wmi_phy_mode phymode = MODE_UNKNOWN;
switch (chandef->chan->band) {
case IEEE80211_BAND_2GHZ:
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
phymode = MODE_11G;
break;
case NL80211_CHAN_WIDTH_20:
phymode = MODE_11NG_HT20;
break;
case NL80211_CHAN_WIDTH_40:
phymode = MODE_11NG_HT40;
break;
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_80:
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
phymode = MODE_UNKNOWN;
break;
}
break;
case IEEE80211_BAND_5GHZ:
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
phymode = MODE_11A;
break;
case NL80211_CHAN_WIDTH_20:
phymode = MODE_11NA_HT20;
break;
case NL80211_CHAN_WIDTH_40:
phymode = MODE_11NA_HT40;
break;
case NL80211_CHAN_WIDTH_80:
phymode = MODE_11AC_VHT80;
break;
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
phymode = MODE_UNKNOWN;
break;
}
break;
default:
break;
}
WARN_ON(phymode == MODE_UNKNOWN);
return phymode;
}
static u8 ath10k_parse_mpdudensity(u8 mpdudensity)
{
/*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
1 microsecond */
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
static int ath10k_peer_create(struct ath10k *ar, u32 vdev_id, const u8 *addr)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_peer_create(ar, vdev_id, addr);
if (ret) {
ath10k_warn(ar, "failed to create wmi peer %pM on vdev %i: %i\n",
addr, vdev_id, ret);
return ret;
}
ret = ath10k_wait_for_peer_created(ar, vdev_id, addr);
if (ret) {
ath10k_warn(ar, "failed to wait for created wmi peer %pM on vdev %i: %i\n",
addr, vdev_id, ret);
return ret;
}
spin_lock_bh(&ar->data_lock);
ar->num_peers++;
spin_unlock_bh(&ar->data_lock);
return 0;
}
static int ath10k_mac_set_kickout(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
u32 param;
int ret;
param = ar->wmi.pdev_param->sta_kickout_th;
ret = ath10k_wmi_pdev_set_param(ar, param,
ATH10K_KICKOUT_THRESHOLD);
if (ret) {
ath10k_warn(ar, "failed to set kickout threshold on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MIN_IDLE);
if (ret) {
ath10k_warn(ar, "failed to set keepalive minimum idle time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MAX_IDLE);
if (ret) {
ath10k_warn(ar, "failed to set keepalive maximum idle time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MAX_UNRESPONSIVE);
if (ret) {
ath10k_warn(ar, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
if (value != 0xFFFFFFFF)
value = min_t(u32, arvif->ar->hw->wiphy->rts_threshold,
ATH10K_RTS_MAX);
vdev_param = ar->wmi.vdev_param->rts_threshold;
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
}
static int ath10k_mac_set_frag(struct ath10k_vif *arvif, u32 value)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
if (value != 0xFFFFFFFF)
value = clamp_t(u32, arvif->ar->hw->wiphy->frag_threshold,
ATH10K_FRAGMT_THRESHOLD_MIN,
ATH10K_FRAGMT_THRESHOLD_MAX);
vdev_param = ar->wmi.vdev_param->fragmentation_threshold;
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
}
static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_peer_delete(ar, vdev_id, addr);
if (ret)
return ret;
ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr);
if (ret)
return ret;
spin_lock_bh(&ar->data_lock);
ar->num_peers--;
spin_unlock_bh(&ar->data_lock);
return 0;
}
static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id)
{
struct ath10k_peer *peer, *tmp;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
if (peer->vdev_id != vdev_id)
continue;
ath10k_warn(ar, "removing stale peer %pM from vdev_id %d\n",
peer->addr, vdev_id);
list_del(&peer->list);
kfree(peer);
ar->num_peers--;
}
spin_unlock_bh(&ar->data_lock);
}
static void ath10k_peer_cleanup_all(struct ath10k *ar)
{
struct ath10k_peer *peer, *tmp;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
list_del(&peer->list);
kfree(peer);
}
ar->num_peers = 0;
spin_unlock_bh(&ar->data_lock);
}
/************************/
/* Interface management */
/************************/
void ath10k_mac_vif_beacon_free(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
lockdep_assert_held(&ar->data_lock);
if (!arvif->beacon)
return;
if (!arvif->beacon_buf)
dma_unmap_single(ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr,
arvif->beacon->len, DMA_TO_DEVICE);
dev_kfree_skb_any(arvif->beacon);
arvif->beacon = NULL;
arvif->beacon_sent = false;
}
static void ath10k_mac_vif_beacon_cleanup(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
lockdep_assert_held(&ar->data_lock);
ath10k_mac_vif_beacon_free(arvif);
if (arvif->beacon_buf) {
dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
arvif->beacon_buf, arvif->beacon_paddr);
arvif->beacon_buf = NULL;
}
}
static inline int ath10k_vdev_setup_sync(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = wait_for_completion_timeout(&ar->vdev_setup_done,
ATH10K_VDEV_SETUP_TIMEOUT_HZ);
if (ret == 0)
return -ETIMEDOUT;
return 0;
}
static int ath10k_monitor_vdev_start(struct ath10k *ar, int vdev_id)
{
struct cfg80211_chan_def *chandef = &ar->chandef;
struct ieee80211_channel *channel = chandef->chan;
struct wmi_vdev_start_request_arg arg = {};
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
arg.vdev_id = vdev_id;
arg.channel.freq = channel->center_freq;
arg.channel.band_center_freq1 = chandef->center_freq1;
/* TODO setup this dynamically, what in case we
don't have any vifs? */
arg.channel.mode = chan_to_phymode(chandef);
arg.channel.chan_radar =
!!(channel->flags & IEEE80211_CHAN_RADAR);
arg.channel.min_power = 0;
arg.channel.max_power = channel->max_power * 2;
arg.channel.max_reg_power = channel->max_reg_power * 2;
arg.channel.max_antenna_gain = channel->max_antenna_gain * 2;
ret = ath10k_wmi_vdev_start(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to request monitor vdev %i start: %d\n",
vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn(ar, "failed to synchronize setup for monitor vdev %i: %d\n",
vdev_id, ret);
return ret;
}
ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr);
if (ret) {
ath10k_warn(ar, "failed to put up monitor vdev %i: %d\n",
vdev_id, ret);
goto vdev_stop;
}
ar->monitor_vdev_id = vdev_id;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i started\n",
ar->monitor_vdev_id);
return 0;
vdev_stop:
ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn(ar, "failed to stop monitor vdev %i after start failure: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
static int ath10k_monitor_vdev_stop(struct ath10k *ar)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn(ar, "failed to put down monitor vdev %i: %d\n",
ar->monitor_vdev_id, ret);
ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn(ar, "failed to to request monitor vdev %i stop: %d\n",
ar->monitor_vdev_id, ret);
ret = ath10k_vdev_setup_sync(ar);
if (ret)
ath10k_warn(ar, "failed to synchronise monitor vdev %i: %d\n",
ar->monitor_vdev_id, ret);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i stopped\n",
ar->monitor_vdev_id);
return ret;
}
static int ath10k_monitor_vdev_create(struct ath10k *ar)
{
int bit, ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (ar->free_vdev_map == 0) {
ath10k_warn(ar, "failed to find free vdev id for monitor vdev\n");
return -ENOMEM;
}
bit = __ffs64(ar->free_vdev_map);
ar->monitor_vdev_id = bit;
ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id,
WMI_VDEV_TYPE_MONITOR,
0, ar->mac_addr);
if (ret) {
ath10k_warn(ar, "failed to request monitor vdev %i creation: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
ar->free_vdev_map &= ~(1LL << ar->monitor_vdev_id);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d created\n",
ar->monitor_vdev_id);
return 0;
}
static int ath10k_monitor_vdev_delete(struct ath10k *ar)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
if (ret) {
ath10k_warn(ar, "failed to request wmi monitor vdev %i removal: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
ar->free_vdev_map |= 1LL << ar->monitor_vdev_id;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n",
ar->monitor_vdev_id);
return ret;
}
static int ath10k_monitor_start(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_monitor_vdev_create(ar);
if (ret) {
ath10k_warn(ar, "failed to create monitor vdev: %d\n", ret);
return ret;
}
ret = ath10k_monitor_vdev_start(ar, ar->monitor_vdev_id);
if (ret) {
ath10k_warn(ar, "failed to start monitor vdev: %d\n", ret);
ath10k_monitor_vdev_delete(ar);
return ret;
}
ar->monitor_started = true;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor started\n");
return 0;
}
static int ath10k_monitor_stop(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_monitor_vdev_stop(ar);
if (ret) {
ath10k_warn(ar, "failed to stop monitor vdev: %d\n", ret);
return ret;
}
ret = ath10k_monitor_vdev_delete(ar);
if (ret) {
ath10k_warn(ar, "failed to delete monitor vdev: %d\n", ret);
return ret;
}
ar->monitor_started = false;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopped\n");
return 0;
}
static int ath10k_monitor_recalc(struct ath10k *ar)
{
bool should_start;
lockdep_assert_held(&ar->conf_mutex);
should_start = ar->monitor ||
ar->filter_flags & FIF_PROMISC_IN_BSS ||
test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac monitor recalc started? %d should? %d\n",
ar->monitor_started, should_start);
if (should_start == ar->monitor_started)
return 0;
if (should_start)
return ath10k_monitor_start(ar);
return ath10k_monitor_stop(ar);
}
static int ath10k_recalc_rtscts_prot(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param, rts_cts = 0;
lockdep_assert_held(&ar->conf_mutex);
vdev_param = ar->wmi.vdev_param->enable_rtscts;
if (arvif->use_cts_prot || arvif->num_legacy_stations > 0)
rts_cts |= SM(WMI_RTSCTS_ENABLED, WMI_RTSCTS_SET);
if (arvif->num_legacy_stations > 0)
rts_cts |= SM(WMI_RTSCTS_ACROSS_SW_RETRIES,
WMI_RTSCTS_PROFILE);
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
rts_cts);
}
static int ath10k_start_cac(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
ret = ath10k_monitor_recalc(ar);
if (ret) {
ath10k_warn(ar, "failed to start monitor (cac): %d\n", ret);
clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n",
ar->monitor_vdev_id);
return 0;
}
static int ath10k_stop_cac(struct ath10k *ar)
{
lockdep_assert_held(&ar->conf_mutex);
/* CAC is not running - do nothing */
if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags))
return 0;
clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
ath10k_monitor_stop(ar);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac finished\n");
return 0;
}
static void ath10k_recalc_radar_detection(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath10k_stop_cac(ar);
if (!ar->radar_enabled)
return;
if (ar->num_started_vdevs > 0)
return;
ret = ath10k_start_cac(ar);
if (ret) {
/*
* Not possible to start CAC on current channel so starting
* radiation is not allowed, make this channel DFS_UNAVAILABLE
* by indicating that radar was detected.
*/
ath10k_warn(ar, "failed to start CAC: %d\n", ret);
ieee80211_radar_detected(ar->hw);
}
}
static int ath10k_vdev_start_restart(struct ath10k_vif *arvif, bool restart)
{
struct ath10k *ar = arvif->ar;
struct cfg80211_chan_def *chandef = &ar->chandef;
struct wmi_vdev_start_request_arg arg = {};
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
arg.vdev_id = arvif->vdev_id;
arg.dtim_period = arvif->dtim_period;
arg.bcn_intval = arvif->beacon_interval;
arg.channel.freq = chandef->chan->center_freq;
arg.channel.band_center_freq1 = chandef->center_freq1;
arg.channel.mode = chan_to_phymode(chandef);
arg.channel.min_power = 0;
arg.channel.max_power = chandef->chan->max_power * 2;
arg.channel.max_reg_power = chandef->chan->max_reg_power * 2;
arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain * 2;
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
arg.ssid = arvif->u.ap.ssid;
arg.ssid_len = arvif->u.ap.ssid_len;
arg.hidden_ssid = arvif->u.ap.hidden_ssid;
/* For now allow DFS for AP mode */
arg.channel.chan_radar =
!!(chandef->chan->flags & IEEE80211_CHAN_RADAR);
} else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
arg.ssid = arvif->vif->bss_conf.ssid;
arg.ssid_len = arvif->vif->bss_conf.ssid_len;
}
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d start center_freq %d phymode %s\n",
arg.vdev_id, arg.channel.freq,
ath10k_wmi_phymode_str(arg.channel.mode));
if (restart)
ret = ath10k_wmi_vdev_restart(ar, &arg);
else
ret = ath10k_wmi_vdev_start(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to start WMI vdev %i: %d\n",
arg.vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn(ar, "failed to synchronise setup for vdev %i: %d\n",
arg.vdev_id, ret);
return ret;
}
ar->num_started_vdevs++;
ath10k_recalc_radar_detection(ar);
return ret;
}
static int ath10k_vdev_start(struct ath10k_vif *arvif)
{
return ath10k_vdev_start_restart(arvif, false);
}
static int ath10k_vdev_restart(struct ath10k_vif *arvif)
{
return ath10k_vdev_start_restart(arvif, true);
}
static int ath10k_vdev_stop(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id);
if (ret) {
ath10k_warn(ar, "failed to stop WMI vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn(ar, "failed to syncronise setup for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
WARN_ON(ar->num_started_vdevs == 0);
if (ar->num_started_vdevs != 0) {
ar->num_started_vdevs--;
ath10k_recalc_radar_detection(ar);
}
return ret;
}
static void ath10k_control_beaconing(struct ath10k_vif *arvif,
struct ieee80211_bss_conf *info)
{
struct ath10k *ar = arvif->ar;
int ret = 0;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (!info->enable_beacon) {
ath10k_vdev_stop(arvif);
arvif->is_started = false;
arvif->is_up = false;
spin_lock_bh(&arvif->ar->data_lock);
ath10k_mac_vif_beacon_free(arvif);
spin_unlock_bh(&arvif->ar->data_lock);
return;
}
arvif->tx_seq_no = 0x1000;
ret = ath10k_vdev_start(arvif);
if (ret)
return;
arvif->aid = 0;
ether_addr_copy(arvif->bssid, info->bssid);
ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
arvif->bssid);
if (ret) {
ath10k_warn(ar, "failed to bring up vdev %d: %i\n",
arvif->vdev_id, ret);
ath10k_vdev_stop(arvif);
return;
}
arvif->is_started = true;
arvif->is_up = true;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id);
}
static void ath10k_control_ibss(struct ath10k_vif *arvif,
struct ieee80211_bss_conf *info,
const u8 self_peer[ETH_ALEN])
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
int ret = 0;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (!info->ibss_joined) {
ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, self_peer);
if (ret)
ath10k_warn(ar, "failed to delete IBSS self peer %pM for vdev %d: %d\n",
self_peer, arvif->vdev_id, ret);
if (is_zero_ether_addr(arvif->bssid))
return;
ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id,
arvif->bssid);
if (ret) {
ath10k_warn(ar, "failed to delete IBSS BSSID peer %pM for vdev %d: %d\n",
arvif->bssid, arvif->vdev_id, ret);
return;
}
memset(arvif->bssid, 0, ETH_ALEN);
return;
}
ret = ath10k_peer_create(arvif->ar, arvif->vdev_id, self_peer);
if (ret) {
ath10k_warn(ar, "failed to create IBSS self peer %pM for vdev %d: %d\n",
self_peer, arvif->vdev_id, ret);
return;
}
vdev_param = arvif->ar->wmi.vdev_param->atim_window;
ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param,
ATH10K_DEFAULT_ATIM);
if (ret)
ath10k_warn(ar, "failed to set IBSS ATIM for vdev %d: %d\n",
arvif->vdev_id, ret);
}
/*
* Review this when mac80211 gains per-interface powersave support.
