mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-29 22:46:47 +07:00
9f6c925889
Newly created files have no functionality changes, but includes some functionality from bnx2x_main.c which is common for PF and coming in the future VF driver. Signed-off-by: Dmitry Kravkov <dmitry@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2252 lines
57 KiB
C
2252 lines
57 KiB
C
/* bnx2x_cmn.c: Broadcom Everest network driver.
|
|
*
|
|
* Copyright (c) 2007-2010 Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
|
|
* Written by: Eliezer Tamir
|
|
* Based on code from Michael Chan's bnx2 driver
|
|
* UDP CSUM errata workaround by Arik Gendelman
|
|
* Slowpath and fastpath rework by Vladislav Zolotarov
|
|
* Statistics and Link management by Yitchak Gertner
|
|
*
|
|
*/
|
|
|
|
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include "bnx2x_cmn.h"
|
|
|
|
#ifdef BCM_VLAN
|
|
#include <linux/if_vlan.h>
|
|
#endif
|
|
|
|
static int bnx2x_poll(struct napi_struct *napi, int budget);
|
|
|
|
/* free skb in the packet ring at pos idx
|
|
* return idx of last bd freed
|
|
*/
|
|
static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fastpath *fp,
|
|
u16 idx)
|
|
{
|
|
struct sw_tx_bd *tx_buf = &fp->tx_buf_ring[idx];
|
|
struct eth_tx_start_bd *tx_start_bd;
|
|
struct eth_tx_bd *tx_data_bd;
|
|
struct sk_buff *skb = tx_buf->skb;
|
|
u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
|
|
int nbd;
|
|
|
|
/* prefetch skb end pointer to speedup dev_kfree_skb() */
|
|
prefetch(&skb->end);
|
|
|
|
DP(BNX2X_MSG_OFF, "pkt_idx %d buff @(%p)->skb %p\n",
|
|
idx, tx_buf, skb);
|
|
|
|
/* unmap first bd */
|
|
DP(BNX2X_MSG_OFF, "free bd_idx %d\n", bd_idx);
|
|
tx_start_bd = &fp->tx_desc_ring[bd_idx].start_bd;
|
|
dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
|
|
BD_UNMAP_LEN(tx_start_bd), PCI_DMA_TODEVICE);
|
|
|
|
nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
|
|
BNX2X_ERR("BAD nbd!\n");
|
|
bnx2x_panic();
|
|
}
|
|
#endif
|
|
new_cons = nbd + tx_buf->first_bd;
|
|
|
|
/* Get the next bd */
|
|
bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
|
|
|
|
/* Skip a parse bd... */
|
|
--nbd;
|
|
bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
|
|
|
|
/* ...and the TSO split header bd since they have no mapping */
|
|
if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
|
|
--nbd;
|
|
bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
|
|
}
|
|
|
|
/* now free frags */
|
|
while (nbd > 0) {
|
|
|
|
DP(BNX2X_MSG_OFF, "free frag bd_idx %d\n", bd_idx);
|
|
tx_data_bd = &fp->tx_desc_ring[bd_idx].reg_bd;
|
|
dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
|
|
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
|
|
if (--nbd)
|
|
bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
|
|
}
|
|
|
|
/* release skb */
|
|
WARN_ON(!skb);
|
|
dev_kfree_skb(skb);
|
|
tx_buf->first_bd = 0;
|
|
tx_buf->skb = NULL;
|
|
|
|
return new_cons;
|
|
}
|
|
|
|
int bnx2x_tx_int(struct bnx2x_fastpath *fp)
|
|
{
|
|
struct bnx2x *bp = fp->bp;
|
|
struct netdev_queue *txq;
|
|
u16 hw_cons, sw_cons, bd_cons = fp->tx_bd_cons;
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return -1;
|
|
#endif
|
|
|
|
txq = netdev_get_tx_queue(bp->dev, fp->index);
|
|
hw_cons = le16_to_cpu(*fp->tx_cons_sb);
|
|
sw_cons = fp->tx_pkt_cons;
|
|
|
|
while (sw_cons != hw_cons) {
|
|
u16 pkt_cons;
|
|
|
|
pkt_cons = TX_BD(sw_cons);
|
|
|
|
/* prefetch(bp->tx_buf_ring[pkt_cons].skb); */
|
|
|
|
DP(NETIF_MSG_TX_DONE, "hw_cons %u sw_cons %u pkt_cons %u\n",
|
|
hw_cons, sw_cons, pkt_cons);
|
|
|
|
/* if (NEXT_TX_IDX(sw_cons) != hw_cons) {
|
|
rmb();
|
|
prefetch(fp->tx_buf_ring[NEXT_TX_IDX(sw_cons)].skb);
|
|
}
|
|
*/
|
|
bd_cons = bnx2x_free_tx_pkt(bp, fp, pkt_cons);
|
|
sw_cons++;
|
|
}
|
|
|
|
fp->tx_pkt_cons = sw_cons;
|
|
fp->tx_bd_cons = bd_cons;
|
|
|
|
/* Need to make the tx_bd_cons update visible to start_xmit()
|
|
* before checking for netif_tx_queue_stopped(). Without the
|
|
* memory barrier, there is a small possibility that
|
|
* start_xmit() will miss it and cause the queue to be stopped
|
|
* forever.
