linux_dsm_epyc7002/drivers/misc/habanalabs/habanalabs.h
Oded Gabbay cbaa99ed1b habanalabs: perform accounting for active CS
This patch adds accounting for active CS. Active means that the CS was
submitted to the H/W queues and was not completed yet.

This is necessary to support suspend operation. Because the device will be
reset upon suspend, we can only suspend after all active CS have been
completed. Hence, we need to perform accounting on their number.

Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
2019-03-03 15:13:15 +02:00

1468 lines
50 KiB
C

/* SPDX-License-Identifier: GPL-2.0
*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*
*/
#ifndef HABANALABSP_H_
#define HABANALABSP_H_
#include "include/armcp_if.h"
#include "include/qman_if.h"
#define pr_fmt(fmt) "habanalabs: " fmt
#include <linux/cdev.h>
#include <linux/iopoll.h>
#include <linux/irqreturn.h>
#include <linux/dma-fence.h>
#include <linux/dma-direction.h>
#include <linux/scatterlist.h>
#include <linux/hashtable.h>
#define HL_NAME "habanalabs"
#define HL_MMAP_CB_MASK (0x8000000000000000ull >> PAGE_SHIFT)
#define HL_PENDING_RESET_PER_SEC 5
#define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
#define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
#define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
#define HL_MAX_QUEUES 128
#define HL_MAX_JOBS_PER_CS 64
/* MUST BE POWER OF 2 and larger than 1 */
#define HL_MAX_PENDING_CS 64
/* Memory */
#define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/* MMU */
#define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/**
* struct pgt_info - MMU hop page info.
* @node: hash linked-list node for the pgts hash of pgts.
* @addr: physical address of the pgt.
* @ctx: pointer to the owner ctx.
* @num_of_ptes: indicates how many ptes are used in the pgt.
*
* The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
* is needed during mapping, a new page is allocated and this structure holds
* its essential information. During unmapping, if no valid PTEs remained in the
* page, it is freed with its pgt_info structure.
*/
struct pgt_info {
struct hlist_node node;
u64 addr;
struct hl_ctx *ctx;
int num_of_ptes;
};
struct hl_device;
struct hl_fpriv;
/**
* enum hl_queue_type - Supported QUEUE types.
* @QUEUE_TYPE_NA: queue is not available.
* @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
* host.
* @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
* memories and/or operates the compute engines.
* @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
*/
enum hl_queue_type {
QUEUE_TYPE_NA,
QUEUE_TYPE_EXT,
QUEUE_TYPE_INT,
QUEUE_TYPE_CPU
};
/**
* struct hw_queue_properties - queue information.
* @type: queue type.
* @kmd_only: true if only KMD is allowed to send a job to this queue, false
* otherwise.
*/
struct hw_queue_properties {
enum hl_queue_type type;
u8 kmd_only;
};
/**
* enum vm_type_t - virtual memory mapping request information.
* @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
* @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
*/
enum vm_type_t {
VM_TYPE_USERPTR,
VM_TYPE_PHYS_PACK
};
/**
* enum hl_device_hw_state - H/W device state. use this to understand whether
* to do reset before hw_init or not
* @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
* @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
* hw_init
*/
enum hl_device_hw_state {
HL_DEVICE_HW_STATE_CLEAN = 0,
HL_DEVICE_HW_STATE_DIRTY
};
/**
* struct asic_fixed_properties - ASIC specific immutable properties.
* @hw_queues_props: H/W queues properties.
* @armcp_info: received various information from ArmCP regarding the H/W. e.g.
* available sensors.
* @uboot_ver: F/W U-boot version.
* @preboot_ver: F/W Preboot version.
* @sram_base_address: SRAM physical start address.
* @sram_end_address: SRAM physical end address.
* @sram_user_base_address - SRAM physical start address for user access.
* @dram_base_address: DRAM physical start address.
* @dram_end_address: DRAM physical end address.
* @dram_user_base_address: DRAM physical start address for user access.
* @dram_size: DRAM total size.
* @dram_pci_bar_size: size of PCI bar towards DRAM.
* @host_phys_base_address: base physical address of host memory for
* transactions that the device generates.
* @max_power_default: max power of the device after reset
* @va_space_host_start_address: base address of virtual memory range for
* mapping host memory.
* @va_space_host_end_address: end address of virtual memory range for
* mapping host memory.
* @va_space_dram_start_address: base address of virtual memory range for
* mapping DRAM memory.
* @va_space_dram_end_address: end address of virtual memory range for
* mapping DRAM memory.
* @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
* fault.
* @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
* @mmu_dram_default_page_addr: DRAM default page physical address.
* @mmu_pgt_size: MMU page tables total size.
* @mmu_pte_size: PTE size in MMU page tables.
* @mmu_hop_table_size: MMU hop table size.
* @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
* @dram_page_size: page size for MMU DRAM allocation.
* @cfg_size: configuration space size on SRAM.
* @sram_size: total size of SRAM.
* @max_asid: maximum number of open contexts (ASIDs).
* @num_of_events: number of possible internal H/W IRQs.
* @psoc_pci_pll_nr: PCI PLL NR value.
* @psoc_pci_pll_nf: PCI PLL NF value.
* @psoc_pci_pll_od: PCI PLL OD value.
* @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
* @completion_queues_count: number of completion queues.
* @high_pll: high PLL frequency used by the device.
* @cb_pool_cb_cnt: number of CBs in the CB pool.
* @cb_pool_cb_size: size of each CB in the CB pool.
* @tpc_enabled_mask: which TPCs are enabled.
