mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 16:19:35 +07:00
9f926fb57a
Updating the beacon on pre tbtt instead of beacondone allows much lower latency in regard to TIM updates. Hence, use the pre tbtt interrupt for updating the beacon in rt2800pci (older devices don't provide a pre tbtt interrupt). Also, add a new driver flag to indicate if a driver has pre tbtt support or not and implement the according behavior in rt2x00lib. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1120 lines
27 KiB
C
1120 lines
27 KiB
C
/*
|
|
Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the
|
|
Free Software Foundation, Inc.,
|
|
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
Module: rt2x00lib
|
|
Abstract: rt2x00 generic device routines.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2x00lib.h"
|
|
|
|
/*
|
|
* Radio control handlers.
|
|
*/
|
|
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int status;
|
|
|
|
/*
|
|
* Don't enable the radio twice.
|
|
* And check if the hardware button has been disabled.
|
|
*/
|
|
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Initialize all data queues.
|
|
*/
|
|
rt2x00queue_init_queues(rt2x00dev);
|
|
|
|
/*
|
|
* Enable radio.
|
|
*/
|
|
status =
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
|
|
if (status)
|
|
return status;
|
|
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
|
|
|
|
rt2x00leds_led_radio(rt2x00dev, true);
|
|
rt2x00led_led_activity(rt2x00dev, true);
|
|
|
|
set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Enable RX.
|
|
*/
|
|
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
|
|
|
|
/*
|
|
* Start watchdog monitoring.
|
|
*/
|
|
rt2x00link_start_watchdog(rt2x00dev);
|
|
|
|
/*
|
|
* Start the TX queues.
|
|
*/
|
|
ieee80211_wake_queues(rt2x00dev->hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Stop the TX queues in mac80211.
|
|
*/
|
|
ieee80211_stop_queues(rt2x00dev->hw);
|
|
rt2x00queue_stop_queues(rt2x00dev);
|
|
|
|
/*
|
|
* Stop watchdog monitoring.
|
|
*/
|
|
rt2x00link_stop_watchdog(rt2x00dev);
|
|
|
|
/*
|
|
* Disable RX.
|
|
*/
|
|
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
|
|
|
|
/*
|
|
* Disable radio.
|
|
*/
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
|
|
rt2x00led_led_activity(rt2x00dev, false);
|
|
rt2x00leds_led_radio(rt2x00dev, false);
|
|
}
|
|
|
|
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
|
|
{
|
|
/*
|
|
* When we are disabling the RX, we should also stop the link tuner.
|
|
*/
|
|
if (state == STATE_RADIO_RX_OFF)
|
|
rt2x00link_stop_tuner(rt2x00dev);
|
|
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
|
|
|
|
/*
|
|
* When we are enabling the RX, we should also start the link tuner.
|
|
*/
|
|
if (state == STATE_RADIO_RX_ON)
|
|
rt2x00link_start_tuner(rt2x00dev);
|
|
}
|
|
|
|
static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = data;
|
|
struct rt2x00_intf *intf = vif_to_intf(vif);
|
|
int delayed_flags;
|
|
|
|
/*
|
|
* Copy all data we need during this action under the protection
|
|
* of a spinlock. Otherwise race conditions might occur which results
|
|
* into an invalid configuration.
|
|
*/
|
|
spin_lock(&intf->lock);
|
|
|
|
delayed_flags = intf->delayed_flags;
|
|
intf->delayed_flags = 0;
|
|
|
|
spin_unlock(&intf->lock);
|
|
|
|
/*
|
|
* It is possible the radio was disabled while the work had been
|
|
* scheduled. If that happens we should return here immediately,
|
|
* note that in the spinlock protected area above the delayed_flags
|
|
* have been cleared correctly.
|
|
*/
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
if (delayed_flags & DELAYED_UPDATE_BEACON)
|
|
rt2x00queue_update_beacon(rt2x00dev, vif, true);
|
|
}
|
|
|
|
static void rt2x00lib_intf_scheduled(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, intf_work);
|
|
|
|
/*
|
|
* Iterate over each interface and perform the
|
|
* requested configurations.