|
|
*/
|
|
smp_mb();
|
|
|
|
/* TBD need a thresh? */
|
|
if (unlikely(netif_tx_queue_stopped(txq))) {
|
|
/* Taking tx_lock() is needed to prevent reenabling the queue
|
|
* while it's empty. This could have happen if rx_action() gets
|
|
* suspended in bnx2x_tx_int() after the condition before
|
|
* netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
|
|
*
|
|
* stops the queue->sees fresh tx_bd_cons->releases the queue->
|
|
* sends some packets consuming the whole queue again->
|
|
* stops the queue
|
|
*/
|
|
|
|
__netif_tx_lock(txq, smp_processor_id());
|
|
|
|
if ((netif_tx_queue_stopped(txq)) &&
|
|
(bp->state == BNX2X_STATE_OPEN) &&
|
|
(bnx2x_tx_avail(fp) >= MAX_SKB_FRAGS + 3))
|
|
netif_tx_wake_queue(txq);
|
|
|
|
__netif_tx_unlock(txq);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
|
|
u16 idx)
|
|
{
|
|
u16 last_max = fp->last_max_sge;
|
|
|
|
if (SUB_S16(idx, last_max) > 0)
|
|
fp->last_max_sge = idx;
|
|
}
|
|
|
|
static void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
|
|
struct eth_fast_path_rx_cqe *fp_cqe)
|
|
{
|
|
struct bnx2x *bp = fp->bp;
|
|
u16 sge_len = SGE_PAGE_ALIGN(le16_to_cpu(fp_cqe->pkt_len) -
|
|
le16_to_cpu(fp_cqe->len_on_bd)) >>
|
|
SGE_PAGE_SHIFT;
|
|
u16 last_max, last_elem, first_elem;
|
|
u16 delta = 0;
|
|
u16 i;
|
|
|
|
if (!sge_len)
|
|
return;
|
|
|
|
/* First mark all used pages */
|
|
for (i = 0; i < sge_len; i++)
|
|
SGE_MASK_CLEAR_BIT(fp, RX_SGE(le16_to_cpu(fp_cqe->sgl[i])));
|
|
|
|
DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
|
|
sge_len - 1, le16_to_cpu(fp_cqe->sgl[sge_len - 1]));
|
|
|
|
/* Here we assume that the last SGE index is the biggest */
|
|
prefetch((void *)(fp->sge_mask));
|
|
bnx2x_update_last_max_sge(fp, le16_to_cpu(fp_cqe->sgl[sge_len - 1]));
|
|
|
|
last_max = RX_SGE(fp->last_max_sge);
|
|
last_elem = last_max >> RX_SGE_MASK_ELEM_SHIFT;
|
|
first_elem = RX_SGE(fp->rx_sge_prod) >> RX_SGE_MASK_ELEM_SHIFT;
|
|
|
|
/* If ring is not full */
|
|
if (last_elem + 1 != first_elem)
|
|
last_elem++;
|
|
|
|
/* Now update the prod */
|
|
for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
|
|
if (likely(fp->sge_mask[i]))
|
|
break;
|
|
|
|
fp->sge_mask[i] = RX_SGE_MASK_ELEM_ONE_MASK;
|
|
delta += RX_SGE_MASK_ELEM_SZ;
|
|
}
|
|
|
|
if (delta > 0) {
|
|
fp->rx_sge_prod += delta;
|
|
/* clear page-end entries */
|
|
bnx2x_clear_sge_mask_next_elems(fp);
|
|
}
|
|
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
|
|
fp->last_max_sge, fp->rx_sge_prod);
|
|
}
|
|
|
|
static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
|
|
struct sk_buff *skb, u16 cons, u16 prod)
|
|
{
|
|
struct bnx2x *bp = fp->bp;
|
|
struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
|
|
struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
|
|
struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
|
|
dma_addr_t mapping;
|
|
|
|
/* move empty skb from pool to prod and map it */
|
|
prod_rx_buf->skb = fp->tpa_pool[queue].skb;
|
|
mapping = dma_map_single(&bp->pdev->dev, fp->tpa_pool[queue].skb->data,
|
|
bp->rx_buf_size, DMA_FROM_DEVICE);
|
|
dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
|
|
|
|
/* move partial skb from cons to pool (don't unmap yet) */
|
|
fp->tpa_pool[queue] = *cons_rx_buf;
|
|
|
|
/* mark bin state as start - print error if current state != stop */
|
|
if (fp->tpa_state[queue] != BNX2X_TPA_STOP)
|
|
BNX2X_ERR("start of bin not in stop [%d]\n", queue);
|
|
|
|
fp->tpa_state[queue] = BNX2X_TPA_START;
|
|
|
|
/* point prod_bd to new skb */
|
|
prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
|
|
prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
fp->tpa_queue_used |= (1 << queue);
|
|
#ifdef _ASM_GENERIC_INT_L64_H
|
|
DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n",
|
|
#else
|
|
DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
|
|
#endif
|
|
fp->tpa_queue_used);
|
|
#endif
|
|
}
|
|
|
|
static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
|
|
struct sk_buff *skb,
|
|
struct eth_fast_path_rx_cqe *fp_cqe,
|
|
u16 cqe_idx)
|
|
{
|
|
struct sw_rx_page *rx_pg, old_rx_pg;
|
|
u16 len_on_bd = le16_to_cpu(fp_cqe->len_on_bd);
|
|
u32 i, frag_len, frag_size, pages;
|
|
int err;
|
|
int j;
|
|
|
|
frag_size = le16_to_cpu(fp_cqe->pkt_len) - len_on_bd;
|
|
pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
|
|
|
|
/* This is needed in order to enable forwarding support */