*/
struct asic_fixed_properties {
struct hw_queue_properties hw_queues_props[HL_MAX_QUEUES];
struct armcp_info armcp_info;
char uboot_ver[VERSION_MAX_LEN];
char preboot_ver[VERSION_MAX_LEN];
u64 sram_base_address;
u64 sram_end_address;
u64 sram_user_base_address;
u64 dram_base_address;
u64 dram_end_address;
u64 dram_user_base_address;
u64 dram_size;
u64 dram_pci_bar_size;
u64 host_phys_base_address;
u64 max_power_default;
u64 va_space_host_start_address;
u64 va_space_host_end_address;
u64 va_space_dram_start_address;
u64 va_space_dram_end_address;
u64 dram_size_for_default_page_mapping;
u64 mmu_pgt_addr;
u64 mmu_dram_default_page_addr;
u32 mmu_pgt_size;
u32 mmu_pte_size;
u32 mmu_hop_table_size;
u32 mmu_hop0_tables_total_size;
u32 dram_page_size;
u32 cfg_size;
u32 sram_size;
u32 max_asid;
u32 num_of_events;
u32 psoc_pci_pll_nr;
u32 psoc_pci_pll_nf;
u32 psoc_pci_pll_od;
u32 psoc_pci_pll_div_factor;
u32 high_pll;
u32 cb_pool_cb_cnt;
u32 cb_pool_cb_size;
u8 completion_queues_count;
u8 tpc_enabled_mask;
};
/**
* struct hl_dma_fence - wrapper for fence object used by command submissions.
* @base_fence: kernel fence object.
* @lock: spinlock to protect fence.
* @hdev: habanalabs device structure.
* @cs_seq: command submission sequence number.
*/
struct hl_dma_fence {
struct dma_fence base_fence;
spinlock_t lock;
struct hl_device *hdev;
u64 cs_seq;
};
/*
* Command Buffers
*/
#define HL_MAX_CB_SIZE 0x200000 /* 2MB */
/**
* struct hl_cb_mgr - describes a Command Buffer Manager.
* @cb_lock: protects cb_handles.
* @cb_handles: an idr to hold all command buffer handles.
*/
struct hl_cb_mgr {
spinlock_t cb_lock;
struct idr cb_handles; /* protected by cb_lock */
};
/**
* struct hl_cb - describes a Command Buffer.
* @refcount: reference counter for usage of the CB.
* @hdev: pointer to device this CB belongs to.
* @lock: spinlock to protect mmap/cs flows.
* @debugfs_list: node in debugfs list of command buffers.
* @pool_list: node in pool list of command buffers.
* @kernel_address: Holds the CB's kernel virtual address.
* @bus_address: Holds the CB's DMA address.
* @mmap_size: Holds the CB's size that was mmaped.
* @size: holds the CB's size.
* @id: the CB's ID.
* @cs_cnt: holds number of CS that this CB participates in.
* @ctx_id: holds the ID of the owner's context.
* @mmap: true if the CB is currently mmaped to user.
* @is_pool: true if CB was acquired from the pool, false otherwise.
*/
struct hl_cb {
struct kref refcount;
struct hl_device *hdev;
spinlock_t lock;
struct list_head debugfs_list;
struct list_head pool_list;
u64 kernel_address;
dma_addr_t bus_address;
u32 mmap_size;
u32 size;
u32 id;
u32 cs_cnt;
u32 ctx_id;
u8 mmap;
u8 is_pool;
};
/*
* QUEUES
*/
struct hl_cs_job;
/*
* Currently, there are two limitations on the maximum length of a queue:
*
* 1. The memory footprint of the queue. The current allocated space for the
* queue is PAGE_SIZE. Because each entry in the queue is HL_BD_SIZE,
* the maximum length of the queue can be PAGE_SIZE / HL_BD_SIZE,
* which currently is 4096/16 = 256 entries.
*
* To increase that, we need either to decrease the size of the
* BD (difficult), or allocate more than a single page (easier).
*
* 2. Because the size of the JOB handle field in the BD CTL / completion queue
* is 10-bit, we can have up to 1024 open jobs per hardware queue.
* Therefore, each queue can hold up to 1024 entries.
*
* HL_QUEUE_LENGTH is in units of struct hl_bd.
* HL_QUEUE_LENGTH * sizeof(struct hl_bd) should be <= HL_PAGE_SIZE
*/
#define HL_PAGE_SIZE 4096 /* minimum page size */
/* Must be power of 2 (HL_PAGE_SIZE / HL_BD_SIZE) */
#define HL_QUEUE_LENGTH 256
#define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
/*
* HL_CQ_LENGTH is in units of struct hl_cq_entry.
* HL_CQ_LENGTH should be <= HL_PAGE_SIZE
*/
#define HL_CQ_LENGTH HL_QUEUE_LENGTH
#define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
/* Must be power of 2 (HL_PAGE_SIZE / HL_EQ_ENTRY_SIZE) */
#define HL_EQ_LENGTH 64
#define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
/**
* struct hl_hw_queue - describes a H/W transport queue.
* @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
* @queue_type: type of queue.
* @kernel_address: holds the queue's kernel virtual address.
* @bus_address: holds the queue's DMA address.
* @pi: holds the queue's pi value.
* @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
* @hw_queue_id: the id of the H/W queue.
* @int_queue_len: length of internal queue (number of entries).
* @valid: is the queue valid (we have array of 32 queues, not all of them
* exists).
*/
struct hl_hw_queue {
struct hl_cs_job **shadow_queue;
enum hl_queue_type queue_type;
u64 kernel_address;
dma_addr_t bus_address;
u32 pi;
u32 ci;
u32 hw_queue_id;
u16 int_queue_len;
u8 valid;
};
/**
* struct hl_cq - describes a completion queue
* @hdev: pointer to the device structure
* @kernel_address: holds the queue's kernel virtual address
* @bus_address: holds the queue's DMA address
* @hw_queue_id: the id of the matching H/W queue
* @ci: ci inside the queue
* @pi: pi inside the queue
* @free_slots_cnt: counter of free slots in queue
*/
struct hl_cq {
struct hl_device *hdev;
u64 kernel_address;
dma_addr_t bus_address;
u32 hw_queue_id;
u32 ci;
u32 pi;
atomic_t free_slots_cnt;
};
/**
* struct hl_eq - describes the event queue (single one per device)
* @hdev: pointer to the device structure
* @kernel_address: holds the queue's kernel virtual address
* @bus_address: holds the queue's DMA address
* @ci: ci inside the queue
*/
struct hl_eq {
struct hl_device *hdev;
u64 kernel_address;
dma_addr_t bus_address;
u32 ci;
};
/*
* ASICs
*/
/**
* enum hl_asic_type - supported ASIC types.