|
|
*/
|
|
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
|
|
rt2x00lib_intf_scheduled_iter,
|
|
rt2x00dev);
|
|
}
|
|
|
|
/*
|
|
* Interrupt context handlers.
|
|
*/
|
|
static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = data;
|
|
struct sk_buff *skb;
|
|
|
|
/*
|
|
* Only AP mode interfaces do broad- and multicast buffering
|
|
*/
|
|
if (vif->type != NL80211_IFTYPE_AP)
|
|
return;
|
|
|
|
/*
|
|
* Send out buffered broad- and multicast frames
|
|
*/
|
|
skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
|
|
while (skb) {
|
|
rt2x00mac_tx(rt2x00dev->hw, skb);
|
|
skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
|
|
}
|
|
}
|
|
|
|
static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = data;
|
|
|
|
if (vif->type != NL80211_IFTYPE_AP &&
|
|
vif->type != NL80211_IFTYPE_ADHOC &&
|
|
vif->type != NL80211_IFTYPE_MESH_POINT &&
|
|
vif->type != NL80211_IFTYPE_WDS)
|
|
return;
|
|
|
|
rt2x00queue_update_beacon(rt2x00dev, vif, true);
|
|
}
|
|
|
|
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/* send buffered bc/mc frames out for every bssid */
|
|
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
|
|
rt2x00lib_bc_buffer_iter,
|
|
rt2x00dev);
|
|
/*
|
|
* Devices with pre tbtt interrupt don't need to update the beacon
|
|
* here as they will fetch the next beacon directly prior to
|
|
* transmission.
|
|
*/
|
|
if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/* fetch next beacon */
|
|
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
|
|
rt2x00lib_beaconupdate_iter,
|
|
rt2x00dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
|
|
|
|
void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/* fetch next beacon */
|
|
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
|
|
rt2x00lib_beaconupdate_iter,
|
|
rt2x00dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
|
|
|
|
void rt2x00lib_txdone(struct queue_entry *entry,
|
|
struct txdone_entry_desc *txdesc)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
|
enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
|
|
unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
|
|
u8 rate_idx, rate_flags, retry_rates;
|
|
u8 skbdesc_flags = skbdesc->flags;
|
|
unsigned int i;
|
|
bool success;
|
|
|
|
/*
|
|
* Unmap the skb.
|
|
*/
|
|
rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
|
|
|
|
/*
|
|
* Remove the extra tx headroom from the skb.
|
|
*/
|
|
skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
|
|
|
|
/*
|
|
* Signal that the TX descriptor is no longer in the skb.
|
|
*/
|
|
skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
|
|
|
|
/*
|
|
* Remove L2 padding which was added during
|
|
*/
|
|
if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
|
|
rt2x00queue_remove_l2pad(entry->skb, header_length);
|
|
|
|
/*
|
|
* If the IV/EIV data was stripped from the frame before it was
|
|
* passed to the hardware, we should now reinsert it again because
|
|
* mac80211 will expect the same data to be present it the
|
|
* frame as it was passed to us.
|
|
*/
|
|
if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
|
|
rt2x00crypto_tx_insert_iv(entry->skb, header_length);
|
|
|
|
/*
|
|
* Send frame to debugfs immediately, after this call is completed
|
|
* we are going to overwrite the skb->cb array.
|
|
*/
|
|
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
|
|
|
|
/*
|
|
* Determine if the frame has been successfully transmitted.
|
|
*/
|
|
success =
|
|
test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
|
|
test_bit(TXDONE_UNKNOWN, &txdesc->flags);
|
|
|
|
/*
|
|
* Update TX statistics.
|
|
*/
|
|
rt2x00dev->link.qual.tx_success += success;
|
|
rt2x00dev->link.qual.tx_failed += !success;
|
|
|
|
rate_idx = skbdesc->tx_rate_idx;
|
|
rate_flags = skbdesc->tx_rate_flags;
|
|
retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
|
|
(txdesc->retry + 1) : 1;
|
|
|
|
/*
|
|
* Initialize TX status
|
|
*/
|
|
memset(&tx_info->status, 0, sizeof(tx_info->status));
|
|
tx_info->status.ack_signal = 0;
|
|
|
|
/*
|
|
* Frame was send with retries, hardware tried
|
|
* different rates to send out the frame, at each
|
|
* retry it lowered the rate 1 step except when the
|
|
* lowest rate was used.