|
|
if (frag_size)
|
|
skb_shinfo(skb)->gso_size = min((u32)SGE_PAGE_SIZE,
|
|
max(frag_size, (u32)len_on_bd));
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (pages > min_t(u32, 8, MAX_SKB_FRAGS)*SGE_PAGE_SIZE*PAGES_PER_SGE) {
|
|
BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
|
|
pages, cqe_idx);
|
|
BNX2X_ERR("fp_cqe->pkt_len = %d fp_cqe->len_on_bd = %d\n",
|
|
fp_cqe->pkt_len, len_on_bd);
|
|
bnx2x_panic();
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
/* Run through the SGL and compose the fragmented skb */
|
|
for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
|
|
u16 sge_idx = RX_SGE(le16_to_cpu(fp_cqe->sgl[j]));
|
|
|
|
/* FW gives the indices of the SGE as if the ring is an array
|
|
(meaning that "next" element will consume 2 indices) */
|
|
frag_len = min(frag_size, (u32)(SGE_PAGE_SIZE*PAGES_PER_SGE));
|
|
rx_pg = &fp->rx_page_ring[sge_idx];
|
|
old_rx_pg = *rx_pg;
|
|
|
|
/* If we fail to allocate a substitute page, we simply stop
|
|
where we are and drop the whole packet */
|
|
err = bnx2x_alloc_rx_sge(bp, fp, sge_idx);
|
|
if (unlikely(err)) {
|
|
fp->eth_q_stats.rx_skb_alloc_failed++;
|
|
return err;
|
|
}
|
|
|
|
/* Unmap the page as we r going to pass it to the stack */
|
|
dma_unmap_page(&bp->pdev->dev,
|
|
dma_unmap_addr(&old_rx_pg, mapping),
|
|
SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
|
|
|
|
/* Add one frag and update the appropriate fields in the skb */
|
|
skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len);
|
|
|
|
skb->data_len += frag_len;
|
|
skb->truesize += frag_len;
|
|
skb->len += frag_len;
|
|
|
|
frag_size -= frag_len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
|
|
u16 queue, int pad, int len, union eth_rx_cqe *cqe,
|
|
u16 cqe_idx)
|
|
{
|
|
struct sw_rx_bd *rx_buf = &fp->tpa_pool[queue];
|
|
struct sk_buff *skb = rx_buf->skb;
|
|
/* alloc new skb */
|
|
struct sk_buff *new_skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
|
|
|
|
/* Unmap skb in the pool anyway, as we are going to change
|
|
pool entry status to BNX2X_TPA_STOP even if new skb allocation
|
|
fails. */
|
|
dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
|
|
bp->rx_buf_size, DMA_FROM_DEVICE);
|
|
|
|
if (likely(new_skb)) {
|
|
/* fix ip xsum and give it to the stack */
|
|
/* (no need to map the new skb) */
|
|
#ifdef BCM_VLAN
|
|
int is_vlan_cqe =
|
|
(le16_to_cpu(cqe->fast_path_cqe.pars_flags.flags) &
|
|
PARSING_FLAGS_VLAN);
|
|
int is_not_hwaccel_vlan_cqe =
|
|
(is_vlan_cqe && (!(bp->flags & HW_VLAN_RX_FLAG)));
|
|
#endif
|
|
|
|
prefetch(skb);
|
|
prefetch(((char *)(skb)) + 128);
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (pad + len > bp->rx_buf_size) {
|
|
BNX2X_ERR("skb_put is about to fail... "
|
|
"pad %d len %d rx_buf_size %d\n",
|
|
pad, len, bp->rx_buf_size);
|
|
bnx2x_panic();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
skb_reserve(skb, pad);
|
|
skb_put(skb, len);
|
|
|
|
skb->protocol = eth_type_trans(skb, bp->dev);
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
{
|
|
struct iphdr *iph;
|
|
|
|
iph = (struct iphdr *)skb->data;
|
|
#ifdef BCM_VLAN
|
|
/* If there is no Rx VLAN offloading -
|
|
take VLAN tag into an account */
|
|
if (unlikely(is_not_hwaccel_vlan_cqe))
|
|
iph = (struct iphdr *)((u8 *)iph + VLAN_HLEN);
|
|
#endif
|
|
iph->check = 0;
|
|
iph->check = ip_fast_csum((u8 *)iph, iph->ihl);
|
|
}
|
|
|
|
if (!bnx2x_fill_frag_skb(bp, fp, skb,
|
|
&cqe->fast_path_cqe, cqe_idx)) {
|
|
#ifdef BCM_VLAN
|
|
if ((bp->vlgrp != NULL) && is_vlan_cqe &&
|
|
(!is_not_hwaccel_vlan_cqe))
|
|
vlan_gro_receive(&fp->napi, bp->vlgrp,
|
|
le16_to_cpu(cqe->fast_path_cqe.
|
|
vlan_tag), skb);
|
|
else
|
|
#endif
|
|
napi_gro_receive(&fp->napi, skb);
|
|
} else {
|
|
DP(NETIF_MSG_RX_STATUS, "Failed to allocate new pages"
|
|
" - dropping packet!\n");
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
|
|
/* put new skb in bin */
|
|
fp->tpa_pool[queue].skb = new_skb;
|
|
|
|
} else {
|
|
/* else drop the packet and keep the buffer in the bin */
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"Failed to allocate new skb - dropping packet!\n");
|
|
fp->eth_q_stats.rx_skb_alloc_failed++;
|
|
}
|
|
|
|
fp->tpa_state[queue] = BNX2X_TPA_STOP;
|
|
}
|
|
|
|
/* Set Toeplitz hash value in the skb using the value from the
|
|
* CQE (calculated by HW).