* @ASIC_AUTO_DETECT: ASIC type will be automatically set.
* @ASIC_GOYA: Goya device.
* @ASIC_INVALID: Invalid ASIC type.
*/
enum hl_asic_type {
ASIC_AUTO_DETECT,
ASIC_GOYA,
ASIC_INVALID
};
struct hl_cs_parser;
/**
* enum hl_pm_mng_profile - power management profile.
* @PM_AUTO: internal clock is set by KMD.
* @PM_MANUAL: internal clock is set by the user.
* @PM_LAST: last power management type.
*/
enum hl_pm_mng_profile {
PM_AUTO = 1,
PM_MANUAL,
PM_LAST
};
/**
* enum hl_pll_frequency - PLL frequency.
* @PLL_HIGH: high frequency.
* @PLL_LOW: low frequency.
* @PLL_LAST: last frequency values that were configured by the user.
*/
enum hl_pll_frequency {
PLL_HIGH = 1,
PLL_LOW,
PLL_LAST
};
/**
* struct hl_asic_funcs - ASIC specific functions that are can be called from
* common code.
* @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
* @early_fini: tears down what was done in early_init.
* @late_init: sets up late driver/hw state (post hw_init) - Optional.
* @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
* @sw_init: sets up driver state, does not configure H/W.
* @sw_fini: tears down driver state, does not configure H/W.
* @hw_init: sets up the H/W state.
* @hw_fini: tears down the H/W state.
* @halt_engines: halt engines, needed for reset sequence. This also disables
* interrupts from the device. Should be called before
* hw_fini and before CS rollback.
* @suspend: handles IP specific H/W or SW changes for suspend.
* @resume: handles IP specific H/W or SW changes for resume.
* @cb_mmap: maps a CB.
* @ring_doorbell: increment PI on a given QMAN.
* @flush_pq_write: flush PQ entry write if necessary, WARN if flushing failed.
* @dma_alloc_coherent: Allocate coherent DMA memory by calling
* dma_alloc_coherent(). This is ASIC function because its
* implementation is not trivial when the driver is loaded
* in simulation mode (not upstreamed).
* @dma_free_coherent: Free coherent DMA memory by calling dma_free_coherent().
* This is ASIC function because its implementation is not
* trivial when the driver is loaded in simulation mode
* (not upstreamed).
* @get_int_queue_base: get the internal queue base address.
* @test_queues: run simple test on all queues for sanity check.
* @dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
* size of allocation is HL_DMA_POOL_BLK_SIZE.
* @dma_pool_free: free small DMA allocation from pool.
* @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
* @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
* @hl_dma_unmap_sg: DMA unmap scatter-gather list.
* @cs_parser: parse Command Submission.
* @asic_dma_map_sg: DMA map scatter-gather list.
* @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
* @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
* @update_eq_ci: update event queue CI.
* @context_switch: called upon ASID context switch.
* @restore_phase_topology: clear all SOBs amd MONs.
* @debugfs_read32: debug interface for reading u32 from DRAM/SRAM.
* @debugfs_write32: debug interface for writing u32 to DRAM/SRAM.
* @add_device_attr: add ASIC specific device attributes.
* @handle_eqe: handle event queue entry (IRQ) from ArmCP.
* @set_pll_profile: change PLL profile (manual/automatic).
* @get_events_stat: retrieve event queue entries histogram.
* @read_pte: read MMU page table entry from DRAM.
* @write_pte: write MMU page table entry to DRAM.
* @mmu_invalidate_cache: flush MMU STLB cache, either with soft (L1 only) or
* hard (L0 & L1) flush.
* @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
* ASID-VA-size mask.
* @send_heartbeat: send is-alive packet to ArmCP and verify response.
* @enable_clock_gating: enable clock gating for reducing power consumption.
* @disable_clock_gating: disable clock for accessing registers on HBW.
* @is_device_idle: return true if device is idle, false otherwise.
* @soft_reset_late_init: perform certain actions needed after soft reset.
* @hw_queues_lock: acquire H/W queues lock.
* @hw_queues_unlock: release H/W queues lock.
* @get_pci_id: retrieve PCI ID.
* @get_eeprom_data: retrieve EEPROM data from F/W.
* @send_cpu_message: send buffer to ArmCP.