*/
static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct ieee80211_conf *conf = &ar->hw->conf;
enum wmi_sta_powersave_param param;
enum wmi_sta_ps_mode psmode;
int ret;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (arvif->vif->type != NL80211_IFTYPE_STATION)
return 0;
if (conf->flags & IEEE80211_CONF_PS) {
psmode = WMI_STA_PS_MODE_ENABLED;
param = WMI_STA_PS_PARAM_INACTIVITY_TIME;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param,
conf->dynamic_ps_timeout);
if (ret) {
ath10k_warn(ar, "failed to set inactivity time for vdev %d: %i\n",
arvif->vdev_id, ret);
return ret;
}
} else {
psmode = WMI_STA_PS_MODE_DISABLED;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d psmode %s\n",
arvif->vdev_id, psmode ? "enable" : "disable");
ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode);
if (ret) {
ath10k_warn(ar, "failed to set PS Mode %d for vdev %d: %d\n",
psmode, arvif->vdev_id, ret);
return ret;
}
return 0;
}
/**********************/
/* Station management */
/**********************/
static void ath10k_peer_assoc_h_basic(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
lockdep_assert_held(&ar->conf_mutex);
ether_addr_copy(arg->addr, sta->addr);
arg->vdev_id = arvif->vdev_id;
arg->peer_aid = sta->aid;
arg->peer_flags |= WMI_PEER_AUTH;
if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
/*
* Seems FW have problems with Power Save in STA
* mode when we setup this parameter to high (eg. 5).
* Often we see that FW don't send NULL (with clean P flags)
* frame even there is info about buffered frames in beacons.
* Sometimes we have to wait more than 10 seconds before FW
* will wakeup. Often sending one ping from AP to our device
* just fail (more than 50%).
*
* Seems setting this FW parameter to 1 couse FW
* will check every beacon and will wakup immediately
* after detection buffered data.
*/
arg->peer_listen_intval = 1;
else
arg->peer_listen_intval = ar->hw->conf.listen_interval;
arg->peer_num_spatial_streams = 1;
/*
* The assoc capabilities are available only in managed mode.
*/
if (arvif->vdev_type == WMI_VDEV_TYPE_STA && bss_conf)
arg->peer_caps = bss_conf->assoc_capability;
}
static void ath10k_peer_assoc_h_crypto(struct ath10k *ar,
struct ath10k_vif *arvif,
struct wmi_peer_assoc_complete_arg *arg)
{
struct ieee80211_vif *vif = arvif->vif;
struct ieee80211_bss_conf *info = &vif->bss_conf;
struct cfg80211_bss *bss;
const u8 *rsnie = NULL;
const u8 *wpaie = NULL;
lockdep_assert_held(&ar->conf_mutex);
bss = cfg80211_get_bss(ar->hw->wiphy, ar->hw->conf.chandef.chan,
info->bssid, NULL, 0, 0, 0);
if (bss) {
const struct cfg80211_bss_ies *ies;
rcu_read_lock();
rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN);
ies = rcu_dereference(bss->ies);
wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
WLAN_OUI_TYPE_MICROSOFT_WPA,
ies->data,
ies->len);
rcu_read_unlock();
cfg80211_put_bss(ar->hw->wiphy, bss);
}
/* FIXME: base on RSN IE/WPA IE is a correct idea? */
if (rsnie || wpaie) {
ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__);
arg->peer_flags |= WMI_PEER_NEED_PTK_4_WAY;
}
if (wpaie) {
ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__);
arg->peer_flags |= WMI_PEER_NEED_GTK_2_WAY;
}
}
static void ath10k_peer_assoc_h_rates(struct ath10k *ar,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates;
const struct ieee80211_supported_band *sband;
const struct ieee80211_rate *rates;
u32 ratemask;
int i;
lockdep_assert_held(&ar->conf_mutex);
sband = ar->hw->wiphy->bands[ar->hw->conf.chandef.chan->band];
ratemask = sta->supp_rates[ar->hw->conf.chandef.chan->band];
rates = sband->bitrates;
rateset->num_rates = 0;
for (i = 0; i < 32; i++, ratemask >>= 1, rates++) {
if (!(ratemask & 1))
continue;
rateset->rates[rateset->num_rates] = rates->hw_value;
rateset->num_rates++;
}
}
static void ath10k_peer_assoc_h_ht(struct ath10k *ar,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
const struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
int i, n;
u32 stbc;
lockdep_assert_held(&ar->conf_mutex);
if (!ht_cap->ht_supported)
return;
arg->peer_flags |= WMI_PEER_HT;
arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
ht_cap->ampdu_factor)) - 1;
arg->peer_mpdu_density =
ath10k_parse_mpdudensity(ht_cap->ampdu_density);
arg->peer_ht_caps = ht_cap->cap;
arg->peer_rate_caps |= WMI_RC_HT_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING)
arg->peer_flags |= WMI_PEER_LDPC;
if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) {
arg->peer_flags |= WMI_PEER_40MHZ;
arg->peer_rate_caps |= WMI_RC_CW40_FLAG;
}
if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20)
arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40)
arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) {
arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG;
arg->peer_flags |= WMI_PEER_STBC;
}
if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) {
stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC;
stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT;
stbc = stbc << WMI_RC_RX_STBC_FLAG_S;
arg->peer_rate_caps |= stbc;
arg->peer_flags |= WMI_PEER_STBC;
}
if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2])
arg->peer_rate_caps |= WMI_RC_TS_FLAG;
else if (ht_cap->mcs.rx_mask[1])
arg->peer_rate_caps |= WMI_RC_DS_FLAG;
for (i = 0, n = 0; i < IEEE80211_HT_MCS_MASK_LEN*8; i++)
if (ht_cap->mcs.rx_mask[i/8] & (1 << i%8))
arg->peer_ht_rates.rates[n++] = i;
/*
* This is a workaround for HT-enabled STAs which break the spec
* and have no HT capabilities RX mask (no HT RX MCS map).
*
* As per spec, in section 20.3.5 Modulation and coding scheme (MCS),
* MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs.
*
* Firmware asserts if such situation occurs.
*/
if (n == 0) {
arg->peer_ht_rates.num_rates = 8;
for (i = 0; i < arg->peer_ht_rates.num_rates; i++)
arg->peer_ht_rates.rates[i] = i;
} else {
arg->peer_ht_rates.num_rates = n;
arg->peer_num_spatial_streams = sta->rx_nss;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n",
arg->addr,
arg->peer_ht_rates.num_rates,
arg->peer_num_spatial_streams);
}
static int ath10k_peer_assoc_qos_ap(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta)
{
u32 uapsd = 0;
u32 max_sp = 0;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (sta->wme && sta->uapsd_queues) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n",
sta->uapsd_queues, sta->max_sp);
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC3_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC2_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC1_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC0_TRIGGER_EN;
if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP)
max_sp = sta->max_sp;
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_UAPSD,
uapsd);
if (ret) {
ath10k_warn(ar, "failed to set ap ps peer param uapsd for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_MAX_SP,
max_sp);
if (ret) {
ath10k_warn(ar, "failed to set ap ps peer param max sp for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
/* TODO setup this based on STA listen interval and
beacon interval. Currently we don't know
sta->listen_interval - mac80211 patch required.
Currently use 10 seconds */
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr,
WMI_AP_PS_PEER_PARAM_AGEOUT_TIME,
10);
if (ret) {
ath10k_warn(ar, "failed to set ap ps peer param ageout time for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
return 0;
}
static void ath10k_peer_assoc_h_vht(struct ath10k *ar,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
const struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
u8 ampdu_factor;
if (!vht_cap->vht_supported)
return;
arg->peer_flags |= WMI_PEER_VHT;
arg->peer_vht_caps = vht_cap->cap;
ampdu_factor = (vht_cap->cap &
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
/* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to
* zero in VHT IE. Using it would result in degraded throughput.
* arg->peer_max_mpdu at this point contains HT max_mpdu so keep
* it if VHT max_mpdu is smaller. */
arg->peer_max_mpdu = max(arg->peer_max_mpdu,
(1U << (IEEE80211_HT_MAX_AMPDU_FACTOR +
ampdu_factor)) - 1);
if (sta->bandwidth == IEEE80211_STA_RX_BW_80)
arg->peer_flags |= WMI_PEER_80MHZ;
arg->peer_vht_rates.rx_max_rate =
__le16_to_cpu(vht_cap->vht_mcs.rx_highest);
arg->peer_vht_rates.rx_mcs_set =
__le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map);
arg->peer_vht_rates.tx_max_rate =
__le16_to_cpu(vht_cap->vht_mcs.tx_highest);
arg->peer_vht_rates.tx_mcs_set =
__le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n",
sta->addr, arg->peer_max_mpdu, arg->peer_flags);
}
static void ath10k_peer_assoc_h_qos(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
switch (arvif->vdev_type) {
case WMI_VDEV_TYPE_AP:
if (sta->wme)
arg->peer_flags |= WMI_PEER_QOS;
if (sta->wme && sta->uapsd_queues) {
arg->peer_flags |= WMI_PEER_APSD;
arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG;
}
break;
case WMI_VDEV_TYPE_STA:
if (bss_conf->qos)
arg->peer_flags |= WMI_PEER_QOS;
break;
default:
break;
}
}
static void ath10k_peer_assoc_h_phymode(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
enum wmi_phy_mode phymode = MODE_UNKNOWN;
switch (ar->hw->conf.chandef.chan->band) {
case IEEE80211_BAND_2GHZ:
if (sta->ht_cap.ht_supported) {
if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11NG_HT40;
else
phymode = MODE_11NG_HT20;
} else {
phymode = MODE_11G;
}
break;
case IEEE80211_BAND_5GHZ:
/*
* Check VHT first.
*/
if (sta->vht_cap.vht_supported) {
if (sta->bandwidth == IEEE80211_STA_RX_BW_80)
phymode = MODE_11AC_VHT80;
else if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11AC_VHT40;
else if (sta->bandwidth == IEEE80211_STA_RX_BW_20)
phymode = MODE_11AC_VHT20;
} else if (sta->ht_cap.ht_supported) {
if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11NA_HT40;
else
phymode = MODE_11NA_HT20;
} else {
phymode = MODE_11A;
}
break;
default:
break;
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM phymode %s\n",
sta->addr, ath10k_wmi_phymode_str(phymode));
arg->peer_phymode = phymode;
WARN_ON(phymode == MODE_UNKNOWN);
}
static int ath10k_peer_assoc_prepare(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
lockdep_assert_held(&ar->conf_mutex);
memset(arg, 0, sizeof(*arg));
ath10k_peer_assoc_h_basic(ar, arvif, sta, bss_conf, arg);
ath10k_peer_assoc_h_crypto(ar, arvif, arg);
ath10k_peer_assoc_h_rates(ar, sta, arg);
ath10k_peer_assoc_h_ht(ar, sta, arg);
ath10k_peer_assoc_h_vht(ar, sta, arg);
ath10k_peer_assoc_h_qos(ar, arvif, sta, bss_conf, arg);
ath10k_peer_assoc_h_phymode(ar, arvif, sta, arg);
return 0;
}
static const u32 ath10k_smps_map[] = {
[WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC,
[WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC,
[WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE,
[WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE,
};
static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif,
const u8 *addr,
const struct ieee80211_sta_ht_cap *ht_cap)
{
int smps;
if (!ht_cap->ht_supported)
return 0;
smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS;
smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT;
if (smps >= ARRAY_SIZE(ath10k_smps_map))
return -EINVAL;
return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr,
WMI_PEER_SMPS_STATE,
ath10k_smps_map[smps]);
}
/* can be called only in mac80211 callbacks due to `key_count` usage */
static void ath10k_bss_assoc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ieee80211_sta_ht_cap ht_cap;
struct wmi_peer_assoc_complete_arg peer_arg;
struct ieee80211_sta *ap_sta;
int ret;
lockdep_assert_held(&ar->conf_mutex);
rcu_read_lock();
ap_sta = ieee80211_find_sta(vif, bss_conf->bssid);
if (!ap_sta) {
ath10k_warn(ar, "failed to find station entry for bss %pM vdev %i\n",
bss_conf->bssid, arvif->vdev_id);
rcu_read_unlock();
return;
}
/* ap_sta must be accessed only within rcu section which must be left
* before calling ath10k_setup_peer_smps() which might sleep. */
ht_cap = ap_sta->ht_cap;
ret = ath10k_peer_assoc_prepare(ar, arvif, ap_sta,
bss_conf, &peer_arg);
if (ret) {
ath10k_warn(ar, "failed to prepare peer assoc for %pM vdev %i: %d\n",
bss_conf->bssid, arvif->vdev_id, ret);
rcu_read_unlock();
return;
}
rcu_read_unlock();
ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
if (ret) {
ath10k_warn(ar, "failed to run peer assoc for %pM vdev %i: %d\n",
bss_conf->bssid, arvif->vdev_id, ret);
return;
}
ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap);
if (ret) {
ath10k_warn(ar, "failed to setup peer SMPS for vdev %i: %d\n",
arvif->vdev_id, ret);
return;
}
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d up (associated) bssid %pM aid %d\n",
arvif->vdev_id, bss_conf->bssid, bss_conf->aid);
arvif->aid = bss_conf->aid;
ether_addr_copy(arvif->bssid, bss_conf->bssid);
ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid);
if (ret) {
ath10k_warn(ar, "failed to set vdev %d up: %d\n",
arvif->vdev_id, ret);
return;
}
arvif->is_up = true;
}
/*
* FIXME: flush TIDs
*/
static void ath10k_bss_disassoc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
int ret;
lockdep_assert_held(&ar->conf_mutex);
/*
* For some reason, calling VDEV-DOWN before VDEV-STOP
* makes the FW to send frames via HTT after disassociation.