|
|
*/
|
|
static inline void bnx2x_set_skb_rxhash(struct bnx2x *bp, union eth_rx_cqe *cqe,
|
|
struct sk_buff *skb)
|
|
{
|
|
/* Set Toeplitz hash from CQE */
|
|
if ((bp->dev->features & NETIF_F_RXHASH) &&
|
|
(cqe->fast_path_cqe.status_flags &
|
|
ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG))
|
|
skb->rxhash =
|
|
le32_to_cpu(cqe->fast_path_cqe.rss_hash_result);
|
|
}
|
|
|
|
int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
|
|
{
|
|
struct bnx2x *bp = fp->bp;
|
|
u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
|
|
u16 hw_comp_cons, sw_comp_cons, sw_comp_prod;
|
|
int rx_pkt = 0;
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return 0;
|
|
#endif
|
|
|
|
/* CQ "next element" is of the size of the regular element,
|
|
that's why it's ok here */
|
|
hw_comp_cons = le16_to_cpu(*fp->rx_cons_sb);
|
|
if ((hw_comp_cons & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
|
|
hw_comp_cons++;
|
|
|
|
bd_cons = fp->rx_bd_cons;
|
|
bd_prod = fp->rx_bd_prod;
|
|
bd_prod_fw = bd_prod;
|
|
sw_comp_cons = fp->rx_comp_cons;
|
|
sw_comp_prod = fp->rx_comp_prod;
|
|
|
|
/* Memory barrier necessary as speculative reads of the rx
|
|
* buffer can be ahead of the index in the status block
|
|
*/
|
|
rmb();
|
|
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"queue[%d]: hw_comp_cons %u sw_comp_cons %u\n",
|
|
fp->index, hw_comp_cons, sw_comp_cons);
|
|
|
|
while (sw_comp_cons != hw_comp_cons) {
|
|
struct sw_rx_bd *rx_buf = NULL;
|
|
struct sk_buff *skb;
|
|
union eth_rx_cqe *cqe;
|
|
u8 cqe_fp_flags;
|
|
u16 len, pad;
|
|
|
|
comp_ring_cons = RCQ_BD(sw_comp_cons);
|
|
bd_prod = RX_BD(bd_prod);
|
|
bd_cons = RX_BD(bd_cons);
|
|
|
|
/* Prefetch the page containing the BD descriptor
|
|
at producer's index. It will be needed when new skb is
|
|
allocated */
|
|
prefetch((void *)(PAGE_ALIGN((unsigned long)
|
|
(&fp->rx_desc_ring[bd_prod])) -
|
|
PAGE_SIZE + 1));
|
|
|
|
cqe = &fp->rx_comp_ring[comp_ring_cons];
|
|
cqe_fp_flags = cqe->fast_path_cqe.type_error_flags;
|
|
|
|
DP(NETIF_MSG_RX_STATUS, "CQE type %x err %x status %x"
|
|
" queue %x vlan %x len %u\n", CQE_TYPE(cqe_fp_flags),
|
|
cqe_fp_flags, cqe->fast_path_cqe.status_flags,
|
|
le32_to_cpu(cqe->fast_path_cqe.rss_hash_result),
|
|
le16_to_cpu(cqe->fast_path_cqe.vlan_tag),
|
|
le16_to_cpu(cqe->fast_path_cqe.pkt_len));
|
|
|
|
/* is this a slowpath msg? */
|
|
if (unlikely(CQE_TYPE(cqe_fp_flags))) {
|
|
bnx2x_sp_event(fp, cqe);
|
|
goto next_cqe;
|
|
|
|
/* this is an rx packet */
|
|
} else {
|
|
rx_buf = &fp->rx_buf_ring[bd_cons];
|
|
skb = rx_buf->skb;
|
|
prefetch(skb);
|
|
len = le16_to_cpu(cqe->fast_path_cqe.pkt_len);
|
|
pad = cqe->fast_path_cqe.placement_offset;
|
|
|
|
/* If CQE is marked both TPA_START and TPA_END
|
|
it is a non-TPA CQE */
|
|
if ((!fp->disable_tpa) &&
|
|
(TPA_TYPE(cqe_fp_flags) !=
|
|
(TPA_TYPE_START | TPA_TYPE_END))) {
|
|
u16 queue = cqe->fast_path_cqe.queue_index;
|
|
|
|
if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_START) {
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"calling tpa_start on queue %d\n",
|
|
queue);
|
|
|
|
bnx2x_tpa_start(fp, queue, skb,
|
|
bd_cons, bd_prod);
|
|
|
|
/* Set Toeplitz hash for an LRO skb */
|
|
bnx2x_set_skb_rxhash(bp, cqe, skb);
|
|
|
|
goto next_rx;
|
|
}
|
|
|
|
if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_END) {
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"calling tpa_stop on queue %d\n",
|
|
queue);
|
|
|
|
if (!BNX2X_RX_SUM_FIX(cqe))
|
|
BNX2X_ERR("STOP on none TCP "
|
|
"data\n");
|
|
|
|
/* This is a size of the linear data
|
|
on this skb */
|
|
len = le16_to_cpu(cqe->fast_path_cqe.