* @get_hw_state: retrieve the H/W state
*/
struct hl_asic_funcs {
int (*early_init)(struct hl_device *hdev);
int (*early_fini)(struct hl_device *hdev);
int (*late_init)(struct hl_device *hdev);
void (*late_fini)(struct hl_device *hdev);
int (*sw_init)(struct hl_device *hdev);
int (*sw_fini)(struct hl_device *hdev);
int (*hw_init)(struct hl_device *hdev);
void (*hw_fini)(struct hl_device *hdev, bool hard_reset);
void (*halt_engines)(struct hl_device *hdev, bool hard_reset);
int (*suspend)(struct hl_device *hdev);
int (*resume)(struct hl_device *hdev);
int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
u64 kaddress, phys_addr_t paddress, u32 size);
void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
void (*flush_pq_write)(struct hl_device *hdev, u64 *pq, u64 exp_val);
void* (*dma_alloc_coherent)(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
void (*dma_free_coherent)(struct hl_device *hdev, size_t size,
void *cpu_addr, dma_addr_t dma_handle);
void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
dma_addr_t *dma_handle, u16 *queue_len);
int (*test_queues)(struct hl_device *hdev);
void* (*dma_pool_zalloc)(struct hl_device *hdev, size_t size,
gfp_t mem_flags, dma_addr_t *dma_handle);
void (*dma_pool_free)(struct hl_device *hdev, void *vaddr,
dma_addr_t dma_addr);
void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
size_t size, dma_addr_t *dma_handle);
void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
size_t size, void *vaddr);
void (*hl_dma_unmap_sg)(struct hl_device *hdev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir);
int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
int (*asic_dma_map_sg)(struct hl_device *hdev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir);
u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
struct sg_table *sgt);
void (*add_end_of_cb_packets)(u64 kernel_address, u32 len, u64 cq_addr,
u32 cq_val, u32 msix_num);
void (*update_eq_ci)(struct hl_device *hdev, u32 val);
int (*context_switch)(struct hl_device *hdev, u32 asid);
void (*restore_phase_topology)(struct hl_device *hdev);
int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val);
int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val);
void (*add_device_attr)(struct hl_device *hdev,
struct attribute_group *dev_attr_grp);
void (*handle_eqe)(struct hl_device *hdev,
struct hl_eq_entry *eq_entry);
void (*set_pll_profile)(struct hl_device *hdev,
enum hl_pll_frequency freq);
void* (*get_events_stat)(struct hl_device *hdev, u32 *size);
u64 (*read_pte)(struct hl_device *hdev, u64 addr);
void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
void (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard);
void (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
u32 asid, u64 va, u64 size);
int (*send_heartbeat)(struct hl_device *hdev);
void (*enable_clock_gating)(struct hl_device *hdev);
void (*disable_clock_gating)(struct hl_device *hdev);
bool (*is_device_idle)(struct hl_device *hdev);
int (*soft_reset_late_init)(struct hl_device *hdev);
void (*hw_queues_lock)(struct hl_device *hdev);
void (*hw_queues_unlock)(struct hl_device *hdev);
u32 (*get_pci_id)(struct hl_device *hdev);
int (*get_eeprom_data)(struct hl_device *hdev, void *data,
size_t max_size);
int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
u16 len, u32 timeout, long *result);
enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev);
};
/*
* CONTEXTS
*/
#define HL_KERNEL_ASID_ID 0
/**
* struct hl_va_range - virtual addresses range.
* @lock: protects the virtual addresses list.
* @list: list of virtual addresses blocks available for mappings.
* @start_addr: range start address.
* @end_addr: range end address.
*/
struct hl_va_range {
struct mutex lock;
struct list_head list;
u64 start_addr;
u64 end_addr;
};
/**
* struct hl_ctx - user/kernel context.
* @mem_hash: holds mapping from virtual address to virtual memory area
* descriptor (hl_vm_phys_pg_list or hl_userptr).
* @mmu_hash: holds a mapping from virtual address to pgt_info structure.
* @hpriv: pointer to the private (KMD) data of the process (fd).
* @hdev: pointer to the device structure.
* @refcount: reference counter for the context. Context is released only when
* this hits 0l. It is incremented on CS and CS_WAIT.
* @cs_pending: array of DMA fence objects representing pending CS.
* @host_va_range: holds available virtual addresses for host mappings.
* @dram_va_range: holds available virtual addresses for DRAM mappings.
* @mem_hash_lock: protects the mem_hash.
* @mmu_lock: protects the MMU page tables. Any change to the PGT, modifing the
* MMU hash or walking the PGT requires talking this lock
* @debugfs_list: node in debugfs list of contexts.
* @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
* to user so user could inquire about CS. It is used as
* index to cs_pending array.
* @dram_default_hops: array that holds all hops addresses needed for default
* DRAM mapping.
* @cs_lock: spinlock to protect cs_sequence.
* @dram_phys_mem: amount of used physical DRAM memory by this context.
* @thread_restore_token: token to prevent multiple threads of the same context
* from running the restore phase. Only one thread
* should run it.
* @thread_restore_wait_token: token to prevent the threads that didn't run
* the restore phase from moving to their execution
* phase before the restore phase has finished.
* @asid: context's unique address space ID in the device's MMU.
*/
struct hl_ctx {
DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
DECLARE_HASHTABLE(mmu_hash, MMU_HASH_TABLE_BITS);
struct hl_fpriv *hpriv;
struct hl_device *hdev;
struct kref refcount;
struct dma_fence *cs_pending[HL_MAX_PENDING_CS];
struct hl_va_range host_va_range;
struct hl_va_range dram_va_range;
struct mutex mem_hash_lock;
struct mutex mmu_lock;
struct list_head debugfs_list;
u64 cs_sequence;
u64 *dram_default_hops;
spinlock_t cs_lock;
atomic64_t dram_phys_mem;
atomic_t thread_restore_token;
u32 thread_restore_wait_token;
u32 asid;
};
/**
* struct hl_ctx_mgr - for handling multiple contexts.
* @ctx_lock: protects ctx_handles.
* @ctx_handles: idr to hold all ctx handles.
*/
struct hl_ctx_mgr {
struct mutex ctx_lock;
struct idr ctx_handles;
};
/*
* COMMAND SUBMISSIONS
*/
/**
* struct hl_userptr - memory mapping chunk information
* @vm_type: type of the VM.
* @job_node: linked-list node for hanging the object on the Job's list.
* @vec: pointer to the frame vector.
* @sgt: pointer to the scatter-gather table that holds the pages.
* @dir: for DMA unmapping, the direction must be supplied, so save it.
* @debugfs_list: node in debugfs list of command submissions.
* @addr: user-space virtual pointer to the start of the memory area.
* @size: size of the memory area to pin & map.
* @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
*/
struct hl_userptr {
enum vm_type_t vm_type; /* must be first */
struct list_head job_node;
struct frame_vector *vec;
struct sg_table *sgt;
enum dma_data_direction dir;
struct list_head debugfs_list;
u64 addr;
u32 size;
u8 dma_mapped;
};
/**
* struct hl_cs - command submission.
* @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
* @ctx: the context this CS belongs to.
* @job_list: list of the CS's jobs in the various queues.
* @job_lock: spinlock for the CS's jobs list. Needed for free_job.
* @refcount: reference counter for usage of the CS.
* @fence: pointer to the fence object of this CS.
* @work_tdr: delayed work node for TDR.
* @mirror_node : node in device mirror list of command submissions.
* @debugfs_list: node in debugfs list of command submissions.
* @sequence: the sequence number of this CS.