* No idea why this happens, even though VDEV-DOWN is supposed
* to be analogous to link down, so just stop the VDEV.
*/
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d stop (disassociated\n",
arvif->vdev_id);
/* FIXME: check return value */
ret = ath10k_vdev_stop(arvif);
/*
* If we don't call VDEV-DOWN after VDEV-STOP FW will remain active and
* report beacons from previously associated network through HTT.
* This in turn would spam mac80211 WARN_ON if we bring down all
* interfaces as it expects there is no rx when no interface is
* running.
*/
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d down\n", arvif->vdev_id);
/* FIXME: why don't we print error if wmi call fails? */
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
arvif->def_wep_key_idx = 0;
arvif->is_started = false;
arvif->is_up = false;
}
static int ath10k_station_assoc(struct ath10k *ar, struct ath10k_vif *arvif,
struct ieee80211_sta *sta, bool reassoc)
{
struct wmi_peer_assoc_complete_arg peer_arg;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_peer_assoc_prepare(ar, arvif, sta, NULL, &peer_arg);
if (ret) {
ath10k_warn(ar, "failed to prepare WMI peer assoc for %pM vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
peer_arg.peer_reassoc = reassoc;
ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
if (ret) {
ath10k_warn(ar, "failed to run peer assoc for STA %pM vdev %i: %d\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
ret = ath10k_setup_peer_smps(ar, arvif, sta->addr, &sta->ht_cap);
if (ret) {
ath10k_warn(ar, "failed to setup peer SMPS for vdev %d: %d\n",
arvif->vdev_id, ret);
return ret;
}
if (!sta->wme && !reassoc) {
arvif->num_legacy_stations++;
ret = ath10k_recalc_rtscts_prot(arvif);
if (ret) {
ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
ret = ath10k_install_peer_wep_keys(arvif, sta->addr);
if (ret) {
ath10k_warn(ar, "failed to install peer wep keys for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta);
if (ret) {
ath10k_warn(ar, "failed to set qos params for STA %pM for vdev %i: %d\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
return ret;
}
static int ath10k_station_disassoc(struct ath10k *ar, struct ath10k_vif *arvif,
struct ieee80211_sta *sta)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (!sta->wme) {
arvif->num_legacy_stations--;
ret = ath10k_recalc_rtscts_prot(arvif);
if (ret) {
ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
ret = ath10k_clear_peer_keys(arvif, sta->addr);
if (ret) {
ath10k_warn(ar, "failed to clear all peer wep keys for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return ret;
}
/**************/
/* Regulatory */
/**************/
static int ath10k_update_channel_list(struct ath10k *ar)
{
struct ieee80211_hw *hw = ar->hw;
struct ieee80211_supported_band **bands;
enum ieee80211_band band;
struct ieee80211_channel *channel;
struct wmi_scan_chan_list_arg arg = {0};
struct wmi_channel_arg *ch;
bool passive;
int len;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
bands = hw->wiphy->bands;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
if (!bands[band])
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
if (bands[band]->channels[i].flags &
IEEE80211_CHAN_DISABLED)
continue;
arg.n_channels++;
}
}
len = sizeof(struct wmi_channel_arg) * arg.n_channels;
arg.channels = kzalloc(len, GFP_KERNEL);
if (!arg.channels)
return -ENOMEM;
ch = arg.channels;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
if (!bands[band])
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
channel = &bands[band]->channels[i];
if (channel->flags & IEEE80211_CHAN_DISABLED)
continue;
ch->allow_ht = true;
/* FIXME: when should we really allow VHT? */
ch->allow_vht = true;
ch->allow_ibss =
!(channel->flags & IEEE80211_CHAN_NO_IR);
ch->ht40plus =
!(channel->flags & IEEE80211_CHAN_NO_HT40PLUS);
ch->chan_radar =
!!(channel->flags & IEEE80211_CHAN_RADAR);
passive = channel->flags & IEEE80211_CHAN_NO_IR;
ch->passive = passive;
ch->freq = channel->center_freq;
ch->band_center_freq1 = channel->center_freq;
ch->min_power = 0;
ch->max_power = channel->max_power * 2;
ch->max_reg_power = channel->max_reg_power * 2;
ch->max_antenna_gain = channel->max_antenna_gain * 2;
ch->reg_class_id = 0; /* FIXME */
/* FIXME: why use only legacy modes, why not any
* HT/VHT modes? Would that even make any
* difference? */
if (channel->band == IEEE80211_BAND_2GHZ)
ch->mode = MODE_11G;
else
ch->mode = MODE_11A;
if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN))
continue;
ath10k_dbg(ar, ATH10K_DBG_WMI,
"mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n",
ch - arg.channels, arg.n_channels,
ch->freq, ch->max_power, ch->max_reg_power,
ch->max_antenna_gain, ch->mode);
ch++;
}
}
ret = ath10k_wmi_scan_chan_list(ar, &arg);
kfree(arg.channels);
return ret;
}
static enum wmi_dfs_region
ath10k_mac_get_dfs_region(enum nl80211_dfs_regions dfs_region)
{
switch (dfs_region) {
case NL80211_DFS_UNSET:
return WMI_UNINIT_DFS_DOMAIN;
case NL80211_DFS_FCC:
return WMI_FCC_DFS_DOMAIN;
case NL80211_DFS_ETSI:
return WMI_ETSI_DFS_DOMAIN;
case NL80211_DFS_JP:
return WMI_MKK4_DFS_DOMAIN;
}
return WMI_UNINIT_DFS_DOMAIN;
}
static void ath10k_regd_update(struct ath10k *ar)
{
struct reg_dmn_pair_mapping *regpair;
int ret;
enum wmi_dfs_region wmi_dfs_reg;
enum nl80211_dfs_regions nl_dfs_reg;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_update_channel_list(ar);
if (ret)
ath10k_warn(ar, "failed to update channel list: %d\n", ret);
regpair = ar->ath_common.regulatory.regpair;
if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
nl_dfs_reg = ar->dfs_detector->region;
wmi_dfs_reg = ath10k_mac_get_dfs_region(nl_dfs_reg);
} else {
wmi_dfs_reg = WMI_UNINIT_DFS_DOMAIN;
}
/* Target allows setting up per-band regdomain but ath_common provides
* a combined one only */
ret = ath10k_wmi_pdev_set_regdomain(ar,
regpair->reg_domain,
regpair->reg_domain, /* 2ghz */
regpair->reg_domain, /* 5ghz */
regpair->reg_2ghz_ctl,
regpair->reg_5ghz_ctl,
wmi_dfs_reg);
if (ret)
ath10k_warn(ar, "failed to set pdev regdomain: %d\n", ret);
}
static void ath10k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath10k *ar = hw->priv;
bool result;
ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory);
if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs region 0x%x\n",
request->dfs_region);
result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector,
request->dfs_region);
if (!result)
ath10k_warn(ar, "DFS region 0x%X not supported, will trigger radar for every pulse\n",
request->dfs_region);
}
mutex_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_ON)
ath10k_regd_update(ar);
mutex_unlock(&ar->conf_mutex);
}
/***************/
/* TX handlers */
/***************/
static u8 ath10k_tx_h_get_tid(struct ieee80211_hdr *hdr)
{
if (ieee80211_is_mgmt(hdr->frame_control))
return HTT_DATA_TX_EXT_TID_MGMT;
if (!ieee80211_is_data_qos(hdr->frame_control))
return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
if (!is_unicast_ether_addr(ieee80211_get_DA(hdr)))
return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
return ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
}
static u8 ath10k_tx_h_get_vdev_id(struct ath10k *ar, struct ieee80211_vif *vif)
{
if (vif)
return ath10k_vif_to_arvif(vif)->vdev_id;
if (ar->monitor_started)
return ar->monitor_vdev_id;
ath10k_warn(ar, "failed to resolve vdev id\n");
return 0;
}
/* HTT Tx uses Native Wifi tx mode which expects 802.11 frames without QoS
* Control in the header.
*/
static void ath10k_tx_h_nwifi(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (void *)skb->data;
struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
u8 *qos_ctl;
if (!ieee80211_is_data_qos(hdr->frame_control))
return;
qos_ctl = ieee80211_get_qos_ctl(hdr);
memmove(skb->data + IEEE80211_QOS_CTL_LEN,
skb->data, (void *)qos_ctl - (void *)skb->data);
skb_pull(skb, IEEE80211_QOS_CTL_LEN);
/* Fw/Hw generates a corrupted QoS Control Field for QoS NullFunc
* frames. Powersave is handled by the fw/hw so QoS NyllFunc frames are
* used only for CQM purposes (e.g. hostapd station keepalive ping) so
* it is safe to downgrade to NullFunc.
*/
if (ieee80211_is_qos_nullfunc(hdr->frame_control)) {
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
cb->htt.tid = HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
}
}
static void ath10k_tx_wep_key_work(struct work_struct *work)
{
struct ath10k_vif *arvif = container_of(work, struct ath10k_vif,
wep_key_work);
struct ath10k *ar = arvif->ar;
int ret, keyidx = arvif->def_wep_key_newidx;
mutex_lock(&arvif->ar->conf_mutex);
if (arvif->ar->state != ATH10K_STATE_ON)
goto unlock;
if (arvif->def_wep_key_idx == keyidx)
goto unlock;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n",
arvif->vdev_id, keyidx);
ret = ath10k_wmi_vdev_set_param(arvif->ar,
arvif->vdev_id,
arvif->ar->wmi.vdev_param->def_keyid,
keyidx);
if (ret) {
ath10k_warn(ar, "failed to update wep key index for vdev %d: %d\n",
arvif->vdev_id,
ret);
goto unlock;
}
arvif->def_wep_key_idx = keyidx;
unlock:
mutex_unlock(&arvif->ar->conf_mutex);
}
static void ath10k_tx_h_update_wep_key(struct ieee80211_vif *vif,
struct ieee80211_key_conf *key,
struct sk_buff *skb)
{
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ath10k *ar = arvif->ar;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
if (!ieee80211_has_protected(hdr->frame_control))
return;
if (!key)
return;
if (key->cipher != WLAN_CIPHER_SUITE_WEP40 &&
key->cipher != WLAN_CIPHER_SUITE_WEP104)
return;
if (key->keyidx == arvif->def_wep_key_idx)
return;
/* FIXME: Most likely a few frames will be TXed with an old key. Simply
* queueing frames until key index is updated is not an option because
* sk_buff may need more processing to be done, e.g. offchannel */
arvif->def_wep_key_newidx = key->keyidx;
ieee80211_queue_work(ar->hw, &arvif->wep_key_work);
}
static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar,
struct ieee80211_vif *vif,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
/* This is case only for P2P_GO */
if (arvif->vdev_type != WMI_VDEV_TYPE_AP ||
arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
return;
if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) {
spin_lock_bh(&ar->data_lock);
if (arvif->u.ap.noa_data)
if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len,
GFP_ATOMIC))
memcpy(skb_put(skb, arvif->u.ap.noa_len),
arvif->u.ap.noa_data,
arvif->u.ap.noa_len);
spin_unlock_bh(&ar->data_lock);
}
}
static void ath10k_tx_htt(struct ath10k *ar, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int ret = 0;
if (ar->htt.target_version_major >= 3) {
/* Since HTT 3.0 there is no separate mgmt tx command */
ret = ath10k_htt_tx(&ar->htt, skb);
goto exit;
}
if (ieee80211_is_mgmt(hdr->frame_control)) {
if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
ar->fw_features)) {
if (skb_queue_len(&ar->wmi_mgmt_tx_queue) >=
ATH10K_MAX_NUM_MGMT_PENDING) {
ath10k_warn(ar, "reached WMI management transmit queue limit\n");
ret = -EBUSY;
goto exit;
}
skb_queue_tail(&ar->wmi_mgmt_tx_queue, skb);
ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work);
} else {
ret = ath10k_htt_mgmt_tx(&ar->htt, skb);
}
} else if (!test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
ar->fw_features) &&
ieee80211_is_nullfunc(hdr->frame_control)) {
/* FW does not report tx status properly for NullFunc frames
* unless they are sent through mgmt tx path. mac80211 sends
* those frames when it detects link/beacon loss and depends
* on the tx status to be correct. */
ret = ath10k_htt_mgmt_tx(&ar->htt, skb);
} else {
ret = ath10k_htt_tx(&ar->htt, skb);
}
exit:
if (ret) {
ath10k_warn(ar, "failed to transmit packet, dropping: %d\n",
ret);
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_offchan_tx_purge(struct ath10k *ar)
{
struct sk_buff *skb;
for (;;) {
skb = skb_dequeue(&ar->offchan_tx_queue);
if (!skb)
break;
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_offchan_tx_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work);
struct ath10k_peer *peer;
struct ieee80211_hdr *hdr;
struct sk_buff *skb;
const u8 *peer_addr;
int vdev_id;
int ret;
/* FW requirement: We must create a peer before FW will send out
* an offchannel frame. Otherwise the frame will be stuck and
* never transmitted. We delete the peer upon tx completion.