|
|
len_on_bd);
|
|
bnx2x_tpa_stop(bp, fp, queue, pad,
|
|
len, cqe, comp_ring_cons);
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (bp->panic)
|
|
return 0;
|
|
#endif
|
|
|
|
bnx2x_update_sge_prod(fp,
|
|
&cqe->fast_path_cqe);
|
|
goto next_cqe;
|
|
}
|
|
}
|
|
|
|
dma_sync_single_for_device(&bp->pdev->dev,
|
|
dma_unmap_addr(rx_buf, mapping),
|
|
pad + RX_COPY_THRESH,
|
|
DMA_FROM_DEVICE);
|
|
prefetch(((char *)(skb)) + 128);
|
|
|
|
/* is this an error packet? */
|
|
if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
|
|
DP(NETIF_MSG_RX_ERR,
|
|
"ERROR flags %x rx packet %u\n",
|
|
cqe_fp_flags, sw_comp_cons);
|
|
fp->eth_q_stats.rx_err_discard_pkt++;
|
|
goto reuse_rx;
|
|
}
|
|
|
|
/* Since we don't have a jumbo ring
|
|
* copy small packets if mtu > 1500
|
|
*/
|
|
if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
|
|
(len <= RX_COPY_THRESH)) {
|
|
struct sk_buff *new_skb;
|
|
|
|
new_skb = netdev_alloc_skb(bp->dev,
|
|
len + pad);
|
|
if (new_skb == NULL) {
|
|
DP(NETIF_MSG_RX_ERR,
|
|
"ERROR packet dropped "
|
|
"because of alloc failure\n");
|
|
fp->eth_q_stats.rx_skb_alloc_failed++;
|
|
goto reuse_rx;
|
|
}
|
|
|
|
/* aligned copy */
|
|
skb_copy_from_linear_data_offset(skb, pad,
|
|
new_skb->data + pad, len);
|
|
skb_reserve(new_skb, pad);
|
|
skb_put(new_skb, len);
|
|
|
|
bnx2x_reuse_rx_skb(fp, skb, bd_cons, bd_prod);
|
|
|
|
skb = new_skb;
|
|
|
|
} else
|
|
if (likely(bnx2x_alloc_rx_skb(bp, fp, bd_prod) == 0)) {
|
|
dma_unmap_single(&bp->pdev->dev,
|
|
dma_unmap_addr(rx_buf, mapping),
|
|
bp->rx_buf_size,
|
|
DMA_FROM_DEVICE);
|
|
skb_reserve(skb, pad);
|
|
skb_put(skb, len);
|
|
|
|
} else {
|
|
DP(NETIF_MSG_RX_ERR,
|
|
"ERROR packet dropped because "
|
|
"of alloc failure\n");
|
|
fp->eth_q_stats.rx_skb_alloc_failed++;
|
|
reuse_rx:
|
|
bnx2x_reuse_rx_skb(fp, skb, bd_cons, bd_prod);
|
|
goto next_rx;
|
|
}
|
|
|
|
skb->protocol = eth_type_trans(skb, bp->dev);
|
|
|
|
/* Set Toeplitz hash for a none-LRO skb */
|
|
bnx2x_set_skb_rxhash(bp, cqe, skb);
|
|
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
if (bp->rx_csum) {
|
|
if (likely(BNX2X_RX_CSUM_OK(cqe)))
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
else
|
|
fp->eth_q_stats.hw_csum_err++;
|
|
}
|
|
}
|
|
|
|
skb_record_rx_queue(skb, fp->index);
|
|
|
|
#ifdef BCM_VLAN
|
|
if ((bp->vlgrp != NULL) && (bp->flags & HW_VLAN_RX_FLAG) &&
|
|
(le16_to_cpu(cqe->fast_path_cqe.pars_flags.flags) &
|
|
PARSING_FLAGS_VLAN))
|
|
vlan_gro_receive(&fp->napi, bp->vlgrp,
|
|
le16_to_cpu(cqe->fast_path_cqe.vlan_tag), skb);
|
|
else
|
|
#endif
|
|
napi_gro_receive(&fp->napi, skb);
|
|
|
|
|
|
next_rx:
|
|
rx_buf->skb = NULL;
|
|
|
|
bd_cons = NEXT_RX_IDX(bd_cons);
|
|
bd_prod = NEXT_RX_IDX(bd_prod);
|
|
bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
|
|
rx_pkt++;
|
|
next_cqe:
|
|
sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
|
|
sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
|
|
|
|
if (rx_pkt == budget)
|
|
break;
|
|
} /* while */
|
|
|
|
fp->rx_bd_cons = bd_cons;
|
|
fp->rx_bd_prod = bd_prod_fw;
|
|
fp->rx_comp_cons = sw_comp_cons;
|
|
fp->rx_comp_prod = sw_comp_prod;
|
|
|
|
/* Update producers */
|
|
bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
|
|
fp->rx_sge_prod);
|
|
|
|
fp->rx_pkt += rx_pkt;
|
|
fp->rx_calls++;
|
|
|
|
return rx_pkt;
|
|
}
|
|
|
|
static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
|
|
{
|
|
struct bnx2x_fastpath *fp = fp_cookie;
|
|
struct bnx2x *bp = fp->bp;
|
|
|
|
/* Return here if interrupt is disabled */
|
|
if (unlikely(atomic_read(&bp->intr_sem) != 0)) {
|
|
DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
DP(BNX2X_MSG_FP, "got an MSI-X interrupt on IDX:SB [%d:%d]\n",
|
|