* @submitted: true if CS was submitted to H/W.
* @completed: true if CS was completed by device.
* @timedout : true if CS was timedout.
* @tdr_active: true if TDR was activated for this CS (to prevent
* double TDR activation).
* @aborted: true if CS was aborted due to some device error.
*/
struct hl_cs {
u8 jobs_in_queue_cnt[HL_MAX_QUEUES];
struct hl_ctx *ctx;
struct list_head job_list;
spinlock_t job_lock;
struct kref refcount;
struct dma_fence *fence;
struct delayed_work work_tdr;
struct list_head mirror_node;
struct list_head debugfs_list;
u64 sequence;
u8 submitted;
u8 completed;
u8 timedout;
u8 tdr_active;
u8 aborted;
};
/**
* struct hl_cs_job - command submission job.
* @cs_node: the node to hang on the CS jobs list.
* @cs: the CS this job belongs to.
* @user_cb: the CB we got from the user.
* @patched_cb: in case of patching, this is internal CB which is submitted on
* the queue instead of the CB we got from the IOCTL.
* @finish_work: workqueue object to run when job is completed.
* @userptr_list: linked-list of userptr mappings that belong to this job and
* wait for completion.
* @debugfs_list: node in debugfs list of command submission jobs.
* @id: the id of this job inside a CS.
* @hw_queue_id: the id of the H/W queue this job is submitted to.
* @user_cb_size: the actual size of the CB we got from the user.
* @job_cb_size: the actual size of the CB that we put on the queue.
* @ext_queue: whether the job is for external queue or internal queue.
*/
struct hl_cs_job {
struct list_head cs_node;
struct hl_cs *cs;
struct hl_cb *user_cb;
struct hl_cb *patched_cb;
struct work_struct finish_work;
struct list_head userptr_list;
struct list_head debugfs_list;
u32 id;
u32 hw_queue_id;
u32 user_cb_size;
u32 job_cb_size;
u8 ext_queue;
};
/**
* struct hl_cs_parser - command submission paerser properties.
* @user_cb: the CB we got from the user.
* @patched_cb: in case of patching, this is internal CB which is submitted on
* the queue instead of the CB we got from the IOCTL.
* @job_userptr_list: linked-list of userptr mappings that belong to the related
* job and wait for completion.
* @cs_sequence: the sequence number of the related CS.
* @ctx_id: the ID of the context the related CS belongs to.
* @hw_queue_id: the id of the H/W queue this job is submitted to.
* @user_cb_size: the actual size of the CB we got from the user.
* @patched_cb_size: the size of the CB after parsing.
* @ext_queue: whether the job is for external queue or internal queue.
* @job_id: the id of the related job inside the related CS.
* @use_virt_addr: whether to treat the addresses in the CB as virtual during
* parsing.
*/
struct hl_cs_parser {
struct hl_cb *user_cb;
struct hl_cb *patched_cb;
struct list_head *job_userptr_list;
u64 cs_sequence;
u32 ctx_id;
u32 hw_queue_id;
u32 user_cb_size;
u32 patched_cb_size;
u8 ext_queue;
u8 job_id;
u8 use_virt_addr;
};
/*
* MEMORY STRUCTURE
*/
/**
* struct hl_vm_hash_node - hash element from virtual address to virtual
* memory area descriptor (hl_vm_phys_pg_list or
* hl_userptr).
* @node: node to hang on the hash table in context object.
* @vaddr: key virtual address.
* @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
*/
struct hl_vm_hash_node {
struct hlist_node node;
u64 vaddr;
void *ptr;
};
/**
* struct hl_vm_phys_pg_pack - physical page pack.
* @vm_type: describes the type of the virtual area descriptor.
* @pages: the physical page array.
* @npages: num physical pages in the pack.
* @total_size: total size of all the pages in this list.
* @mapping_cnt: number of shared mappings.
* @asid: the context related to this list.
* @page_size: size of each page in the pack.
* @flags: HL_MEM_* flags related to this list.
* @handle: the provided handle related to this list.
* @offset: offset from the first page.
* @contiguous: is contiguous physical memory.
* @created_from_userptr: is product of host virtual address.
*/
struct hl_vm_phys_pg_pack {
enum vm_type_t vm_type; /* must be first */
u64 *pages;
u64 npages;
u64 total_size;
atomic_t mapping_cnt;
u32 asid;
u32 page_size;
u32 flags;
u32 handle;
u32 offset;
u8 contiguous;
u8 created_from_userptr;
};
/**
* struct hl_vm_va_block - virtual range block information.
* @node: node to hang on the virtual range list in context object.
* @start: virtual range start address.
* @end: virtual range end address.
* @size: virtual range size.
*/
struct hl_vm_va_block {
struct list_head node;
u64 start;
u64 end;
u64 size;
};
/**
* struct hl_vm - virtual memory manager for MMU.
* @dram_pg_pool: pool for DRAM physical pages of 2MB.
* @dram_pg_pool_refcount: reference counter for the pool usage.
* @idr_lock: protects the phys_pg_list_handles.
* @phys_pg_pack_handles: idr to hold all device allocations handles.
* @init_done: whether initialization was done. We need this because VM
* initialization might be skipped during device initialization.
*/
struct hl_vm {
struct gen_pool *dram_pg_pool;
struct kref dram_pg_pool_refcount;
spinlock_t idr_lock;
struct idr phys_pg_pack_handles;
u8 init_done;
};
/*
* FILE PRIVATE STRUCTURE
*/
/**
* struct hl_fpriv - process information stored in FD private data.
* @hdev: habanalabs device structure.
* @filp: pointer to the given file structure.
* @taskpid: current process ID.
* @ctx: current executing context.
* @ctx_mgr: context manager to handle multiple context for this FD.
* @cb_mgr: command buffer manager to handle multiple buffers for this FD.
* @debugfs_list: list of relevant ASIC debugfs.
* @refcount: number of related contexts.
* @restore_phase_mutex: lock for context switch and restore phase.