|
|
*/
|
|
for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
|
|
tx_info->status.rates[i].idx = rate_idx - i;
|
|
tx_info->status.rates[i].flags = rate_flags;
|
|
|
|
if (rate_idx - i == 0) {
|
|
/*
|
|
* The lowest rate (index 0) was used until the
|
|
* number of max retries was reached.
|
|
*/
|
|
tx_info->status.rates[i].count = retry_rates - i;
|
|
i++;
|
|
break;
|
|
}
|
|
tx_info->status.rates[i].count = 1;
|
|
}
|
|
if (i < (IEEE80211_TX_MAX_RATES - 1))
|
|
tx_info->status.rates[i].idx = -1; /* terminate */
|
|
|
|
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
|
|
if (success)
|
|
tx_info->flags |= IEEE80211_TX_STAT_ACK;
|
|
else
|
|
rt2x00dev->low_level_stats.dot11ACKFailureCount++;
|
|
}
|
|
|
|
/*
|
|
* Every single frame has it's own tx status, hence report
|
|
* every frame as ampdu of size 1.
|
|
*
|
|
* TODO: if we can find out how many frames were aggregated
|
|
* by the hw we could provide the real ampdu_len to mac80211
|
|
* which would allow the rc algorithm to better decide on
|
|
* which rates are suitable.
|
|
*/
|
|
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
|
|
tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
|
|
tx_info->status.ampdu_len = 1;
|
|
tx_info->status.ampdu_ack_len = success ? 1 : 0;
|
|
}
|
|
|
|
if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
|
|
if (success)
|
|
rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
|
|
else
|
|
rt2x00dev->low_level_stats.dot11RTSFailureCount++;
|
|
}
|
|
|
|
/*
|
|
* Only send the status report to mac80211 when it's a frame
|
|
* that originated in mac80211. If this was a extra frame coming
|
|
* through a mac80211 library call (RTS/CTS) then we should not
|
|
* send the status report back.
|
|
*/
|
|
if (!(skbdesc_flags & SKBDESC_NOT_MAC80211))
|
|
/*
|
|
* Only PCI and SOC devices process the tx status in process
|
|
* context. Hence use ieee80211_tx_status for PCI and SOC
|
|
* devices and stick to ieee80211_tx_status_irqsafe for USB.
|
|
*/
|
|
if (rt2x00_is_usb(rt2x00dev))
|
|
ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
|
|
else
|
|
ieee80211_tx_status(rt2x00dev->hw, entry->skb);
|
|
else
|
|
dev_kfree_skb_any(entry->skb);
|
|
|
|
/*
|
|
* Make this entry available for reuse.
|
|
*/
|
|
entry->skb = NULL;
|
|
entry->flags = 0;
|
|
|
|
rt2x00dev->ops->lib->clear_entry(entry);
|
|
|
|
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
|
|
rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
|
|
|
|
/*
|
|
* If the data queue was below the threshold before the txdone
|
|
* handler we must make sure the packet queue in the mac80211 stack
|
|
* is reenabled when the txdone handler has finished.
|
|
*/
|
|
if (!rt2x00queue_threshold(entry->queue))
|
|
ieee80211_wake_queue(rt2x00dev->hw, qid);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
|
|
|
|
static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
|
|
struct rxdone_entry_desc *rxdesc)
|
|
{
|
|
struct ieee80211_supported_band *sband;
|
|
const struct rt2x00_rate *rate;
|
|
unsigned int i;
|
|
int signal;
|
|
int type;
|
|
|
|
/*
|
|
* For non-HT rates the MCS value needs to contain the
|
|
* actually used rate modulation (CCK or OFDM).