* It is unlikely that a peer for offchannel tx will already be
* present. However it may be in some rare cases so account for that.
* Otherwise we might remove a legitimate peer and break stuff. */
for (;;) {
skb = skb_dequeue(&ar->offchan_tx_queue);
if (!skb)
break;
mutex_lock(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac offchannel skb %p\n",
skb);
hdr = (struct ieee80211_hdr *)skb->data;
peer_addr = ieee80211_get_DA(hdr);
vdev_id = ATH10K_SKB_CB(skb)->vdev_id;
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, vdev_id, peer_addr);
spin_unlock_bh(&ar->data_lock);
if (peer)
/* FIXME: should this use ath10k_warn()? */
ath10k_dbg(ar, ATH10K_DBG_MAC, "peer %pM on vdev %d already present\n",
peer_addr, vdev_id);
if (!peer) {
ret = ath10k_peer_create(ar, vdev_id, peer_addr);
if (ret)
ath10k_warn(ar, "failed to create peer %pM on vdev %d: %d\n",
peer_addr, vdev_id, ret);
}
spin_lock_bh(&ar->data_lock);
reinit_completion(&ar->offchan_tx_completed);
ar->offchan_tx_skb = skb;
spin_unlock_bh(&ar->data_lock);
ath10k_tx_htt(ar, skb);
ret = wait_for_completion_timeout(&ar->offchan_tx_completed,
3 * HZ);
if (ret <= 0)
ath10k_warn(ar, "timed out waiting for offchannel skb %p\n",
skb);
if (!peer) {
ret = ath10k_peer_delete(ar, vdev_id, peer_addr);
if (ret)
ath10k_warn(ar, "failed to delete peer %pM on vdev %d: %d\n",
peer_addr, vdev_id, ret);
}
mutex_unlock(&ar->conf_mutex);
}
}
void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar)
{
struct sk_buff *skb;
for (;;) {
skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
if (!skb)
break;
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work);
struct sk_buff *skb;
int ret;
for (;;) {
skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
if (!skb)
break;
ret = ath10k_wmi_mgmt_tx(ar, skb);
if (ret) {
ath10k_warn(ar, "failed to transmit management frame via WMI: %d\n",
ret);
ieee80211_free_txskb(ar->hw, skb);
}
}
}
/************/
/* Scanning */
/************/
void __ath10k_scan_finish(struct ath10k *ar)
{
lockdep_assert_held(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
break;
case ATH10K_SCAN_RUNNING:
case ATH10K_SCAN_ABORTING:
if (ar->scan.is_roc)
ieee80211_remain_on_channel_expired(ar->hw);
else
ieee80211_scan_completed(ar->hw,
(ar->scan.state ==
ATH10K_SCAN_ABORTING));
/* fall through */
case ATH10K_SCAN_STARTING:
ar->scan.state = ATH10K_SCAN_IDLE;
ar->scan_channel = NULL;
ath10k_offchan_tx_purge(ar);
cancel_delayed_work(&ar->scan.timeout);
complete_all(&ar->scan.completed);
break;
}
}
void ath10k_scan_finish(struct ath10k *ar)
{
spin_lock_bh(&ar->data_lock);
__ath10k_scan_finish(ar);
spin_unlock_bh(&ar->data_lock);
}
static int ath10k_scan_stop(struct ath10k *ar)
{
struct wmi_stop_scan_arg arg = {
.req_id = 1, /* FIXME */
.req_type = WMI_SCAN_STOP_ONE,
.u.scan_id = ATH10K_SCAN_ID,
};
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_stop_scan(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to stop wmi scan: %d\n", ret);
goto out;
}
ret = wait_for_completion_timeout(&ar->scan.completed, 3*HZ);
if (ret == 0) {
ath10k_warn(ar, "failed to receive scan abortion completion: timed out\n");
ret = -ETIMEDOUT;
} else if (ret > 0) {
ret = 0;
}
out:
/* Scan state should be updated upon scan completion but in case
* firmware fails to deliver the event (for whatever reason) it is
* desired to clean up scan state anyway. Firmware may have just
* dropped the scan completion event delivery due to transport pipe
* being overflown with data and/or it can recover on its own before
* next scan request is submitted.
*/
spin_lock_bh(&ar->data_lock);
if (ar->scan.state != ATH10K_SCAN_IDLE)
__ath10k_scan_finish(ar);
spin_unlock_bh(&ar->data_lock);
return ret;
}
static void ath10k_scan_abort(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
/* This can happen if timeout worker kicked in and called
* abortion while scan completion was being processed.
*/
break;
case ATH10K_SCAN_STARTING:
case ATH10K_SCAN_ABORTING:
ath10k_warn(ar, "refusing scan abortion due to invalid scan state: %s (%d)\n",
ath10k_scan_state_str(ar->scan.state),
ar->scan.state);
break;
case ATH10K_SCAN_RUNNING:
ar->scan.state = ATH10K_SCAN_ABORTING;
spin_unlock_bh(&ar->data_lock);
ret = ath10k_scan_stop(ar);
if (ret)
ath10k_warn(ar, "failed to abort scan: %d\n", ret);
spin_lock_bh(&ar->data_lock);
break;
}
spin_unlock_bh(&ar->data_lock);
}
void ath10k_scan_timeout_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k,
scan.timeout.work);
mutex_lock(&ar->conf_mutex);
ath10k_scan_abort(ar);
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_start_scan(struct ath10k *ar,
const struct wmi_start_scan_arg *arg)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_start_scan(ar, arg);
if (ret)
return ret;
ret = wait_for_completion_timeout(&ar->scan.started, 1*HZ);
if (ret == 0) {
ret = ath10k_scan_stop(ar);
if (ret)
ath10k_warn(ar, "failed to stop scan: %d\n", ret);
return -ETIMEDOUT;
}
/* Add a 200ms margin to account for event/command processing */
ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
msecs_to_jiffies(arg->max_scan_time+200));
return 0;
}
/**********************/
/* mac80211 callbacks */
/**********************/
static void ath10k_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ath10k *ar = hw->priv;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct ieee80211_key_conf *key = info->control.hw_key;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
/* We should disable CCK RATE due to P2P */
if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE)
ath10k_dbg(ar, ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n");
ATH10K_SKB_CB(skb)->htt.is_offchan = false;
ATH10K_SKB_CB(skb)->htt.tid = ath10k_tx_h_get_tid(hdr);
ATH10K_SKB_CB(skb)->vdev_id = ath10k_tx_h_get_vdev_id(ar, vif);
/* it makes no sense to process injected frames like that */
if (vif && vif->type != NL80211_IFTYPE_MONITOR) {
ath10k_tx_h_nwifi(hw, skb);
ath10k_tx_h_update_wep_key(vif, key, skb);
ath10k_tx_h_add_p2p_noa_ie(ar, vif, skb);
ath10k_tx_h_seq_no(vif, skb);
}
if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
spin_lock_bh(&ar->data_lock);
ATH10K_SKB_CB(skb)->htt.is_offchan = true;
ATH10K_SKB_CB(skb)->vdev_id = ar->scan.vdev_id;
spin_unlock_bh(&ar->data_lock);
ath10k_dbg(ar, ATH10K_DBG_MAC, "queued offchannel skb %p\n",
skb);
skb_queue_tail(&ar->offchan_tx_queue, skb);
ieee80211_queue_work(hw, &ar->offchan_tx_work);
return;
}
ath10k_tx_htt(ar, skb);
}
/* Must not be called with conf_mutex held as workers can use that also. */
static void ath10k_drain_tx(struct ath10k *ar)
{
/* make sure rcu-protected mac80211 tx path itself is drained */
synchronize_net();
ath10k_offchan_tx_purge(ar);
ath10k_mgmt_over_wmi_tx_purge(ar);
cancel_work_sync(&ar->offchan_tx_work);
cancel_work_sync(&ar->wmi_mgmt_tx_work);
}
void ath10k_halt(struct ath10k *ar)
{
struct ath10k_vif *arvif;
lockdep_assert_held(&ar->conf_mutex);
clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
ar->filter_flags = 0;
ar->monitor = false;
if (ar->monitor_started)
ath10k_monitor_stop(ar);
ar->monitor_started = false;
ath10k_scan_finish(ar);
ath10k_peer_cleanup_all(ar);
ath10k_core_stop(ar);
ath10k_hif_power_down(ar);
spin_lock_bh(&ar->data_lock);
list_for_each_entry(arvif, &ar->arvifs, list)
ath10k_mac_vif_beacon_cleanup(arvif);
spin_unlock_bh(&ar->data_lock);
}
static int ath10k_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
if (ar->cfg_tx_chainmask) {
*tx_ant = ar->cfg_tx_chainmask;
*rx_ant = ar->cfg_rx_chainmask;
} else {
*tx_ant = ar->supp_tx_chainmask;
*rx_ant = ar->supp_rx_chainmask;
}
mutex_unlock(&ar->conf_mutex);
return 0;
}
static int __ath10k_set_antenna(struct ath10k *ar, u32 tx_ant, u32 rx_ant)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ar->cfg_tx_chainmask = tx_ant;
ar->cfg_rx_chainmask = rx_ant;
if ((ar->state != ATH10K_STATE_ON) &&
(ar->state != ATH10K_STATE_RESTARTED))
return 0;
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->tx_chain_mask,
tx_ant);
if (ret) {
ath10k_warn(ar, "failed to set tx-chainmask: %d, req 0x%x\n",
ret, tx_ant);
return ret;
}
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rx_chain_mask,
rx_ant);
if (ret) {
ath10k_warn(ar, "failed to set rx-chainmask: %d, req 0x%x\n",
ret, rx_ant);
return ret;
}
return 0;
}
static int ath10k_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
ret = __ath10k_set_antenna(ar, tx_ant, rx_ant);
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_start(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
int ret = 0;
/*
* This makes sense only when restarting hw. It is harmless to call
* uncoditionally. This is necessary to make sure no HTT/WMI tx
* commands will be submitted while restarting.
*/
ath10k_drain_tx(ar);
mutex_lock(&ar->conf_mutex);
switch (ar->state) {
case ATH10K_STATE_OFF:
ar->state = ATH10K_STATE_ON;
break;
case ATH10K_STATE_RESTARTING:
ath10k_halt(ar);
ar->state = ATH10K_STATE_RESTARTED;
break;
case ATH10K_STATE_ON:
case ATH10K_STATE_RESTARTED:
case ATH10K_STATE_WEDGED:
WARN_ON(1);
ret = -EINVAL;
goto err;
case ATH10K_STATE_UTF:
ret = -EBUSY;
goto err;
}
ret = ath10k_hif_power_up(ar);
if (ret) {
ath10k_err(ar, "Could not init hif: %d\n", ret);
goto err_off;
}
ret = ath10k_core_start(ar, ATH10K_FIRMWARE_MODE_NORMAL);
if (ret) {
ath10k_err(ar, "Could not init core: %d\n", ret);
goto err_power_down;
}
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->pmf_qos, 1);
if (ret) {
ath10k_warn(ar, "failed to enable PMF QOS: %d\n", ret);
goto err_core_stop;
}
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->dynamic_bw, 1);
if (ret) {
ath10k_warn(ar, "failed to enable dynamic BW: %d\n", ret);
goto err_core_stop;
}
if (ar->cfg_tx_chainmask)
__ath10k_set_antenna(ar, ar->cfg_tx_chainmask,
ar->cfg_rx_chainmask);
/*
* By default FW set ARP frames ac to voice (6). In that case ARP
* exchange is not working properly for UAPSD enabled AP. ARP requests
* which arrives with access category 0 are processed by network stack
* and send back with access category 0, but FW changes access category
* to 6. Set ARP frames access category to best effort (0) solves
* this problem.