*/
struct hl_fpriv {
struct hl_device *hdev;
struct file *filp;
struct pid *taskpid;
struct hl_ctx *ctx; /* TODO: remove for multiple ctx */
struct hl_ctx_mgr ctx_mgr;
struct hl_cb_mgr cb_mgr;
struct list_head debugfs_list;
struct kref refcount;
struct mutex restore_phase_mutex;
};
/*
* DebugFS
*/
/**
* struct hl_info_list - debugfs file ops.
* @name: file name.
* @show: function to output information.
* @write: function to write to the file.
*/
struct hl_info_list {
const char *name;
int (*show)(struct seq_file *s, void *data);
ssize_t (*write)(struct file *file, const char __user *buf,
size_t count, loff_t *f_pos);
};
/**
* struct hl_debugfs_entry - debugfs dentry wrapper.
* @dent: base debugfs entry structure.
* @info_ent: dentry realted ops.
* @dev_entry: ASIC specific debugfs manager.
*/
struct hl_debugfs_entry {
struct dentry *dent;
const struct hl_info_list *info_ent;
struct hl_dbg_device_entry *dev_entry;
};
/**
* struct hl_dbg_device_entry - ASIC specific debugfs manager.
* @root: root dentry.
* @hdev: habanalabs device structure.
* @entry_arr: array of available hl_debugfs_entry.
* @file_list: list of available debugfs files.
* @file_mutex: protects file_list.
* @cb_list: list of available CBs.
* @cb_spinlock: protects cb_list.
* @cs_list: list of available CSs.
* @cs_spinlock: protects cs_list.
* @cs_job_list: list of available CB jobs.
* @cs_job_spinlock: protects cs_job_list.
* @userptr_list: list of available userptrs (virtual memory chunk descriptor).
* @userptr_spinlock: protects userptr_list.
* @ctx_mem_hash_list: list of available contexts with MMU mappings.
* @ctx_mem_hash_spinlock: protects cb_list.
* @addr: next address to read/write from/to in read/write32.
* @mmu_addr: next virtual address to translate to physical address in mmu_show.
* @mmu_asid: ASID to use while translating in mmu_show.
* @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
* @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read.
* @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read.
*/
struct hl_dbg_device_entry {
struct dentry *root;
struct hl_device *hdev;
struct hl_debugfs_entry *entry_arr;
struct list_head file_list;
struct mutex file_mutex;
struct list_head cb_list;
spinlock_t cb_spinlock;
struct list_head cs_list;
spinlock_t cs_spinlock;
struct list_head cs_job_list;
spinlock_t cs_job_spinlock;
struct list_head userptr_list;
spinlock_t userptr_spinlock;
struct list_head ctx_mem_hash_list;
spinlock_t ctx_mem_hash_spinlock;
u64 addr;
u64 mmu_addr;
u32 mmu_asid;
u8 i2c_bus;
u8 i2c_addr;
u8 i2c_reg;
};
/*
* DEVICES
*/
/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
* x16 cards. In extereme cases, there are hosts that can accommodate 16 cards
*/
#define HL_MAX_MINORS 256
/*
* Registers read & write functions.
*/
u32 hl_rreg(struct hl_device *hdev, u32 reg);
void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
readl_poll_timeout(hdev->rmmio + addr, val, cond, sleep_us, timeout_us)
#define RREG32(reg) hl_rreg(hdev, (reg))
#define WREG32(reg, v) hl_wreg(hdev, (reg), (v))
#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
hl_rreg(hdev, (reg)))
#define WREG32_P(reg, val, mask) \
do { \
u32 tmp_ = RREG32(reg); \
tmp_ &= (mask); \
tmp_ |= ((val) & ~(mask)); \
WREG32(reg, tmp_); \
} while (0)
#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
#define WREG32_FIELD(reg, field, val) \
WREG32(mm##reg, (RREG32(mm##reg) & ~REG_FIELD_MASK(reg, field)) | \
(val) << REG_FIELD_SHIFT(reg, field))
struct hwmon_chip_info;
/**
* struct hl_device_reset_work - reset workqueue task wrapper.
* @reset_work: reset work to be done.
* @hdev: habanalabs device structure.
*/
struct hl_device_reset_work {
struct work_struct reset_work;
struct hl_device *hdev;
};
/**
* struct hl_device - habanalabs device structure.
* @pdev: pointer to PCI device, can be NULL in case of simulator device.
* @pcie_bar: array of available PCIe bars.
* @rmmio: configuration area address on SRAM.
* @cdev: related char device.
* @dev: realted kernel basic device structure.
* @work_freq: delayed work to lower device frequency if possible.
* @work_heartbeat: delayed work for ArmCP is-alive check.
* @asic_name: ASIC specific nmae.
* @asic_type: ASIC specific type.
* @completion_queue: array of hl_cq.
* @cq_wq: work queue of completion queues for executing work in process context
* @eq_wq: work queue of event queue for executing work in process context.
* @kernel_ctx: KMD context structure.
* @kernel_queues: array of hl_hw_queue.
* @hw_queues_mirror_list: CS mirror list for TDR.
* @hw_queues_mirror_lock: protects hw_queues_mirror_list.
* @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
* @event_queue: event queue for IRQ from ArmCP.
* @dma_pool: DMA pool for small allocations.
* @cpu_accessible_dma_mem: KMD <-> ArmCP shared memory CPU address.
* @cpu_accessible_dma_address: KMD <-> ArmCP shared memory DMA address.
* @cpu_accessible_dma_pool: KMD <-> ArmCP shared memory pool.
* @asid_bitmap: holds used/available ASIDs.
* @asid_mutex: protects asid_bitmap.
* @fd_open_cnt_lock: lock for updating fd_open_cnt in hl_device_open. Although
* fd_open_cnt is atomic, we need this lock to serialize
* the open function because the driver currently supports
* only a single process at a time. In addition, we need a
* lock here so we can flush user processes which are opening
* the device while we are trying to hard reset it
* @send_cpu_message_lock: enforces only one message in KMD <-> ArmCP queue.
* @asic_prop: ASIC specific immutable properties.