|
|
*/
|
|
if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
|
|
signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
|
|
else
|
|
signal = rxdesc->signal;
|
|
|
|
type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
|
|
|
|
sband = &rt2x00dev->bands[rt2x00dev->curr_band];
|
|
for (i = 0; i < sband->n_bitrates; i++) {
|
|
rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
|
|
|
|
if (((type == RXDONE_SIGNAL_PLCP) &&
|
|
(rate->plcp == signal)) ||
|
|
((type == RXDONE_SIGNAL_BITRATE) &&
|
|
(rate->bitrate == signal)) ||
|
|
((type == RXDONE_SIGNAL_MCS) &&
|
|
(rate->mcs == signal))) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
WARNING(rt2x00dev, "Frame received with unrecognized signal, "
|
|
"signal=0x%.4x, type=%d.\n", signal, type);
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
|
|
struct queue_entry *entry)
|
|
{
|
|
struct rxdone_entry_desc rxdesc;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
|
|
unsigned int header_length;
|
|
int rate_idx;
|
|
/*
|
|
* Allocate a new sk_buffer. If no new buffer available, drop the
|
|
* received frame and reuse the existing buffer.
|
|
*/
|
|
skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
|
|
if (!skb)
|
|
return;
|
|
|
|
/*
|
|
* Unmap the skb.
|
|
*/
|
|
rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
|
|
|
|
/*
|
|
* Extract the RXD details.
|
|
*/
|
|
memset(&rxdesc, 0, sizeof(rxdesc));
|
|
rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
|
|
|
|
/*
|
|
* The data behind the ieee80211 header must be
|
|
* aligned on a 4 byte boundary.
|
|
*/
|
|
header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
|
|
|
|
/*
|
|
* Hardware might have stripped the IV/EIV/ICV data,
|
|
* in that case it is possible that the data was
|
|
* provided separately (through hardware descriptor)
|
|
* in which case we should reinsert the data into the frame.
|
|
*/
|
|
if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
|
|
(rxdesc.flags & RX_FLAG_IV_STRIPPED))
|
|
rt2x00crypto_rx_insert_iv(entry->skb, header_length,
|
|
&rxdesc);
|
|
else if (header_length &&
|
|
(rxdesc.size > header_length) &&
|
|
(rxdesc.dev_flags & RXDONE_L2PAD))
|
|
rt2x00queue_remove_l2pad(entry->skb, header_length);
|
|
else
|
|
rt2x00queue_align_payload(entry->skb, header_length);
|
|
|
|
/* Trim buffer to correct size */
|
|
skb_trim(entry->skb, rxdesc.size);
|
|
|
|
/*
|
|
* Check if the frame was received using HT. In that case,
|
|
* the rate is the MCS index and should be passed to mac80211
|
|
* directly. Otherwise we need to translate the signal to
|
|
* the correct bitrate index.
|
|
*/
|
|
if (rxdesc.rate_mode == RATE_MODE_CCK ||
|
|
rxdesc.rate_mode == RATE_MODE_OFDM) {
|
|
rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
|
|
} else {
|
|
rxdesc.flags |= RX_FLAG_HT;
|
|
rate_idx = rxdesc.signal;
|
|
}
|
|
|
|
/*
|
|
* Update extra components
|
|
*/
|
|
rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
|
|
rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
|
|
|
|
rx_status->mactime = rxdesc.timestamp;
|
|
rx_status->rate_idx = rate_idx;
|
|
rx_status->signal = rxdesc.rssi;
|
|
rx_status->flag = rxdesc.flags;
|
|
rx_status->antenna = rt2x00dev->link.ant.active.rx;
|
|
|
|
/*
|
|
* Send frame to mac80211 & debugfs.
|
|
* mac80211 will clean up the skb structure.
|
|
*/
|
|
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
|
|
memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
|
|
|
|
/*
|
|
* Currently only PCI and SOC devices handle rx interrupts in process
|
|
* context. Hence, use ieee80211_rx_irqsafe for USB and ieee80211_rx_ni
|
|
* for PCI and SOC devices.
|
|
*/
|
|
if (rt2x00_is_usb(rt2x00dev))
|
|
ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
|
|
else
|
|
ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
|
|
|
|
/*
|
|
* Replace the skb with the freshly allocated one.
|
|
*/
|
|
entry->skb = skb;
|
|
entry->flags = 0;
|
|
|
|
rt2x00dev->ops->lib->clear_entry(entry);
|
|
|
|
rt2x00queue_index_inc(entry->queue, Q_INDEX);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
|
|
|
|
/*
|
|
* Driver initialization handlers.