*/
ret = ath10k_wmi_pdev_set_param(ar,
ar->wmi.pdev_param->arp_ac_override, 0);
if (ret) {
ath10k_warn(ar, "failed to set arp ac override parameter: %d\n",
ret);
goto err_core_stop;
}
ar->num_started_vdevs = 0;
ath10k_regd_update(ar);
ath10k_spectral_start(ar);
mutex_unlock(&ar->conf_mutex);
return 0;
err_core_stop:
ath10k_core_stop(ar);
err_power_down:
ath10k_hif_power_down(ar);
err_off:
ar->state = ATH10K_STATE_OFF;
err:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_stop(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
ath10k_drain_tx(ar);
mutex_lock(&ar->conf_mutex);
if (ar->state != ATH10K_STATE_OFF) {
ath10k_halt(ar);
ar->state = ATH10K_STATE_OFF;
}
mutex_unlock(&ar->conf_mutex);
cancel_delayed_work_sync(&ar->scan.timeout);
cancel_work_sync(&ar->restart_work);
}
static int ath10k_config_ps(struct ath10k *ar)
{
struct ath10k_vif *arvif;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ret = ath10k_mac_vif_setup_ps(arvif);
if (ret) {
ath10k_warn(ar, "failed to setup powersave: %d\n", ret);
break;
}
}
return ret;
}
static const char *chandef_get_width(enum nl80211_chan_width width)
{
switch (width) {
case NL80211_CHAN_WIDTH_20_NOHT:
return "20 (noht)";
case NL80211_CHAN_WIDTH_20:
return "20";
case NL80211_CHAN_WIDTH_40:
return "40";
case NL80211_CHAN_WIDTH_80:
return "80";
case NL80211_CHAN_WIDTH_80P80:
return "80+80";
case NL80211_CHAN_WIDTH_160:
return "160";
case NL80211_CHAN_WIDTH_5:
return "5";
case NL80211_CHAN_WIDTH_10:
return "10";
}
return "?";
}
static void ath10k_config_chan(struct ath10k *ar)
{
struct ath10k_vif *arvif;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac config channel to %dMHz (cf1 %dMHz cf2 %dMHz width %s)\n",
ar->chandef.chan->center_freq,
ar->chandef.center_freq1,
ar->chandef.center_freq2,
chandef_get_width(ar->chandef.width));
/* First stop monitor interface. Some FW versions crash if there's a
* lone monitor interface. */
if (ar->monitor_started)
ath10k_monitor_stop(ar);
list_for_each_entry(arvif, &ar->arvifs, list) {
if (!arvif->is_started)
continue;
if (!arvif->is_up)
continue;
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
continue;
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret) {
ath10k_warn(ar, "failed to down vdev %d: %d\n",
arvif->vdev_id, ret);
continue;
}
}
/* all vdevs are downed now - attempt to restart and re-up them */
list_for_each_entry(arvif, &ar->arvifs, list) {
if (!arvif->is_started)
continue;
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
continue;
ret = ath10k_vdev_restart(arvif);
if (ret) {
ath10k_warn(ar, "failed to restart vdev %d: %d\n",
arvif->vdev_id, ret);
continue;
}
if (!arvif->is_up)
continue;
ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
arvif->bssid);
if (ret) {
ath10k_warn(ar, "failed to bring vdev up %d: %d\n",
arvif->vdev_id, ret);
continue;
}
}
ath10k_monitor_recalc(ar);
}
static int ath10k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ath10k *ar = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
int ret = 0;
u32 param;
mutex_lock(&ar->conf_mutex);
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac config channel %dMHz flags 0x%x radar %d\n",
conf->chandef.chan->center_freq,
conf->chandef.chan->flags,
conf->radar_enabled);
spin_lock_bh(&ar->data_lock);
ar->rx_channel = conf->chandef.chan;
spin_unlock_bh(&ar->data_lock);
ar->radar_enabled = conf->radar_enabled;
ath10k_recalc_radar_detection(ar);
if (!cfg80211_chandef_identical(&ar->chandef, &conf->chandef)) {
ar->chandef = conf->chandef;
ath10k_config_chan(ar);
}
}
if (changed & IEEE80211_CONF_CHANGE_POWER) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac config power %d\n",
hw->conf.power_level);
param = ar->wmi.pdev_param->txpower_limit2g;
ret = ath10k_wmi_pdev_set_param(ar, param,
hw->conf.power_level * 2);
if (ret)
ath10k_warn(ar, "failed to set 2g txpower %d: %d\n",
hw->conf.power_level, ret);
param = ar->wmi.pdev_param->txpower_limit5g;
ret = ath10k_wmi_pdev_set_param(ar, param,
hw->conf.power_level * 2);
if (ret)
ath10k_warn(ar, "failed to set 5g txpower %d: %d\n",
hw->conf.power_level, ret);
}
if (changed & IEEE80211_CONF_CHANGE_PS)
ath10k_config_ps(ar);
if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
ar->monitor = conf->flags & IEEE80211_CONF_MONITOR;
ret = ath10k_monitor_recalc(ar);
if (ret)
ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
/*
* TODO:
* Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE,
* because we will send mgmt frames without CCK. This requirement
* for P2P_FIND/GO_NEG should be handled by checking CCK flag
* in the TX packet.
*/
static int ath10k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
enum wmi_sta_powersave_param param;
int ret = 0;
u32 value;
int bit;
u32 vdev_param;
mutex_lock(&ar->conf_mutex);
memset(arvif, 0, sizeof(*arvif));
arvif->ar = ar;
arvif->vif = vif;
INIT_WORK(&arvif->wep_key_work, ath10k_tx_wep_key_work);
INIT_LIST_HEAD(&arvif->list);
if (ar->free_vdev_map == 0) {
ath10k_warn(ar, "Free vdev map is empty, no more interfaces allowed.\n");
ret = -EBUSY;
goto err;
}
bit = __ffs64(ar->free_vdev_map);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac create vdev %i map %llx\n",
bit, ar->free_vdev_map);
arvif->vdev_id = bit;
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE;
if (ar->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE;
switch (vif->type) {
case NL80211_IFTYPE_UNSPECIFIED:
case NL80211_IFTYPE_STATION:
arvif->vdev_type = WMI_VDEV_TYPE_STA;
if (vif->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT;
break;
case NL80211_IFTYPE_ADHOC:
arvif->vdev_type = WMI_VDEV_TYPE_IBSS;
break;
case NL80211_IFTYPE_AP:
arvif->vdev_type = WMI_VDEV_TYPE_AP;
if (vif->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO;
break;
case NL80211_IFTYPE_MONITOR:
arvif->vdev_type = WMI_VDEV_TYPE_MONITOR;
break;
default:
WARN_ON(1);
break;
}
/* Some firmware revisions don't wait for beacon tx completion before
* sending another SWBA event. This could lead to hardware using old
* (freed) beacon data in some cases, e.g. tx credit starvation
* combined with missed TBTT. This is very very rare.
*
* On non-IOMMU-enabled hosts this could be a possible security issue
* because hw could beacon some random data on the air. On
* IOMMU-enabled hosts DMAR faults would occur in most cases and target
* device would crash.
*
* Since there are no beacon tx completions (implicit nor explicit)
* propagated to host the only workaround for this is to allocate a
* DMA-coherent buffer for a lifetime of a vif and use it for all
* beacon tx commands. Worst case for this approach is some beacons may
* become corrupted, e.g. have garbled IEs or out-of-date TIM bitmap.
*/
if (vif->type == NL80211_IFTYPE_ADHOC ||
vif->type == NL80211_IFTYPE_AP) {
arvif->beacon_buf = dma_zalloc_coherent(ar->dev,
IEEE80211_MAX_FRAME_LEN,
&arvif->beacon_paddr,
GFP_KERNEL);
if (!arvif->beacon_buf) {
ret = -ENOMEM;
ath10k_warn(ar, "failed to allocate beacon buffer: %d\n",
ret);
goto err;
}
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d bcnmode %s\n",
arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype,
arvif->beacon_buf ? "single-buf" : "per-skb");
ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type,
arvif->vdev_subtype, vif->addr);
if (ret) {
ath10k_warn(ar, "failed to create WMI vdev %i: %d\n",
arvif->vdev_id, ret);
goto err;
}
ar->free_vdev_map &= ~(1LL << arvif->vdev_id);
list_add(&arvif->list, &ar->arvifs);
vdev_param = ar->wmi.vdev_param->def_keyid;
ret = ath10k_wmi_vdev_set_param(ar, 0, vdev_param,
arvif->def_wep_key_idx);
if (ret) {
ath10k_warn(ar, "failed to set vdev %i default key id: %d\n",
arvif->vdev_id, ret);
goto err_vdev_delete;
}
vdev_param = ar->wmi.vdev_param->tx_encap_type;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
ATH10K_HW_TXRX_NATIVE_WIFI);
/* 10.X firmware does not support this VDEV parameter. Do not warn */
if (ret && ret != -EOPNOTSUPP) {
ath10k_warn(ar, "failed to set vdev %i TX encapsulation: %d\n",
arvif->vdev_id, ret);
goto err_vdev_delete;
}
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
ret = ath10k_peer_create(ar, arvif->vdev_id, vif->addr);
if (ret) {
ath10k_warn(ar, "failed to create vdev %i peer for AP: %d\n",
arvif->vdev_id, ret);
goto err_vdev_delete;
}
ret = ath10k_mac_set_kickout(arvif);
if (ret) {
ath10k_warn(ar, "failed to set vdev %i kickout parameters: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
}
if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
param = WMI_STA_PS_PARAM_RX_WAKE_POLICY;
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn(ar, "failed to set vdev %i RX wake policy: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD;
value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn(ar, "failed to set vdev %i TX wake thresh: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
param = WMI_STA_PS_PARAM_PSPOLL_COUNT;
value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn(ar, "failed to set vdev %i PSPOLL count: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
}
ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold);
if (ret) {
ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
ret = ath10k_mac_set_frag(arvif, ar->hw->wiphy->frag_threshold);
if (ret) {
ath10k_warn(ar, "failed to set frag threshold for vdev %d: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
mutex_unlock(&ar->conf_mutex);
return 0;
err_peer_delete:
if (arvif->vdev_type == WMI_VDEV_TYPE_AP)
ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr);
err_vdev_delete:
ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
ar->free_vdev_map |= 1LL << arvif->vdev_id;
list_del(&arvif->list);
err:
if (arvif->beacon_buf) {
dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
arvif->beacon_buf, arvif->beacon_paddr);
arvif->beacon_buf = NULL;
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
int ret;
mutex_lock(&ar->conf_mutex);
cancel_work_sync(&arvif->wep_key_work);
spin_lock_bh(&ar->data_lock);
ath10k_mac_vif_beacon_cleanup(arvif);
spin_unlock_bh(&ar->data_lock);
ret = ath10k_spectral_vif_stop(arvif);
if (ret)
ath10k_warn(ar, "failed to stop spectral for vdev %i: %d\n",
arvif->vdev_id, ret);
ar->free_vdev_map |= 1LL << arvif->vdev_id;
list_del(&arvif->list);
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, vif->addr);
if (ret)
ath10k_warn(ar, "failed to remove peer for AP vdev %i: %d\n",
arvif->vdev_id, ret);
kfree(arvif->u.ap.noa_data);
}
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n",
arvif->vdev_id);
ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
if (ret)
ath10k_warn(ar, "failed to delete WMI vdev %i: %d\n",
arvif->vdev_id, ret);
ath10k_peer_cleanup(ar, arvif->vdev_id);
mutex_unlock(&ar->conf_mutex);
}
/*
* FIXME: Has to be verified.
*/
#define SUPPORTED_FILTERS \
(FIF_PROMISC_IN_BSS | \
FIF_ALLMULTI | \
FIF_CONTROL | \
FIF_PSPOLL | \
FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC | \
FIF_PROBE_REQ | \
FIF_FCSFAIL)
static void ath10k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
changed_flags &= SUPPORTED_FILTERS;
*total_flags &= SUPPORTED_FILTERS;
ar->filter_flags = *total_flags;
ret = ath10k_monitor_recalc(ar);
if (ret)
ath10k_warn(ar, "failed to recalc montior: %d\n", ret);
mutex_unlock(&ar->conf_mutex);
}
static void ath10k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
int ret = 0;
u32 vdev_param, pdev_param, slottime, preamble;
mutex_lock(&ar->conf_mutex);
if (changed & BSS_CHANGED_IBSS)
ath10k_control_ibss(arvif, info, vif->addr);
if (changed & BSS_CHANGED_BEACON_INT) {
arvif->beacon_interval = info->beacon_int;
vdev_param = ar->wmi.vdev_param->beacon_interval;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->beacon_interval);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d beacon_interval %d\n",
arvif->vdev_id, arvif->beacon_interval);
if (ret)
ath10k_warn(ar, "failed to set beacon interval for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_BEACON) {
ath10k_dbg(ar, ATH10K_DBG_MAC,
"vdev %d set beacon tx mode to staggered\n",
arvif->vdev_id);
pdev_param = ar->wmi.pdev_param->beacon_tx_mode;
ret = ath10k_wmi_pdev_set_param(ar, pdev_param,
WMI_BEACON_STAGGERED_MODE);
if (ret)
ath10k_warn(ar, "failed to set beacon mode for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_BEACON_INFO) {
arvif->dtim_period = info->dtim_period;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d dtim_period %d\n",
arvif->vdev_id, arvif->dtim_period);
vdev_param = ar->wmi.vdev_param->dtim_period;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->dtim_period);
if (ret)
ath10k_warn(ar, "failed to set dtim period for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_SSID &&
vif->type == NL80211_IFTYPE_AP) {
arvif->u.ap.ssid_len = info->ssid_len;
if (info->ssid_len)
memcpy(arvif->u.ap.ssid, info->ssid, info->ssid_len);
arvif->u.ap.hidden_ssid = info->hidden_ssid;
}
/*
* Firmware manages AP self-peer internally so make sure to not create
* it in driver. Otherwise AP self-peer deletion may timeout later.
*/
if (changed & BSS_CHANGED_BSSID &&
vif->type != NL80211_IFTYPE_AP) {
if (!is_zero_ether_addr(info->bssid)) {
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d create peer %pM\n",
arvif->vdev_id, info->bssid);
ret = ath10k_peer_create(ar, arvif->vdev_id,
info->bssid);
if (ret)
ath10k_warn(ar, "failed to add peer %pM for vdev %d when changing bssid: %i\n",
info->bssid, arvif->vdev_id, ret);
if (vif->type == NL80211_IFTYPE_STATION) {
/*
* this is never erased as we it for crypto key
* clearing; this is FW requirement
*/
ether_addr_copy(arvif->bssid, info->bssid);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d start %pM\n",
arvif->vdev_id, info->bssid);
ret = ath10k_vdev_start(arvif);
if (ret) {
ath10k_warn(ar, "failed to start vdev %i: %d\n",
arvif->vdev_id, ret);
goto exit;
}
arvif->is_started = true;
}
/*
* Mac80211 does not keep IBSS bssid when leaving IBSS,
* so driver need to store it. It is needed when leaving
* IBSS in order to remove BSSID peer.