* @asic_funcs: ASIC specific functions.
* @asic_specific: ASIC specific information to use only from ASIC files.
* @mmu_pgt_pool: pool of available MMU hops.
* @vm: virtual memory manager for MMU.
* @mmu_cache_lock: protects MMU cache invalidation as it can serve one context
* @hwmon_dev: H/W monitor device.
* @pm_mng_profile: current power management profile.
* @hl_chip_info: ASIC's sensors information.
* @hl_debugfs: device's debugfs manager.
* @cb_pool: list of preallocated CBs.
* @cb_pool_lock: protects the CB pool.
* @user_ctx: current user context executing.
* @dram_used_mem: current DRAM memory consumption.
* @timeout_jiffies: device CS timeout value.
* @max_power: the max power of the device, as configured by the sysadmin. This
* value is saved so in case of hard-reset, KMD will restore this
* value and update the F/W after the re-initialization
* @in_reset: is device in reset flow.
* @curr_pll_profile: current PLL profile.
* @fd_open_cnt: number of open user processes.
* @cs_active_cnt: number of active command submissions on this device (active
* means already in H/W queues)
* @major: habanalabs KMD major.
* @high_pll: high PLL profile frequency.
* @soft_reset_cnt: number of soft reset since KMD loading.
* @hard_reset_cnt: number of hard reset since KMD loading.
* @id: device minor.
* @disabled: is device disabled.
* @late_init_done: is late init stage was done during initialization.
* @hwmon_initialized: is H/W monitor sensors was initialized.
* @hard_reset_pending: is there a hard reset work pending.
* @heartbeat: is heartbeat sanity check towards ArmCP enabled.
* @reset_on_lockup: true if a reset should be done in case of stuck CS, false
* otherwise.
* @dram_supports_virtual_memory: is MMU enabled towards DRAM.
* @dram_default_page_mapping: is DRAM default page mapping enabled.
* @init_done: is the initialization of the device done.
* @mmu_enable: is MMU enabled.
* @device_cpu_disabled: is the device CPU disabled (due to timeouts)
*/
struct hl_device {
struct pci_dev *pdev;
void __iomem *pcie_bar[6];
void __iomem *rmmio;
struct cdev cdev;
struct device *dev;
struct delayed_work work_freq;
struct delayed_work work_heartbeat;
char asic_name[16];
enum hl_asic_type asic_type;
struct hl_cq *completion_queue;
struct workqueue_struct *cq_wq;
struct workqueue_struct *eq_wq;
struct hl_ctx *kernel_ctx;
struct hl_hw_queue *kernel_queues;
struct list_head hw_queues_mirror_list;
spinlock_t hw_queues_mirror_lock;
struct hl_cb_mgr kernel_cb_mgr;
struct hl_eq event_queue;
struct dma_pool *dma_pool;
void *cpu_accessible_dma_mem;
dma_addr_t cpu_accessible_dma_address;
struct gen_pool *cpu_accessible_dma_pool;
unsigned long *asid_bitmap;
struct mutex asid_mutex;
/* TODO: remove fd_open_cnt_lock for multiple process support */
struct mutex fd_open_cnt_lock;
struct mutex send_cpu_message_lock;
struct asic_fixed_properties asic_prop;
const struct hl_asic_funcs *asic_funcs;
void *asic_specific;
struct gen_pool *mmu_pgt_pool;
struct hl_vm vm;
struct mutex mmu_cache_lock;
struct device *hwmon_dev;
enum hl_pm_mng_profile pm_mng_profile;
struct hwmon_chip_info *hl_chip_info;
struct hl_dbg_device_entry hl_debugfs;
struct list_head cb_pool;
spinlock_t cb_pool_lock;
/* TODO: remove user_ctx for multiple process support */
struct hl_ctx *user_ctx;
atomic64_t dram_used_mem;
u64 timeout_jiffies;
u64 max_power;
atomic_t in_reset;
atomic_t curr_pll_profile;
atomic_t fd_open_cnt;
atomic_t cs_active_cnt;
u32 major;
u32 high_pll;
u32 soft_reset_cnt;
u32 hard_reset_cnt;
u16 id;
u8 disabled;
u8 late_init_done;
u8 hwmon_initialized;
u8 hard_reset_pending;
u8 heartbeat;
u8 reset_on_lockup;
u8 dram_supports_virtual_memory;
u8 dram_default_page_mapping;
u8 init_done;
u8 device_cpu_disabled;
/* Parameters for bring-up */
u8 mmu_enable;
u8 cpu_enable;
u8 reset_pcilink;
u8 cpu_queues_enable;
u8 fw_loading;
u8 pldm;
};
/*
* IOCTLs
*/
/**
* typedef hl_ioctl_t - typedef for ioctl function in the driver
* @hpriv: pointer to the FD's private data, which contains state of
* user process
* @data: pointer to the input/output arguments structure of the IOCTL
*
* Return: 0 for success, negative value for error
*/
typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
/**
* struct hl_ioctl_desc - describes an IOCTL entry of the driver.
* @cmd: the IOCTL code as created by the kernel macros.
* @func: pointer to the driver's function that should be called for this IOCTL.
*/
struct hl_ioctl_desc {
unsigned int cmd;
hl_ioctl_t *func;
};
/*
* Kernel module functions that can be accessed by entire module
*/
/**
* hl_mem_area_inside_range() - Checks whether address+size are inside a range.
* @address: The start address of the area we want to validate.
* @size: The size in bytes of the area we want to validate.
* @range_start_address: The start address of the valid range.
* @range_end_address: The end address of the valid range.
*
* Return: true if the area is inside the valid range, false otherwise.
*/
static inline bool hl_mem_area_inside_range(u64 address, u32 size,
u64 range_start_address, u64 range_end_address)
{
u64 end_address = address + size;
if ((address >= range_start_address) &&
(end_address <= range_end_address) &&
(end_address > address))
return true;
return false;
}
/**
* hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
* @address: The start address of the area we want to validate.
* @size: The size in bytes of the area we want to validate.
* @range_start_address: The start address of the valid range.