fp->index, fp->sb_id);
|
|
bnx2x_ack_sb(bp, fp->sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return IRQ_HANDLED;
|
|
#endif
|
|
|
|
/* Handle Rx and Tx according to MSI-X vector */
|
|
prefetch(fp->rx_cons_sb);
|
|
prefetch(fp->tx_cons_sb);
|
|
prefetch(&fp->status_blk->u_status_block.status_block_index);
|
|
prefetch(&fp->status_blk->c_status_block.status_block_index);
|
|
napi_schedule(&bnx2x_fp(bp, fp->index, napi));
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
/* HW Lock for shared dual port PHYs */
|
|
void bnx2x_acquire_phy_lock(struct bnx2x *bp)
|
|
{
|
|
mutex_lock(&bp->port.phy_mutex);
|
|
|
|
if (bp->port.need_hw_lock)
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
|
|
}
|
|
|
|
void bnx2x_release_phy_lock(struct bnx2x *bp)
|
|
{
|
|
if (bp->port.need_hw_lock)
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
|
|
|
|
mutex_unlock(&bp->port.phy_mutex);
|
|
}
|
|
|
|
void bnx2x_link_report(struct bnx2x *bp)
|
|
{
|
|
if (bp->flags & MF_FUNC_DIS) {
|
|
netif_carrier_off(bp->dev);
|
|
netdev_err(bp->dev, "NIC Link is Down\n");
|
|
return;
|
|
}
|
|
|
|
if (bp->link_vars.link_up) {
|
|
u16 line_speed;
|
|
|
|
if (bp->state == BNX2X_STATE_OPEN)
|
|
netif_carrier_on(bp->dev);
|
|
netdev_info(bp->dev, "NIC Link is Up, ");
|
|
|
|
line_speed = bp->link_vars.line_speed;
|
|
if (IS_E1HMF(bp)) {
|
|
u16 vn_max_rate;
|
|
|
|
vn_max_rate =
|
|
((bp->mf_config & FUNC_MF_CFG_MAX_BW_MASK) >>
|
|
FUNC_MF_CFG_MAX_BW_SHIFT) * 100;
|
|
if (vn_max_rate < line_speed)
|
|
line_speed = vn_max_rate;
|
|
}
|
|
pr_cont("%d Mbps ", line_speed);
|
|
|
|
if (bp->link_vars.duplex == DUPLEX_FULL)
|
|
pr_cont("full duplex");
|
|
else
|
|
pr_cont("half duplex");
|
|
|
|
if (bp->link_vars.flow_ctrl != BNX2X_FLOW_CTRL_NONE) {
|
|
if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) {
|
|
pr_cont(", receive ");
|
|
if (bp->link_vars.flow_ctrl &
|
|
BNX2X_FLOW_CTRL_TX)
|
|
pr_cont("& transmit ");
|
|
} else {
|
|
pr_cont(", transmit ");
|
|
}
|
|
pr_cont("flow control ON");
|
|
}
|
|
pr_cont("\n");
|
|
|
|
} else { /* link_down */
|
|
netif_carrier_off(bp->dev);
|
|
netdev_err(bp->dev, "NIC Link is Down\n");
|
|
}
|
|
}
|
|
|
|
void bnx2x_init_rx_rings(struct bnx2x *bp)
|
|
{
|
|
int func = BP_FUNC(bp);
|
|
int max_agg_queues = CHIP_IS_E1(bp) ? ETH_MAX_AGGREGATION_QUEUES_E1 :
|
|
ETH_MAX_AGGREGATION_QUEUES_E1H;
|
|
u16 ring_prod, cqe_ring_prod;
|
|
int i, j;
|
|
|
|
bp->rx_buf_size = bp->dev->mtu + ETH_OVREHEAD + BNX2X_RX_ALIGN;
|
|
DP(NETIF_MSG_IFUP,
|
|
"mtu %d rx_buf_size %d\n", bp->dev->mtu, bp->rx_buf_size);
|
|
|
|
if (bp->flags & TPA_ENABLE_FLAG) {
|
|
|
|
for_each_queue(bp, j) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[j];
|
|
|
|
for (i = 0; i < max_agg_queues; i++) {
|
|
fp->tpa_pool[i].skb =
|
|
netdev_alloc_skb(bp->dev, bp->rx_buf_size);
|
|
if (!fp->tpa_pool[i].skb) {
|
|
BNX2X_ERR("Failed to allocate TPA "
|
|
"skb pool for queue[%d] - "
|
|
"disabling TPA on this "
|
|
"queue!\n", j);
|
|
bnx2x_free_tpa_pool(bp, fp, i);
|
|
fp->disable_tpa = 1;
|
|
break;
|
|
}
|
|
dma_unmap_addr_set((struct sw_rx_bd *)
|
|
&bp->fp->tpa_pool[i],
|
|
mapping, 0);
|
|
fp->tpa_state[i] = BNX2X_TPA_STOP;
|
|
}
|
|
}
|
|
}
|
|
|
|
for_each_queue(bp, j) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[j];
|
|
|
|
fp->rx_bd_cons = 0;
|
|
fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
|
|
fp->rx_bd_cons_sb = BNX2X_RX_SB_BD_INDEX;
|
|
|
|
/* "next page" elements initialization */
|
|
/* SGE ring */
|
|
for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
|
|
struct eth_rx_sge *sge;
|
|
|
|
sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
|
|
sge->addr_hi =
|
|
cpu_to_le32(U64_HI(fp->rx_sge_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