*/
if (vif->type == NL80211_IFTYPE_ADHOC)
memcpy(arvif->bssid, info->bssid,
ETH_ALEN);
}
}
if (changed & BSS_CHANGED_BEACON_ENABLED)
ath10k_control_beaconing(arvif, info);
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
arvif->use_cts_prot = info->use_cts_prot;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d cts_prot %d\n",
arvif->vdev_id, info->use_cts_prot);
ret = ath10k_recalc_rtscts_prot(arvif);
if (ret)
ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
if (info->use_short_slot)
slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */
else
slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n",
arvif->vdev_id, slottime);
vdev_param = ar->wmi.vdev_param->slot_time;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
slottime);
if (ret)
ath10k_warn(ar, "failed to set erp slot for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
if (info->use_short_preamble)
preamble = WMI_VDEV_PREAMBLE_SHORT;
else
preamble = WMI_VDEV_PREAMBLE_LONG;
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d preamble %dn",
arvif->vdev_id, preamble);
vdev_param = ar->wmi.vdev_param->preamble;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
preamble);
if (ret)
ath10k_warn(ar, "failed to set preamble for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_ASSOC) {
if (info->assoc) {
/* Workaround: Make sure monitor vdev is not running
* when associating to prevent some firmware revisions
* (e.g. 10.1 and 10.2) from crashing.
*/
if (ar->monitor_started)
ath10k_monitor_stop(ar);
ath10k_bss_assoc(hw, vif, info);
ath10k_monitor_recalc(ar);
}
}
exit:
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_scan_request *hw_req)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct cfg80211_scan_request *req = &hw_req->req;
struct wmi_start_scan_arg arg;
int ret = 0;
int i;
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
reinit_completion(&ar->scan.started);
reinit_completion(&ar->scan.completed);
ar->scan.state = ATH10K_SCAN_STARTING;
ar->scan.is_roc = false;
ar->scan.vdev_id = arvif->vdev_id;
ret = 0;
break;
case ATH10K_SCAN_STARTING:
case ATH10K_SCAN_RUNNING:
case ATH10K_SCAN_ABORTING:
ret = -EBUSY;
break;
}
spin_unlock_bh(&ar->data_lock);
if (ret)
goto exit;
memset(&arg, 0, sizeof(arg));
ath10k_wmi_start_scan_init(ar, &arg);
arg.vdev_id = arvif->vdev_id;
arg.scan_id = ATH10K_SCAN_ID;
if (!req->no_cck)
arg.scan_ctrl_flags |= WMI_SCAN_ADD_CCK_RATES;
if (req->ie_len) {
arg.ie_len = req->ie_len;
memcpy(arg.ie, req->ie, arg.ie_len);
}
if (req->n_ssids) {
arg.n_ssids = req->n_ssids;
for (i = 0; i < arg.n_ssids; i++) {
arg.ssids[i].len = req->ssids[i].ssid_len;
arg.ssids[i].ssid = req->ssids[i].ssid;
}
} else {
arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
}
if (req->n_channels) {
arg.n_channels = req->n_channels;
for (i = 0; i < arg.n_channels; i++)
arg.channels[i] = req->channels[i]->center_freq;
}
ret = ath10k_start_scan(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to start hw scan: %d\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.state = ATH10K_SCAN_IDLE;
spin_unlock_bh(&ar->data_lock);
}
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
cancel_delayed_work_sync(&ar->scan.timeout);
ath10k_scan_abort(ar);
mutex_unlock(&ar->conf_mutex);
}
static void ath10k_set_key_h_def_keyidx(struct ath10k *ar,
struct ath10k_vif *arvif,
enum set_key_cmd cmd,
struct ieee80211_key_conf *key)
{
u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid;
int ret;
/* 10.1 firmware branch requires default key index to be set to group
* key index after installing it. Otherwise FW/HW Txes corrupted
* frames with multi-vif APs. This is not required for main firmware
* branch (e.g. 636).
*
* FIXME: This has been tested only in AP. It remains unknown if this
* is required for multi-vif STA interfaces on 10.1 */
if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
return;
if (key->cipher == WLAN_CIPHER_SUITE_WEP40)
return;
if (key->cipher == WLAN_CIPHER_SUITE_WEP104)
return;
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
return;
if (cmd != SET_KEY)
return;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
key->keyidx);
if (ret)
ath10k_warn(ar, "failed to set vdev %i group key as default key: %d\n",
arvif->vdev_id, ret);
}
static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ath10k_peer *peer;
const u8 *peer_addr;
bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
key->cipher == WLAN_CIPHER_SUITE_WEP104;
int ret = 0;
if (key->keyidx > WMI_MAX_KEY_INDEX)
return -ENOSPC;
mutex_lock(&ar->conf_mutex);
if (sta)
peer_addr = sta->addr;
else if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
peer_addr = vif->bss_conf.bssid;
else
peer_addr = vif->addr;
key->hw_key_idx = key->keyidx;
/* the peer should not disappear in mid-way (unless FW goes awry) since
* we already hold conf_mutex. we just make sure its there now. */
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
spin_unlock_bh(&ar->data_lock);
if (!peer) {
if (cmd == SET_KEY) {
ath10k_warn(ar, "failed to install key for non-existent peer %pM\n",
peer_addr);
ret = -EOPNOTSUPP;
goto exit;
} else {
/* if the peer doesn't exist there is no key to disable
* anymore */
goto exit;
}
}
if (is_wep) {
if (cmd == SET_KEY)
arvif->wep_keys[key->keyidx] = key;
else
arvif->wep_keys[key->keyidx] = NULL;
if (cmd == DISABLE_KEY)
ath10k_clear_vdev_key(arvif, key);
}
ret = ath10k_install_key(arvif, key, cmd, peer_addr);
if (ret) {
ath10k_warn(ar, "failed to install key for vdev %i peer %pM: %d\n",
arvif->vdev_id, peer_addr, ret);
goto exit;
}
ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
if (peer && cmd == SET_KEY)
peer->keys[key->keyidx] = key;
else if (peer && cmd == DISABLE_KEY)
peer->keys[key->keyidx] = NULL;
else if (peer == NULL)
/* impossible unless FW goes crazy */
ath10k_warn(ar, "Peer %pM disappeared!\n", peer_addr);
spin_unlock_bh(&ar->data_lock);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_sta_rc_update_wk(struct work_struct *wk)
{
struct ath10k *ar;
struct ath10k_vif *arvif;
struct ath10k_sta *arsta;
struct ieee80211_sta *sta;
u32 changed, bw, nss, smps;
int err;
arsta = container_of(wk, struct ath10k_sta, update_wk);
sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
arvif = arsta->arvif;
ar = arvif->ar;
spin_lock_bh(&ar->data_lock);
changed = arsta->changed;
arsta->changed = 0;
bw = arsta->bw;
nss = arsta->nss;
smps = arsta->smps;
spin_unlock_bh(&ar->data_lock);
mutex_lock(&ar->conf_mutex);
if (changed & IEEE80211_RC_BW_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM peer bw %d\n",
sta->addr, bw);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_CHAN_WIDTH, bw);
if (err)
ath10k_warn(ar, "failed to update STA %pM peer bw %d: %d\n",
sta->addr, bw, err);
}
if (changed & IEEE80211_RC_NSS_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM nss %d\n",
sta->addr, nss);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_NSS, nss);
if (err)
ath10k_warn(ar, "failed to update STA %pM nss %d: %d\n",
sta->addr, nss, err);
}
if (changed & IEEE80211_RC_SMPS_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM smps %d\n",
sta->addr, smps);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_SMPS_STATE, smps);
if (err)
ath10k_warn(ar, "failed to update STA %pM smps %d: %d\n",
sta->addr, smps, err);
}
if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM supp rates\n",
sta->addr);
err = ath10k_station_assoc(ar, arvif, sta, true);
if (err)
ath10k_warn(ar, "failed to reassociate station: %pM\n",
sta->addr);
}
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_sta_state(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
enum ieee80211_sta_state old_state,
enum ieee80211_sta_state new_state)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
int max_num_peers;
int ret = 0;
if (old_state == IEEE80211_STA_NOTEXIST &&
new_state == IEEE80211_STA_NONE) {
memset(arsta, 0, sizeof(*arsta));
arsta->arvif = arvif;
INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk);
}
/* cancel must be done outside the mutex to avoid deadlock */
if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST))
cancel_work_sync(&arsta->update_wk);
mutex_lock(&ar->conf_mutex);
if (old_state == IEEE80211_STA_NOTEXIST &&
new_state == IEEE80211_STA_NONE &&
vif->type != NL80211_IFTYPE_STATION) {
/*
* New station addition.
*/
if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features))
max_num_peers = TARGET_10X_NUM_PEERS_MAX - 1;
else
max_num_peers = TARGET_NUM_PEERS;
if (ar->num_peers >= max_num_peers) {
ath10k_warn(ar, "number of peers exceeded: peers number %d (max peers %d)\n",
ar->num_peers, max_num_peers);
ret = -ENOBUFS;
goto exit;
}
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d peer create %pM (new sta) num_peers %d\n",
arvif->vdev_id, sta->addr, ar->num_peers);
ret = ath10k_peer_create(ar, arvif->vdev_id, sta->addr);
if (ret)
ath10k_warn(ar, "failed to add peer %pM for vdev %d when adding a new sta: %i\n",
sta->addr, arvif->vdev_id, ret);
} else if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST)) {
/*
* Existing station deletion.
*/
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac vdev %d peer delete %pM (sta gone)\n",
arvif->vdev_id, sta->addr);
ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
if (ret)
ath10k_warn(ar, "failed to delete peer %pM for vdev %d: %i\n",
sta->addr, arvif->vdev_id, ret);
if (vif->type == NL80211_IFTYPE_STATION)
ath10k_bss_disassoc(hw, vif);
} else if (old_state == IEEE80211_STA_AUTH &&
new_state == IEEE80211_STA_ASSOC &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_ADHOC)) {
/*
* New association.
*/
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM associated\n",
sta->addr);
ret = ath10k_station_assoc(ar, arvif, sta, false);
if (ret)
ath10k_warn(ar, "failed to associate station %pM for vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
} else if (old_state == IEEE80211_STA_ASSOC &&
new_state == IEEE80211_STA_AUTH &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_ADHOC)) {
/*
* Disassociation.
*/
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM disassociated\n",
sta->addr);
ret = ath10k_station_disassoc(ar, arvif, sta);
if (ret)
ath10k_warn(ar, "failed to disassociate station: %pM vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
}
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif,
u16 ac, bool enable)
{
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
u32 value = 0;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
return 0;
switch (ac) {
case IEEE80211_AC_VO:
value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC3_TRIGGER_EN;
break;
case IEEE80211_AC_VI:
value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC2_TRIGGER_EN;
break;
case IEEE80211_AC_BE:
value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC1_TRIGGER_EN;
break;
case IEEE80211_AC_BK:
value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC0_TRIGGER_EN;
break;
}
if (enable)
arvif->u.sta.uapsd |= value;
else
arvif->u.sta.uapsd &= ~value;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_UAPSD,
arvif->u.sta.uapsd);
if (ret) {
ath10k_warn(ar, "failed to set uapsd params: %d\n", ret);
goto exit;
}
if (arvif->u.sta.uapsd)
value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD;
else
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_RX_WAKE_POLICY,
value);
if (ret)
ath10k_warn(ar, "failed to set rx wake param: %d\n", ret);
exit:
return ret;
}
static int ath10k_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 ac,
const struct ieee80211_tx_queue_params *params)
{
struct ath10k *ar = hw->priv;
struct wmi_wmm_params_arg *p = NULL;
int ret;
mutex_lock(&ar->conf_mutex);
switch (ac) {
case IEEE80211_AC_VO:
p = &ar->wmm_params.ac_vo;
break;
case IEEE80211_AC_VI:
p = &ar->wmm_params.ac_vi;
break;
case IEEE80211_AC_BE:
p = &ar->wmm_params.ac_be;
break;
case IEEE80211_AC_BK:
p = &ar->wmm_params.ac_bk;
break;
}
if (WARN_ON(!p)) {
ret = -EINVAL;
goto exit;
}
p->cwmin = params->cw_min;
p->cwmax = params->cw_max;
p->aifs = params->aifs;
/*
* The channel time duration programmed in the HW is in absolute
* microseconds, while mac80211 gives the txop in units of
* 32 microseconds.
*/
p->txop = params->txop * 32;
/* FIXME: FW accepts wmm params per hw, not per vif */
ret = ath10k_wmi_pdev_set_wmm_params(ar, &ar->wmm_params);
if (ret) {
ath10k_warn(ar, "failed to set wmm params: %d\n", ret);
goto exit;
}
ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd);
if (ret)
ath10k_warn(ar, "failed to set sta uapsd: %d\n", ret);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
#define ATH10K_ROC_TIMEOUT_HZ (2*HZ)
static int ath10k_remain_on_channel(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_channel *chan,
int duration,
enum ieee80211_roc_type type)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct wmi_start_scan_arg arg;
int ret = 0;
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
switch (ar->scan.state) {
case ATH10K_SCAN_IDLE:
reinit_completion(&ar->scan.started);
reinit_completion(&ar->scan.completed);
reinit_completion(&ar->scan.on_channel);
ar->scan.state = ATH10K_SCAN_STARTING;
ar->scan.is_roc = true;
ar->scan.vdev_id = arvif->vdev_id;
ar->scan.roc_freq = chan->center_freq;
ret = 0;
break;
case ATH10K_SCAN_STARTING:
case ATH10K_SCAN_RUNNING:
case ATH10K_SCAN_ABORTING:
ret = -EBUSY;
break;
}
spin_unlock_bh(&ar->data_lock);
if (ret)
goto exit;
memset(&arg, 0, sizeof(arg));
ath10k_wmi_start_scan_init(ar, &arg);
arg.vdev_id = arvif->vdev_id;
arg.scan_id = ATH10K_SCAN_ID;
arg.n_channels = 1;
arg.channels[0] = chan->center_freq;
arg.dwell_time_active = duration;
arg.dwell_time_passive = duration;
arg.max_scan_time = 2 * duration;
arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ;
ret = ath10k_start_scan(ar, &arg);
if (ret) {
ath10k_warn(ar, "failed to start roc scan: %d\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.state = ATH10K_SCAN_IDLE;
spin_unlock_bh(&ar->data_lock);
goto exit;
}
ret = wait_for_completion_timeout(&ar->scan.on_channel, 3*HZ);
if (ret == 0) {
ath10k_warn(ar, "failed to switch to channel for roc scan\n");
ret = ath10k_scan_stop(ar);
if (ret)
ath10k_warn(ar, "failed to stop scan: %d\n", ret);
ret = -ETIMEDOUT;
goto exit;
}
ret = 0;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
cancel_delayed_work_sync(&ar->scan.timeout);
ath10k_scan_abort(ar);
mutex_unlock(&ar->conf_mutex);
return 0;
}
/*
* Both RTS and Fragmentation threshold are interface-specific
* in ath10k, but device-specific in mac80211.