|
|
*/
|
|
const struct rt2x00_rate rt2x00_supported_rates[12] = {
|
|
{
|
|
.flags = DEV_RATE_CCK,
|
|
.bitrate = 10,
|
|
.ratemask = BIT(0),
|
|
.plcp = 0x00,
|
|
.mcs = RATE_MCS(RATE_MODE_CCK, 0),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
|
.bitrate = 20,
|
|
.ratemask = BIT(1),
|
|
.plcp = 0x01,
|
|
.mcs = RATE_MCS(RATE_MODE_CCK, 1),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
|
.bitrate = 55,
|
|
.ratemask = BIT(2),
|
|
.plcp = 0x02,
|
|
.mcs = RATE_MCS(RATE_MODE_CCK, 2),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
|
.bitrate = 110,
|
|
.ratemask = BIT(3),
|
|
.plcp = 0x03,
|
|
.mcs = RATE_MCS(RATE_MODE_CCK, 3),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 60,
|
|
.ratemask = BIT(4),
|
|
.plcp = 0x0b,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 90,
|
|
.ratemask = BIT(5),
|
|
.plcp = 0x0f,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 120,
|
|
.ratemask = BIT(6),
|
|
.plcp = 0x0a,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 180,
|
|
.ratemask = BIT(7),
|
|
.plcp = 0x0e,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 240,
|
|
.ratemask = BIT(8),
|
|
.plcp = 0x09,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 360,
|
|
.ratemask = BIT(9),
|
|
.plcp = 0x0d,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 480,
|
|
.ratemask = BIT(10),
|
|
.plcp = 0x08,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 540,
|
|
.ratemask = BIT(11),
|
|
.plcp = 0x0c,
|
|
.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
|
|
},
|
|
};
|
|
|
|
static void rt2x00lib_channel(struct ieee80211_channel *entry,
|
|
const int channel, const int tx_power,
|
|
const int value)
|
|
{
|
|
entry->center_freq = ieee80211_channel_to_frequency(channel);
|
|
entry->hw_value = value;
|
|
entry->max_power = tx_power;
|
|
entry->max_antenna_gain = 0xff;
|
|
}
|
|
|
|
static void rt2x00lib_rate(struct ieee80211_rate *entry,
|
|
const u16 index, const struct rt2x00_rate *rate)
|
|
{
|
|
entry->flags = 0;
|
|
entry->bitrate = rate->bitrate;
|
|
entry->hw_value =index;
|
|
entry->hw_value_short = index;
|
|
|
|
if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
|
|
entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
|
|
}
|
|
|
|
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
|
|
struct hw_mode_spec *spec)
|
|
{
|
|
struct ieee80211_hw *hw = rt2x00dev->hw;
|
|
struct ieee80211_channel *channels;
|
|
struct ieee80211_rate *rates;
|
|
unsigned int num_rates;
|
|
unsigned int i;
|
|
|
|
num_rates = 0;
|
|
if (spec->supported_rates & SUPPORT_RATE_CCK)
|
|
num_rates += 4;
|
|
if (spec->supported_rates & SUPPORT_RATE_OFDM)
|
|
num_rates += 8;
|
|
|
|
channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
|
|
if (!channels)
|
|
return -ENOMEM;
|
|
|
|
rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
|
|
if (!rates)
|
|
goto exit_free_channels;
|
|
|
|
/*
|
|
* Initialize Rate list.
|
|
*/
|
|
for (i = 0; i < num_rates; i++)
|
|
rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
|
|
|
|
/*
|
|
* Initialize Channel list.
|
|
*/
|
|
for (i = 0; i < spec->num_channels; i++) {
|
|
rt2x00lib_channel(&channels[i],
|
|
spec->channels[i].channel,
|
|
spec->channels_info[i].tx_power1, i);
|
|
}
|
|
|
|
/*
|
|
* Intitialize 802.11b, 802.11g
|
|
* Rates: CCK, OFDM.
|
|
* Channels: 2.4 GHz
|
|
*/
|
|
if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
|
|
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
|
|
&rt2x00dev->bands[IEEE80211_BAND_2GHZ];
|
|
memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
|
|
&spec->ht, sizeof(spec->ht));
|
|
}
|
|
|
|
/*
|
|
* Intitialize 802.11a
|
|
* Rates: OFDM.