|
|
sge->addr_lo =
|
|
cpu_to_le32(U64_LO(fp->rx_sge_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
|
|
}
|
|
|
|
bnx2x_init_sge_ring_bit_mask(fp);
|
|
|
|
/* RX BD ring */
|
|
for (i = 1; i <= NUM_RX_RINGS; i++) {
|
|
struct eth_rx_bd *rx_bd;
|
|
|
|
rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2];
|
|
rx_bd->addr_hi =
|
|
cpu_to_le32(U64_HI(fp->rx_desc_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
|
|
rx_bd->addr_lo =
|
|
cpu_to_le32(U64_LO(fp->rx_desc_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
|
|
}
|
|
|
|
/* CQ ring */
|
|
for (i = 1; i <= NUM_RCQ_RINGS; i++) {
|
|
struct eth_rx_cqe_next_page *nextpg;
|
|
|
|
nextpg = (struct eth_rx_cqe_next_page *)
|
|
&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
|
|
nextpg->addr_hi =
|
|
cpu_to_le32(U64_HI(fp->rx_comp_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
|
|
nextpg->addr_lo =
|
|
cpu_to_le32(U64_LO(fp->rx_comp_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
|
|
}
|
|
|
|
/* Allocate SGEs and initialize the ring elements */
|
|
for (i = 0, ring_prod = 0;
|
|
i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
|
|
|
|
if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) {
|
|
BNX2X_ERR("was only able to allocate "
|
|
"%d rx sges\n", i);
|
|
BNX2X_ERR("disabling TPA for queue[%d]\n", j);
|
|
/* Cleanup already allocated elements */
|
|
bnx2x_free_rx_sge_range(bp, fp, ring_prod);
|
|
bnx2x_free_tpa_pool(bp, fp, max_agg_queues);
|
|
fp->disable_tpa = 1;
|
|
ring_prod = 0;
|
|
break;
|
|
}
|
|
ring_prod = NEXT_SGE_IDX(ring_prod);
|
|
}
|
|
fp->rx_sge_prod = ring_prod;
|
|
|
|
/* Allocate BDs and initialize BD ring */
|
|
fp->rx_comp_cons = 0;
|
|
cqe_ring_prod = ring_prod = 0;
|
|
for (i = 0; i < bp->rx_ring_size; i++) {
|
|
if (bnx2x_alloc_rx_skb(bp, fp, ring_prod) < 0) {
|
|
BNX2X_ERR("was only able to allocate "
|
|
"%d rx skbs on queue[%d]\n", i, j);
|
|
fp->eth_q_stats.rx_skb_alloc_failed++;
|
|
break;
|
|
}
|
|
ring_prod = NEXT_RX_IDX(ring_prod);
|
|
cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
|
|
WARN_ON(ring_prod <= i);
|
|
}
|
|
|
|
fp->rx_bd_prod = ring_prod;
|
|
/* must not have more available CQEs than BDs */
|
|
fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
|
|
cqe_ring_prod);
|
|
fp->rx_pkt = fp->rx_calls = 0;
|
|
|
|
/* Warning!
|
|
* this will generate an interrupt (to the TSTORM)
|
|
* must only be done after chip is initialized
|
|
*/
|
|
bnx2x_update_rx_prod(bp, fp, ring_prod, fp->rx_comp_prod,
|
|
fp->rx_sge_prod);
|
|
if (j != 0)
|
|
continue;
|
|
|
|
REG_WR(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
|
|
U64_LO(fp->rx_comp_mapping));
|
|
REG_WR(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
|
|
U64_HI(fp->rx_comp_mapping));
|
|
}
|
|
}
|
|
static void bnx2x_free_tx_skbs(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
|
|
u16 bd_cons = fp->tx_bd_cons;
|
|
u16 sw_prod = fp->tx_pkt_prod;
|
|
u16 sw_cons = fp->tx_pkt_cons;
|
|
|
|
while (sw_cons != sw_prod) {
|
|
bd_cons = bnx2x_free_tx_pkt(bp, fp, TX_BD(sw_cons));
|
|
sw_cons++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnx2x_free_rx_skbs(struct bnx2x *bp)
|
|
{
|
|
int i, j;
|
|
|
|
for_each_queue(bp, j) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[j];
|
|
|
|
for (i = 0; i < NUM_RX_BD; i++) {
|
|
struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
|
|
struct sk_buff *skb = rx_buf->skb;
|
|
|
|
if (skb == NULL)
|
|
continue;
|
|
|
|
dma_unmap_single(&bp->pdev->dev,
|
|
dma_unmap_addr(rx_buf, mapping),
|
|
bp->rx_buf_size, DMA_FROM_DEVICE);
|
|
|
|
rx_buf->skb = NULL;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
if (!fp->disable_tpa)
|
|
bnx2x_free_tpa_pool(bp, fp, CHIP_IS_E1(bp) ?