*/
static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif;
int ret = 0;
mutex_lock(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n",
arvif->vdev_id, value);
ret = ath10k_mac_set_rts(arvif, value);
if (ret) {
ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n",
arvif->vdev_id, ret);
break;
}
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_set_frag_threshold(struct ieee80211_hw *hw, u32 value)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif;
int ret = 0;
mutex_lock(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d fragmentation threshold %d\n",
arvif->vdev_id, value);
ret = ath10k_mac_set_rts(arvif, value);
if (ret) {
ath10k_warn(ar, "failed to set fragmentation threshold for vdev %d: %d\n",
arvif->vdev_id, ret);
break;
}
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 queues, bool drop)
{
struct ath10k *ar = hw->priv;
bool skip;
int ret;
/* mac80211 doesn't care if we really xmit queued frames or not
* we'll collect those frames either way if we stop/delete vdevs */
if (drop)
return;
mutex_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_WEDGED)
goto skip;
ret = wait_event_timeout(ar->htt.empty_tx_wq, ({
bool empty;
spin_lock_bh(&ar->htt.tx_lock);
empty = (ar->htt.num_pending_tx == 0);
spin_unlock_bh(&ar->htt.tx_lock);
skip = (ar->state == ATH10K_STATE_WEDGED);
(empty || skip);
}), ATH10K_FLUSH_TIMEOUT_HZ);
if (ret <= 0 || skip)
ath10k_warn(ar, "failed to flush transmit queue (skip %i ar-state %i): %i\n",
skip, ar->state, ret);
skip:
mutex_unlock(&ar->conf_mutex);
}
/* TODO: Implement this function properly
* For now it is needed to reply to Probe Requests in IBSS mode.
* Propably we need this information from FW.
*/
static int ath10k_tx_last_beacon(struct ieee80211_hw *hw)
{
return 1;
}
#ifdef CONFIG_PM
static int ath10k_suspend(struct ieee80211_hw *hw,
struct cfg80211_wowlan *wowlan)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
ret = ath10k_wait_for_suspend(ar, WMI_PDEV_SUSPEND);
if (ret) {
if (ret == -ETIMEDOUT)
goto resume;
ret = 1;
goto exit;
}
ret = ath10k_hif_suspend(ar);
if (ret) {
ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
goto resume;
}
ret = 0;
goto exit;
resume:
ret = ath10k_wmi_pdev_resume_target(ar);
if (ret)
ath10k_warn(ar, "failed to resume target: %d\n", ret);
ret = 1;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_resume(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
ret = ath10k_hif_resume(ar);
if (ret) {
ath10k_warn(ar, "failed to resume hif: %d\n", ret);
ret = 1;
goto exit;
}
ret = ath10k_wmi_pdev_resume_target(ar);
if (ret) {
ath10k_warn(ar, "failed to resume target: %d\n", ret);
ret = 1;
goto exit;
}
ret = 0;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
#endif
static void ath10k_restart_complete(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
/* If device failed to restart it will be in a different state, e.g.
* ATH10K_STATE_WEDGED */
if (ar->state == ATH10K_STATE_RESTARTED) {
ath10k_info(ar, "device successfully recovered\n");
ar->state = ATH10K_STATE_ON;
}
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct ath10k *ar = hw->priv;
struct ieee80211_supported_band *sband;
struct survey_info *ar_survey = &ar->survey[idx];
int ret = 0;
mutex_lock(&ar->conf_mutex);
sband = hw->wiphy->bands[IEEE80211_BAND_2GHZ];
if (sband && idx >= sband->n_channels) {
idx -= sband->n_channels;
sband = NULL;
}
if (!sband)
sband = hw->wiphy->bands[IEEE80211_BAND_5GHZ];
if (!sband || idx >= sband->n_channels) {
ret = -ENOENT;
goto exit;
}
spin_lock_bh(&ar->data_lock);
memcpy(survey, ar_survey, sizeof(*survey));
spin_unlock_bh(&ar->data_lock);
survey->channel = &sband->channels[idx];
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
/* Helper table for legacy fixed_rate/bitrate_mask */
static const u8 cck_ofdm_rate[] = {
/* CCK */
3, /* 1Mbps */
2, /* 2Mbps */
1, /* 5.5Mbps */
0, /* 11Mbps */
/* OFDM */
3, /* 6Mbps */
7, /* 9Mbps */
2, /* 12Mbps */
6, /* 18Mbps */
1, /* 24Mbps */
5, /* 36Mbps */
0, /* 48Mbps */
4, /* 54Mbps */
};
/* Check if only one bit set */
static int ath10k_check_single_mask(u32 mask)
{
int bit;
bit = ffs(mask);
if (!bit)
return 0;
mask &= ~BIT(bit - 1);
if (mask)
return 2;
return 1;
}
static bool
ath10k_default_bitrate_mask(struct ath10k *ar,
enum ieee80211_band band,
const struct cfg80211_bitrate_mask *mask)
{
u32 legacy = 0x00ff;
u8 ht = 0xff, i;
u16 vht = 0x3ff;
switch (band) {
case IEEE80211_BAND_2GHZ:
legacy = 0x00fff;
vht = 0;
break;
case IEEE80211_BAND_5GHZ:
break;
default:
return false;
}
if (mask->control[band].legacy != legacy)
return false;
for (i = 0; i < ar->num_rf_chains; i++)
if (mask->control[band].ht_mcs[i] != ht)
return false;
for (i = 0; i < ar->num_rf_chains; i++)
if (mask->control[band].vht_mcs[i] != vht)
return false;
return true;
}
static bool
ath10k_bitrate_mask_nss(const struct cfg80211_bitrate_mask *mask,
enum ieee80211_band band,
u8 *fixed_nss)
{
int ht_nss = 0, vht_nss = 0, i;
/* check legacy */
if (ath10k_check_single_mask(mask->control[band].legacy))
return false;
/* check HT */
for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) {
if (mask->control[band].ht_mcs[i] == 0xff)
continue;
else if (mask->control[band].ht_mcs[i] == 0x00)
break;
return false;
}
ht_nss = i;
/* check VHT */
for (i = 0; i < NL80211_VHT_NSS_MAX; i++) {
if (mask->control[band].vht_mcs[i] == 0x03ff)
continue;
else if (mask->control[band].vht_mcs[i] == 0x0000)
break;
return false;
}
vht_nss = i;
if (ht_nss > 0 && vht_nss > 0)
return false;
if (ht_nss)
*fixed_nss = ht_nss;
else if (vht_nss)
*fixed_nss = vht_nss;
else
return false;
return true;
}
static bool
ath10k_bitrate_mask_correct(const struct cfg80211_bitrate_mask *mask,
enum ieee80211_band band,
enum wmi_rate_preamble *preamble)
{
int legacy = 0, ht = 0, vht = 0, i;
*preamble = WMI_RATE_PREAMBLE_OFDM;
/* check legacy */
legacy = ath10k_check_single_mask(mask->control[band].legacy);
if (legacy > 1)
return false;
/* check HT */
for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++)
ht += ath10k_check_single_mask(mask->control[band].ht_mcs[i]);
if (ht > 1)
return false;
/* check VHT */
for (i = 0; i < NL80211_VHT_NSS_MAX; i++)
vht += ath10k_check_single_mask(mask->control[band].vht_mcs[i]);
if (vht > 1)
return false;
/* Currently we support only one fixed_rate */
if ((legacy + ht + vht) != 1)
return false;
if (ht)
*preamble = WMI_RATE_PREAMBLE_HT;
else if (vht)
*preamble = WMI_RATE_PREAMBLE_VHT;
return true;
}
static bool
ath10k_bitrate_mask_rate(struct ath10k *ar,
const struct cfg80211_bitrate_mask *mask,
enum ieee80211_band band,
u8 *fixed_rate,
u8 *fixed_nss)
{
u8 rate = 0, pream = 0, nss = 0, i;
enum wmi_rate_preamble preamble;
/* Check if single rate correct */
if (!ath10k_bitrate_mask_correct(mask, band, &preamble))
return false;
pream = preamble;
switch (preamble) {
case WMI_RATE_PREAMBLE_CCK:
case WMI_RATE_PREAMBLE_OFDM:
i = ffs(mask->control[band].legacy) - 1;
if (band == IEEE80211_BAND_2GHZ && i < 4)
pream = WMI_RATE_PREAMBLE_CCK;
if (band == IEEE80211_BAND_5GHZ)
i += 4;
if (i >= ARRAY_SIZE(cck_ofdm_rate))
return false;
rate = cck_ofdm_rate[i];
break;
case WMI_RATE_PREAMBLE_HT:
for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++)
if (mask->control[band].ht_mcs[i])
break;
if (i == IEEE80211_HT_MCS_MASK_LEN)
return false;
rate = ffs(mask->control[band].ht_mcs[i]) - 1;
nss = i;
break;
case WMI_RATE_PREAMBLE_VHT:
for (i = 0; i < NL80211_VHT_NSS_MAX; i++)
if (mask->control[band].vht_mcs[i])
break;
if (i == NL80211_VHT_NSS_MAX)
return false;
rate = ffs(mask->control[band].vht_mcs[i]) - 1;
nss = i;
break;
}
*fixed_nss = nss + 1;
nss <<= 4;
pream <<= 6;
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac fixed rate pream 0x%02x nss 0x%02x rate 0x%02x\n",
pream, nss, rate);
*fixed_rate = pream | nss | rate;
return true;
}
static bool ath10k_get_fixed_rate_nss(struct ath10k *ar,
const struct cfg80211_bitrate_mask *mask,
enum ieee80211_band band,
u8 *fixed_rate,
u8 *fixed_nss)
{
/* First check full NSS mask, if we can simply limit NSS */
if (ath10k_bitrate_mask_nss(mask, band, fixed_nss))
return true;
/* Next Check single rate is set */
return ath10k_bitrate_mask_rate(ar, mask, band, fixed_rate, fixed_nss);
}
static int ath10k_set_fixed_rate_param(struct ath10k_vif *arvif,
u8 fixed_rate,
u8 fixed_nss,
u8 force_sgi)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
int ret = 0;
mutex_lock(&ar->conf_mutex);
if (arvif->fixed_rate == fixed_rate &&
arvif->fixed_nss == fixed_nss &&
arvif->force_sgi == force_sgi)
goto exit;
if (fixed_rate == WMI_FIXED_RATE_NONE)
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac disable fixed bitrate mask\n");
if (force_sgi)
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac force sgi\n");
vdev_param = ar->wmi.vdev_param->fixed_rate;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
vdev_param, fixed_rate);
if (ret) {
ath10k_warn(ar, "failed to set fixed rate param 0x%02x: %d\n",
fixed_rate, ret);
ret = -EINVAL;
goto exit;
}
arvif->fixed_rate = fixed_rate;
vdev_param = ar->wmi.vdev_param->nss;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
vdev_param, fixed_nss);
if (ret) {
ath10k_warn(ar, "failed to set fixed nss param %d: %d\n",
fixed_nss, ret);
ret = -EINVAL;
goto exit;
}
arvif->fixed_nss = fixed_nss;
vdev_param = ar->wmi.vdev_param->sgi;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
force_sgi);
if (ret) {
ath10k_warn(ar, "failed to set sgi param %d: %d\n",
force_sgi, ret);
ret = -EINVAL;
goto exit;
}
arvif->force_sgi = force_sgi;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_set_bitrate_mask(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const struct cfg80211_bitrate_mask *mask)
{
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ath10k *ar = arvif->ar;
enum ieee80211_band band = ar->hw->conf.chandef.chan->band;
u8 fixed_rate = WMI_FIXED_RATE_NONE;
u8 fixed_nss = ar->num_rf_chains;
u8 force_sgi;
force_sgi = mask->control[band].gi;
if (force_sgi == NL80211_TXRATE_FORCE_LGI)
return -EINVAL;
if (!ath10k_default_bitrate_mask(ar, band, mask)) {
if (!ath10k_get_fixed_rate_nss(ar, mask, band,
&fixed_rate,
&fixed_nss))
return -EINVAL;
}
if (fixed_rate == WMI_FIXED_RATE_NONE && force_sgi) {
ath10k_warn(ar, "failed to force SGI usage for default rate settings\n");
return -EINVAL;
}
return ath10k_set_fixed_rate_param(arvif, fixed_rate,
fixed_nss, force_sgi);
}
static void ath10k_sta_rc_update(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
u32 changed)
{
struct ath10k *ar = hw->priv;
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
u32 bw, smps;
spin_lock_bh(&ar->data_lock);
ath10k_dbg(ar, ATH10K_DBG_MAC,
"mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n",
sta->addr, changed, sta->bandwidth, sta->rx_nss,
sta->smps_mode);
if (changed & IEEE80211_RC_BW_CHANGED) {
bw = WMI_PEER_CHWIDTH_20MHZ;
switch (sta->bandwidth) {
case IEEE80211_STA_RX_BW_20:
bw = WMI_PEER_CHWIDTH_20MHZ;
break;
case IEEE80211_STA_RX_BW_40:
bw = WMI_PEER_CHWIDTH_40MHZ;
break;
case IEEE80211_STA_RX_BW_80:
bw = WMI_PEER_CHWIDTH_80MHZ;
break;
case IEEE80211_STA_RX_BW_160:
ath10k_warn(ar, "Invalid bandwith %d in rc update for %pM\n",
sta->bandwidth, sta->addr);
bw = WMI_PEER_CHWIDTH_20MHZ;
break;
}
arsta->bw = bw;
}
if (changed & IEEE80211_RC_NSS_CHANGED)
arsta->nss = sta->rx_nss;
if (changed & IEEE80211_RC_SMPS_CHANGED) {
smps = WMI_PEER_SMPS_PS_NONE;
switch (sta->smps_mode) {
case IEEE80211_SMPS_AUTOMATIC:
case IEEE80211_SMPS_OFF:
smps = WMI_PEER_SMPS_PS_NONE;
break;
case IEEE80211_SMPS_STATIC:
smps = WMI_PEER_SMPS_STATIC;
break;
case IEEE80211_SMPS_DYNAMIC:
smps = WMI_PEER_SMPS_DYNAMIC;
break;
case IEEE80211_SMPS_NUM_MODES:
ath10k_warn(ar, "Invalid smps %d in sta rc update for %pM\n",
sta->smps_mode, sta->addr);
smps = WMI_PEER_SMPS_PS_NONE;
break;
}
arsta->smps = smps;
}
arsta->changed |= changed;
spin_unlock_bh(&ar->data_lock);
ieee80211_queue_work(hw, &arsta->update_wk);
}
static u64 ath10k_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
/*
* FIXME: Return 0 for time being. Need to figure out whether FW
* has the API to fetch 64-bit local TSF
*/
return 0;
}
static int ath10k_ampdu_action(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta, u16 tid, u16 *ssn,
u8 buf_size)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ampdu vdev_id %i sta %pM tid %hu action %d\n",
arvif->vdev_id, sta->addr, tid, action);
switch (action) {
case IEEE80211_AMPDU_RX_START:
case IEEE80211_AMPDU_RX_STOP:
/* HTT AddBa/DelBa events trigger mac80211 Rx BA session
* creation/removal. Do we need to verify this?