|
|
* Channels: OFDM, UNII, HiperLAN2.
|
|
*/
|
|
if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
|
|
spec->num_channels - 14;
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
|
|
num_rates - 4;
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
|
|
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
|
|
&rt2x00dev->bands[IEEE80211_BAND_5GHZ];
|
|
memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
|
|
&spec->ht, sizeof(spec->ht));
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit_free_channels:
|
|
kfree(channels);
|
|
ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
|
|
ieee80211_unregister_hw(rt2x00dev->hw);
|
|
|
|
if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
|
|
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
|
|
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
|
|
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
|
|
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
|
|
}
|
|
|
|
kfree(rt2x00dev->spec.channels_info);
|
|
}
|
|
|
|
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct hw_mode_spec *spec = &rt2x00dev->spec;
|
|
int status;
|
|
|
|
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Initialize HW modes.
|
|
*/
|
|
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Initialize HW fields.
|
|
*/
|
|
rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
|
|
|
|
/*
|
|
* Initialize extra TX headroom required.
|
|
*/
|
|
rt2x00dev->hw->extra_tx_headroom =
|
|
max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
|
|
rt2x00dev->ops->extra_tx_headroom);
|
|
|
|
/*
|
|
* Take TX headroom required for alignment into account.
|
|
*/
|
|
if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
|
|
rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
|
|
else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
|
|
rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
|
|
|
|
/*
|
|
* Register HW.
|
|
*/
|
|
status = ieee80211_register_hw(rt2x00dev->hw);
|
|
if (status)
|
|
return status;
|
|
|
|
set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialization/uninitialization handlers.
|
|
*/
|
|
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Unregister extra components.
|
|
*/
|
|
rt2x00rfkill_unregister(rt2x00dev);
|
|
|
|
/*
|
|
* Allow the HW to uninitialize.
|
|
*/
|
|
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Free allocated queue entries.
|
|
*/
|
|
rt2x00queue_uninitialize(rt2x00dev);
|
|
}
|
|
|
|
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int status;
|
|
|
|
if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Allocate all queue entries.
|
|
*/
|
|
status = rt2x00queue_initialize(rt2x00dev);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Initialize the device.
|
|
*/
|
|
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
|
|
if (status) {
|
|
rt2x00queue_uninitialize(rt2x00dev);
|
|
return status;
|
|
}
|
|
|
|
set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Register the extra components.
|
|
*/
|
|
rt2x00rfkill_register(rt2x00dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval;
|
|
|
|
if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* If this is the first interface which is added,
|
|
* we should load the firmware now.
|
|
*/
|
|
retval = rt2x00lib_load_firmware(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Initialize the device.
|
|
*/
|
|
retval = rt2x00lib_initialize(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
rt2x00dev->intf_ap_count = 0;
|
|
rt2x00dev->intf_sta_count = 0;
|
|
rt2x00dev->intf_associated = 0;
|
|
|
|
/* Enable the radio */
|
|
retval = rt2x00lib_enable_radio(rt2x00dev);
|
|
if (retval) {
|
|
rt2x00queue_uninitialize(rt2x00dev);
|
|
return retval;
|
|
}
|
|
|
|
set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Perhaps we can add something smarter here,
|
|
* but for now just disabling the radio should do.
|
|
*/
|
|
rt2x00lib_disable_radio(rt2x00dev);
|
|
|
|
rt2x00dev->intf_ap_count = 0;
|
|
rt2x00dev->intf_sta_count = 0;
|
|
rt2x00dev->intf_associated = 0;
|
|
}
|
|
|
|
/*
|
|
* driver allocation handlers.
|
|
*/
|
|
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval = -ENOMEM;
|
|
|
|
mutex_init(&rt2x00dev->csr_mutex);
|
|
|
|
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Make room for rt2x00_intf inside the per-interface
|
|
* structure ieee80211_vif.
|
|
*/
|
|
rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
|
|
|
|
/*
|
|
* Determine which operating modes are supported, all modes
|
|
* which require beaconing, depend on the availability of
|
|
* beacon entries.