* @range_end_address: The end address of the valid range.
*
* Return: true if the area overlaps part or all of the valid range,
* false otherwise.
*/
static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
u64 range_start_address, u64 range_end_address)
{
u64 end_address = address + size;
if ((address >= range_start_address) &&
(address < range_end_address))
return true;
if ((end_address >= range_start_address) &&
(end_address < range_end_address))
return true;
if ((address < range_start_address) &&
(end_address >= range_end_address))
return true;
return false;
}
int hl_device_open(struct inode *inode, struct file *filp);
bool hl_device_disabled_or_in_reset(struct hl_device *hdev);
int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
enum hl_asic_type asic_type, int minor);
void destroy_hdev(struct hl_device *hdev);
int hl_poll_timeout_memory(struct hl_device *hdev, u64 addr, u32 timeout_us,
u32 *val);
int hl_poll_timeout_device_memory(struct hl_device *hdev, void __iomem *addr,
u32 timeout_us, u32 *val);
int hl_hw_queues_create(struct hl_device *hdev);
void hl_hw_queues_destroy(struct hl_device *hdev);
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
u32 cb_size, u64 cb_ptr);
int hl_hw_queue_schedule_cs(struct hl_cs *cs);
u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
void hl_int_hw_queue_update_ci(struct hl_cs *cs);
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
#define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
#define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
irqreturn_t hl_irq_handler_cq(int irq, void *arg);
irqreturn_t hl_irq_handler_eq(int irq, void *arg);
u32 hl_cq_inc_ptr(u32 ptr);
int hl_asid_init(struct hl_device *hdev);
void hl_asid_fini(struct hl_device *hdev);
unsigned long hl_asid_alloc(struct hl_device *hdev);
void hl_asid_free(struct hl_device *hdev, unsigned long asid);
int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
void hl_ctx_do_release(struct kref *ref);
void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx);
int hl_ctx_put(struct hl_ctx *ctx);
struct dma_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
int hl_device_init(struct hl_device *hdev, struct class *hclass);
void hl_device_fini(struct hl_device *hdev);
int hl_device_suspend(struct hl_device *hdev);
int hl_device_resume(struct hl_device *hdev);
int hl_device_reset(struct hl_device *hdev, bool hard_reset,
bool from_hard_reset_thread);
void hl_hpriv_get(struct hl_fpriv *hpriv);
void hl_hpriv_put(struct hl_fpriv *hpriv);
int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
int hl_build_hwmon_channel_info(struct hl_device *hdev,
struct armcp_sensor *sensors_arr);
int hl_sysfs_init(struct hl_device *hdev);
void hl_sysfs_fini(struct hl_device *hdev);
int hl_hwmon_init(struct hl_device *hdev);
void hl_hwmon_fini(struct hl_device *hdev);
int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 cb_size,
u64 *handle, int ctx_id);
int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr,
u32 handle);
void hl_cb_put(struct hl_cb *cb);
void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size);
int hl_cb_pool_init(struct hl_device *hdev);
int hl_cb_pool_fini(struct hl_device *hdev);
void hl_cs_rollback_all(struct hl_device *hdev);
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, bool ext_queue);
void goya_set_asic_funcs(struct hl_device *hdev);
int hl_vm_ctx_init(struct hl_ctx *ctx);
void hl_vm_ctx_fini(struct hl_ctx *ctx);
int hl_vm_init(struct hl_device *hdev);
void hl_vm_fini(struct hl_device *hdev);
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
struct hl_userptr *userptr);
int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_userptr_delete_list(struct hl_device *hdev,
struct list_head *userptr_list);
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
struct list_head *userptr_list,
struct hl_userptr **userptr);
int hl_mmu_init(struct hl_device *hdev);
void hl_mmu_fini(struct hl_device *hdev);
int hl_mmu_ctx_init(struct hl_ctx *ctx);
void hl_mmu_ctx_fini(struct hl_ctx *ctx);
int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size);
int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size);
void hl_mmu_swap_out(struct hl_ctx *ctx);
void hl_mmu_swap_in(struct hl_ctx *ctx);
long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
long hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr);
long hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr);
long hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr);
long hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr);
long hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr);
void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
long value);
u64 hl_get_max_power(struct hl_device *hdev);
void hl_set_max_power(struct hl_device *hdev, u64 value);
#ifdef CONFIG_DEBUG_FS
void hl_debugfs_init(void);
void hl_debugfs_fini(void);
void hl_debugfs_add_device(struct hl_device *hdev);
void hl_debugfs_remove_device(struct hl_device *hdev);
void hl_debugfs_add_file(struct hl_fpriv *hpriv);
void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
void hl_debugfs_add_cb(struct hl_cb *cb);
void hl_debugfs_remove_cb(struct hl_cb *cb);
void hl_debugfs_add_cs(struct hl_cs *cs);
void hl_debugfs_remove_cs(struct hl_cs *cs);
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_debugfs_remove_userptr(struct hl_device *hdev,
struct hl_userptr *userptr);
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
#else
static inline void __init hl_debugfs_init(void)
{
}
static inline void hl_debugfs_fini(void)
{
}
static inline void hl_debugfs_add_device(struct hl_device *hdev)
{
}
static inline void hl_debugfs_remove_device(struct hl_device *hdev)
{
}
static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
{
}
static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
{
}
static inline void hl_debugfs_add_cb(struct hl_cb *cb)
{
}
static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
{
}
static inline void hl_debugfs_add_cs(struct hl_cs *cs)
{
}
static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
{
}
static inline void hl_debugfs_add_job(struct hl_device *hdev,
struct hl_cs_job *job)
{
}
static inline void hl_debugfs_remove_job(struct hl_device *hdev,
struct hl_cs_job *job)
{
}
static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
struct hl_userptr *userptr)
{
}
static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
struct hl_userptr *userptr)
{
}
static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
struct hl_ctx *ctx)
{
}
static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
struct hl_ctx *ctx)
{
}
#endif
/* IOCTLs */
long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
#endif /* HABANALABSP_H_ */