*/
return 0;
case IEEE80211_AMPDU_TX_START:
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
case IEEE80211_AMPDU_TX_OPERATIONAL:
/* Firmware offloads Tx aggregation entirely so deny mac80211
* Tx aggregation requests.
*/
return -EOPNOTSUPP;
}
return -EINVAL;
}
static const struct ieee80211_ops ath10k_ops = {
.tx = ath10k_tx,
.start = ath10k_start,
.stop = ath10k_stop,
.config = ath10k_config,
.add_interface = ath10k_add_interface,
.remove_interface = ath10k_remove_interface,
.configure_filter = ath10k_configure_filter,
.bss_info_changed = ath10k_bss_info_changed,
.hw_scan = ath10k_hw_scan,
.cancel_hw_scan = ath10k_cancel_hw_scan,
.set_key = ath10k_set_key,
.sta_state = ath10k_sta_state,
.conf_tx = ath10k_conf_tx,
.remain_on_channel = ath10k_remain_on_channel,
.cancel_remain_on_channel = ath10k_cancel_remain_on_channel,
.set_rts_threshold = ath10k_set_rts_threshold,
.set_frag_threshold = ath10k_set_frag_threshold,
.flush = ath10k_flush,
.tx_last_beacon = ath10k_tx_last_beacon,
.set_antenna = ath10k_set_antenna,
.get_antenna = ath10k_get_antenna,
.restart_complete = ath10k_restart_complete,
.get_survey = ath10k_get_survey,
.set_bitrate_mask = ath10k_set_bitrate_mask,
.sta_rc_update = ath10k_sta_rc_update,
.get_tsf = ath10k_get_tsf,
.ampdu_action = ath10k_ampdu_action,
.get_et_sset_count = ath10k_debug_get_et_sset_count,
.get_et_stats = ath10k_debug_get_et_stats,
.get_et_strings = ath10k_debug_get_et_strings,
CFG80211_TESTMODE_CMD(ath10k_tm_cmd)
#ifdef CONFIG_PM
.suspend = ath10k_suspend,
.resume = ath10k_resume,
#endif
};
#define RATETAB_ENT(_rate, _rateid, _flags) { \
.bitrate = (_rate), \
.flags = (_flags), \
.hw_value = (_rateid), \
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static const struct ieee80211_channel ath10k_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static const struct ieee80211_channel ath10k_5ghz_channels[] = {
CHAN5G(36, 5180, 0),
CHAN5G(40, 5200, 0),
CHAN5G(44, 5220, 0),
CHAN5G(48, 5240, 0),
CHAN5G(52, 5260, 0),
CHAN5G(56, 5280, 0),
CHAN5G(60, 5300, 0),
CHAN5G(64, 5320, 0),
CHAN5G(100, 5500, 0),
CHAN5G(104, 5520, 0),
CHAN5G(108, 5540, 0),
CHAN5G(112, 5560, 0),
CHAN5G(116, 5580, 0),
CHAN5G(120, 5600, 0),
CHAN5G(124, 5620, 0),
CHAN5G(128, 5640, 0),
CHAN5G(132, 5660, 0),
CHAN5G(136, 5680, 0),
CHAN5G(140, 5700, 0),
CHAN5G(149, 5745, 0),
CHAN5G(153, 5765, 0),
CHAN5G(157, 5785, 0),
CHAN5G(161, 5805, 0),
CHAN5G(165, 5825, 0),
};
static struct ieee80211_rate ath10k_rates[] = {
/* CCK */
RATETAB_ENT(10, 0x82, 0),
RATETAB_ENT(20, 0x84, 0),
RATETAB_ENT(55, 0x8b, 0),
RATETAB_ENT(110, 0x96, 0),
/* OFDM */
RATETAB_ENT(60, 0x0c, 0),
RATETAB_ENT(90, 0x12, 0),
RATETAB_ENT(120, 0x18, 0),
RATETAB_ENT(180, 0x24, 0),
RATETAB_ENT(240, 0x30, 0),
RATETAB_ENT(360, 0x48, 0),
RATETAB_ENT(480, 0x60, 0),
RATETAB_ENT(540, 0x6c, 0),
};
#define ath10k_a_rates (ath10k_rates + 4)
#define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - 4)
#define ath10k_g_rates (ath10k_rates + 0)
#define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates))
struct ath10k *ath10k_mac_create(size_t priv_size)
{
struct ieee80211_hw *hw;
struct ath10k *ar;
hw = ieee80211_alloc_hw(sizeof(struct ath10k) + priv_size, &ath10k_ops);
if (!hw)
return NULL;
ar = hw->priv;
ar->hw = hw;
return ar;
}
void ath10k_mac_destroy(struct ath10k *ar)
{
ieee80211_free_hw(ar->hw);
}
static const struct ieee80211_iface_limit ath10k_if_limits[] = {
{
.max = 8,
.types = BIT(NL80211_IFTYPE_STATION)
| BIT(NL80211_IFTYPE_P2P_CLIENT)
},
{
.max = 3,
.types = BIT(NL80211_IFTYPE_P2P_GO)
},
{
.max = 7,
.types = BIT(NL80211_IFTYPE_AP)
},
};
static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = {
{
.max = 8,
.types = BIT(NL80211_IFTYPE_AP)
},
};
static const struct ieee80211_iface_combination ath10k_if_comb[] = {
{
.limits = ath10k_if_limits,
.n_limits = ARRAY_SIZE(ath10k_if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
},
};
static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = {
{
.limits = ath10k_10x_if_limits,
.n_limits = ARRAY_SIZE(ath10k_10x_if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
#ifdef CONFIG_ATH10K_DFS_CERTIFIED
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80),
#endif
},
};
static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar)
{
struct ieee80211_sta_vht_cap vht_cap = {0};
u16 mcs_map;
int i;
vht_cap.vht_supported = 1;
vht_cap.cap = ar->vht_cap_info;
mcs_map = 0;
for (i = 0; i < 8; i++) {
if (i < ar->num_rf_chains)
mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i*2);
else
mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i*2);
}
vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
return vht_cap;
}
static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar)
{
int i;
struct ieee80211_sta_ht_cap ht_cap = {0};
if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED))
return ht_cap;
ht_cap.ht_supported = 1;
ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT;
if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI)
ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI)
ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) {
u32 smps;
smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
ht_cap.cap |= smps;
}
if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC)
ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) {
u32 stbc;
stbc = ar->ht_cap_info;
stbc &= WMI_HT_CAP_RX_STBC;
stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT;
stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT;
stbc &= IEEE80211_HT_CAP_RX_STBC;
ht_cap.cap |= stbc;
}
if (ar->ht_cap_info & WMI_HT_CAP_LDPC)
ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT)
ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT;
/* max AMSDU is implicitly taken from vht_cap_info */
if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK)
ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
for (i = 0; i < ar->num_rf_chains; i++)
ht_cap.mcs.rx_mask[i] = 0xFF;
ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
return ht_cap;
}
static void ath10k_get_arvif_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath10k_vif_iter *arvif_iter = data;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
if (arvif->vdev_id == arvif_iter->vdev_id)
arvif_iter->arvif = arvif;
}
struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id)
{
struct ath10k_vif_iter arvif_iter;
u32 flags;
memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter));
arvif_iter.vdev_id = vdev_id;
flags = IEEE80211_IFACE_ITER_RESUME_ALL;
ieee80211_iterate_active_interfaces_atomic(ar->hw,
flags,
ath10k_get_arvif_iter,
&arvif_iter);
if (!arvif_iter.arvif) {
ath10k_warn(ar, "No VIF found for vdev %d\n", vdev_id);
return NULL;
}
return arvif_iter.arvif;
}
int ath10k_mac_register(struct ath10k *ar)
{
struct ieee80211_supported_band *band;
struct ieee80211_sta_vht_cap vht_cap;
struct ieee80211_sta_ht_cap ht_cap;
void *channels;
int ret;
SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr);
SET_IEEE80211_DEV(ar->hw, ar->dev);
ht_cap = ath10k_get_ht_cap(ar);
vht_cap = ath10k_create_vht_cap(ar);
if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
channels = kmemdup(ath10k_2ghz_channels,
sizeof(ath10k_2ghz_channels),
GFP_KERNEL);
if (!channels) {
ret = -ENOMEM;
goto err_free;
}
band = &ar->mac.sbands[IEEE80211_BAND_2GHZ];
band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels);
band->channels = channels;
band->n_bitrates = ath10k_g_rates_size;
band->bitrates = ath10k_g_rates;
band->ht_cap = ht_cap;
/* vht is not supported in 2.4 GHz */
ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = band;
}
if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
channels = kmemdup(ath10k_5ghz_channels,
sizeof(ath10k_5ghz_channels),
GFP_KERNEL);
if (!channels) {
ret = -ENOMEM;
goto err_free;
}
band = &ar->mac.sbands[IEEE80211_BAND_5GHZ];
band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels);
band->channels = channels;
band->n_bitrates = ath10k_a_rates_size;
band->bitrates = ath10k_a_rates;
band->ht_cap = ht_cap;
band->vht_cap = vht_cap;
ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = band;
}
ar->hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_AP);
ar->hw->wiphy->available_antennas_rx = ar->supp_rx_chainmask;
ar->hw->wiphy->available_antennas_tx = ar->supp_tx_chainmask;
if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->fw_features))
ar->hw->wiphy->interface_modes |=
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO);
ar->hw->flags = IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_SUPPORTS_DYNAMIC_PS |
IEEE80211_HW_SUPPORTS_UAPSD |
IEEE80211_HW_MFP_CAPABLE |
IEEE80211_HW_REPORTS_TX_ACK_STATUS |
IEEE80211_HW_HAS_RATE_CONTROL |
IEEE80211_HW_SUPPORTS_STATIC_SMPS |
IEEE80211_HW_AP_LINK_PS |
IEEE80211_HW_SPECTRUM_MGMT;
/* MSDU can have HTT TX fragment pushed in front. The additional 4
* bytes is used for padding/alignment if necessary. */
ar->hw->extra_tx_headroom += sizeof(struct htt_data_tx_desc_frag)*2 + 4;
if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS)
ar->hw->flags |= IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS;
if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) {
ar->hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
ar->hw->flags |= IEEE80211_HW_TX_AMPDU_SETUP_IN_HW;
}
ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID;
ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN;
ar->hw->vif_data_size = sizeof(struct ath10k_vif);
ar->hw->sta_data_size = sizeof(struct ath10k_sta);
ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL;
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
ar->hw->wiphy->max_remain_on_channel_duration = 5000;
ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
/*
* on LL hardware queues are managed entirely by the FW
* so we only advertise to mac we can do the queues thing
*/
ar->hw->queues = 4;
if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) {
ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb;
ar->hw->wiphy->n_iface_combinations =
ARRAY_SIZE(ath10k_10x_if_comb);
} else {
ar->hw->wiphy->iface_combinations = ath10k_if_comb;
ar->hw->wiphy->n_iface_combinations =
ARRAY_SIZE(ath10k_if_comb);
ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC);
}
ar->hw->netdev_features = NETIF_F_HW_CSUM;
if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED)) {
/* Init ath dfs pattern detector */
ar->ath_common.debug_mask = ATH_DBG_DFS;
ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common,
NL80211_DFS_UNSET);
if (!ar->dfs_detector)
ath10k_warn(ar, "failed to initialise DFS pattern detector\n");
}
ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy,
ath10k_reg_notifier);
if (ret) {
ath10k_err(ar, "failed to initialise regulatory: %i\n", ret);
goto err_free;
}
ret = ieee80211_register_hw(ar->hw);
if (ret) {
ath10k_err(ar, "failed to register ieee80211: %d\n", ret);
goto err_free;
}
if (!ath_is_world_regd(&ar->ath_common.regulatory)) {
ret = regulatory_hint(ar->hw->wiphy,
ar->ath_common.regulatory.alpha2);
if (ret)
goto err_unregister;
}
return 0;
err_unregister:
ieee80211_unregister_hw(ar->hw);
err_free:
kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels);
return ret;
}
void ath10k_mac_unregister(struct ath10k *ar)
{
ieee80211_unregister_hw(ar->hw);
if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector)
ar->dfs_detector->exit(ar->dfs_detector);
kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels);
SET_IEEE80211_DEV(ar->hw, NULL);
}