|
|
*/
|
|
rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
|
|
if (rt2x00dev->ops->bcn->entry_num > 0)
|
|
rt2x00dev->hw->wiphy->interface_modes |=
|
|
BIT(NL80211_IFTYPE_ADHOC) |
|
|
BIT(NL80211_IFTYPE_AP) |
|
|
BIT(NL80211_IFTYPE_MESH_POINT) |
|
|
BIT(NL80211_IFTYPE_WDS);
|
|
|
|
/*
|
|
* Let the driver probe the device to detect the capabilities.
|
|
*/
|
|
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
|
|
if (retval) {
|
|
ERROR(rt2x00dev, "Failed to allocate device.\n");
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* Initialize configuration work.
|
|
*/
|
|
INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
|
|
|
|
/*
|
|
* Allocate queue array.
|
|
*/
|
|
retval = rt2x00queue_allocate(rt2x00dev);
|
|
if (retval)
|
|
goto exit;
|
|
|
|
/*
|
|
* Initialize ieee80211 structure.
|
|
*/
|
|
retval = rt2x00lib_probe_hw(rt2x00dev);
|
|
if (retval) {
|
|
ERROR(rt2x00dev, "Failed to initialize hw.\n");
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* Register extra components.
|
|
*/
|
|
rt2x00link_register(rt2x00dev);
|
|
rt2x00leds_register(rt2x00dev);
|
|
rt2x00debug_register(rt2x00dev);
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
rt2x00lib_remove_dev(rt2x00dev);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
|
|
|
|
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Disable radio.
|
|
*/
|
|
rt2x00lib_disable_radio(rt2x00dev);
|
|
|
|
/*
|
|
* Stop all work.
|
|
*/
|
|
cancel_work_sync(&rt2x00dev->intf_work);
|
|
|
|
/*
|
|
* Uninitialize device.
|
|
*/
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Free extra components
|
|
*/
|
|
rt2x00debug_deregister(rt2x00dev);
|
|
rt2x00leds_unregister(rt2x00dev);
|
|
|
|
/*
|
|
* Free ieee80211_hw memory.
|
|
*/
|
|
rt2x00lib_remove_hw(rt2x00dev);
|
|
|
|
/*
|
|
* Free firmware image.
|
|
*/
|
|
rt2x00lib_free_firmware(rt2x00dev);
|
|
|
|
/*
|
|
* Free queue structures.
|
|
*/
|
|
rt2x00queue_free(rt2x00dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
|
|
|
|
/*
|
|
* Device state handlers
|
|
*/
|
|
#ifdef CONFIG_PM
|
|
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
|
|
{
|
|
NOTICE(rt2x00dev, "Going to sleep.\n");
|
|
|
|
/*
|
|
* Prevent mac80211 from accessing driver while suspended.
|
|
*/
|
|
if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Cleanup as much as possible.
|
|
*/
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Suspend/disable extra components.
|
|
*/
|
|
rt2x00leds_suspend(rt2x00dev);
|
|
rt2x00debug_deregister(rt2x00dev);
|
|
|
|
/*
|
|
* Set device mode to sleep for power management,
|
|
* on some hardware this call seems to consistently fail.
|
|
* From the specifications it is hard to tell why it fails,
|
|
* and if this is a "bad thing".
|
|
* Overall it is safe to just ignore the failure and
|
|
* continue suspending. The only downside is that the
|
|
* device will not be in optimal power save mode, but with
|
|
* the radio and the other components already disabled the
|
|
* device is as good as disabled.
|
|
*/
|
|
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
|
|
WARNING(rt2x00dev, "Device failed to enter sleep state, "
|
|
"continue suspending.\n");
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
|
|
|
|
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
NOTICE(rt2x00dev, "Waking up.\n");
|
|
|
|
/*
|
|
* Restore/enable extra components.
|
|
*/
|
|
rt2x00debug_register(rt2x00dev);
|
|
rt2x00leds_resume(rt2x00dev);
|
|
|
|
/*
|
|
* We are ready again to receive requests from mac80211.
|
|
*/
|
|
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*
|
|
* rt2x00lib module information.
|
|
*/
|
|
MODULE_AUTHOR(DRV_PROJECT);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_DESCRIPTION("rt2x00 library");
|
|
MODULE_LICENSE("GPL");
|