|
|
ETH_MAX_AGGREGATION_QUEUES_E1 :
|
|
ETH_MAX_AGGREGATION_QUEUES_E1H);
|
|
}
|
|
}
|
|
|
|
void bnx2x_free_skbs(struct bnx2x *bp)
|
|
{
|
|
bnx2x_free_tx_skbs(bp);
|
|
bnx2x_free_rx_skbs(bp);
|
|
}
|
|
|
|
static void bnx2x_free_msix_irqs(struct bnx2x *bp)
|
|
{
|
|
int i, offset = 1;
|
|
|
|
free_irq(bp->msix_table[0].vector, bp->dev);
|
|
DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
|
|
bp->msix_table[0].vector);
|
|
|
|
#ifdef BCM_CNIC
|
|
offset++;
|
|
#endif
|
|
for_each_queue(bp, i) {
|
|
DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq "
|
|
"state %x\n", i, bp->msix_table[i + offset].vector,
|
|
bnx2x_fp(bp, i, state));
|
|
|
|
free_irq(bp->msix_table[i + offset].vector, &bp->fp[i]);
|
|
}
|
|
}
|
|
|
|
void bnx2x_free_irq(struct bnx2x *bp, bool disable_only)
|
|
{
|
|
if (bp->flags & USING_MSIX_FLAG) {
|
|
if (!disable_only)
|
|
bnx2x_free_msix_irqs(bp);
|
|
pci_disable_msix(bp->pdev);
|
|
bp->flags &= ~USING_MSIX_FLAG;
|
|
|
|
} else if (bp->flags & USING_MSI_FLAG) {
|
|
if (!disable_only)
|
|
free_irq(bp->pdev->irq, bp->dev);
|
|
pci_disable_msi(bp->pdev);
|
|
bp->flags &= ~USING_MSI_FLAG;
|
|
|
|
} else if (!disable_only)
|
|
free_irq(bp->pdev->irq, bp->dev);
|
|
}
|
|
|
|
static int bnx2x_enable_msix(struct bnx2x *bp)
|
|
{
|
|
int i, rc, offset = 1;
|
|
int igu_vec = 0;
|
|
|
|
bp->msix_table[0].entry = igu_vec;
|
|
DP(NETIF_MSG_IFUP, "msix_table[0].entry = %d (slowpath)\n", igu_vec);
|
|
|
|
#ifdef BCM_CNIC
|
|
igu_vec = BP_L_ID(bp) + offset;
|
|
bp->msix_table[1].entry = igu_vec;
|
|
DP(NETIF_MSG_IFUP, "msix_table[1].entry = %d (CNIC)\n", igu_vec);
|
|
offset++;
|
|
#endif
|
|
for_each_queue(bp, i) {
|
|
igu_vec = BP_L_ID(bp) + offset + i;
|
|
bp->msix_table[i + offset].entry = igu_vec;
|
|
DP(NETIF_MSG_IFUP, "msix_table[%d].entry = %d "
|
|
"(fastpath #%u)\n", i + offset, igu_vec, i);
|
|
}
|
|
|
|
rc = pci_enable_msix(bp->pdev, &bp->msix_table[0],
|
|
BNX2X_NUM_QUEUES(bp) + offset);
|
|
|
|
/*
|
|
* reconfigure number of tx/rx queues according to available
|
|
* MSI-X vectors
|
|
*/
|
|
if (rc >= BNX2X_MIN_MSIX_VEC_CNT) {
|
|
/* vectors available for FP */
|
|
int fp_vec = rc - BNX2X_MSIX_VEC_FP_START;
|
|
|
|
DP(NETIF_MSG_IFUP,
|
|
"Trying to use less MSI-X vectors: %d\n", rc);
|
|
|
|
rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc);
|
|
|
|
if (rc) {
|
|
DP(NETIF_MSG_IFUP,
|
|
"MSI-X is not attainable rc %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
bp->num_queues = min(bp->num_queues, fp_vec);
|
|
|
|
DP(NETIF_MSG_IFUP, "New queue configuration set: %d\n",
|
|
bp->num_queues);
|
|
} else if (rc) {
|
|
DP(NETIF_MSG_IFUP, "MSI-X is not attainable rc %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
bp->flags |= USING_MSIX_FLAG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2x_req_msix_irqs(struct bnx2x *bp)
|
|
{
|
|
int i, rc, offset = 1;
|
|
|
|
rc = request_irq(bp->msix_table[0].vector, bnx2x_msix_sp_int, 0,
|
|
bp->dev->name, bp->dev);
|
|
if (rc) {
|
|
BNX2X_ERR("request sp irq failed\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
offset++;
|
|
#endif
|
|
for_each_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
|
|
bp->dev->name, i);
|
|
|
|
rc = request_irq(bp->msix_table[i + offset].vector,
|
|
bnx2x_msix_fp_int, 0, fp->name, fp);
|
|
if (rc) {
|
|
BNX2X_ERR("request fp #%d irq failed rc %d\n", i, rc);
|
|
bnx2x_free_msix_irqs(bp);
|
|
return -EBUSY;
|
|
}
|
|
|
|
fp->state = BNX2X_FP_STATE_IRQ;
|
|
}
|
|
|
|
i = BNX2X_NUM_QUEUES(bp);
|
|
netdev_info(bp->dev, "using MSI-X IRQs: sp %d fp[%d] %d"
|
|
" ... fp[%d] %d\n",
|
|
bp->msix_table[0].vector,
|
|
0, bp->msix_table[offset].vector,
|
|
i - 1, bp->msix_table[offset + i - 1].vector);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2x_enable_msi(struct bnx2x *bp)
|
|
{
|
|
int rc;
|
|
|
|
rc = pci_enable_msi(bp->pdev);
|
|
if (rc) {
|
|
DP(NETIF_MSG_IFUP, "MSI is not attainable\n");
|
|
return -1;
|
|
}
|
|
bp->flags |= USING_MSI_FLAG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2x_req_irq(struct bnx2x *bp)
|
|
{
|
|
unsigned long flags;
|
|
int rc;
|
|
|
|
if (bp->flags & USING_MSI_FLAG)
|
|
flags = 0;
|
|
else
|
|
flags = IRQF_SHARED;
|
|
|
|
rc = request_irq(bp->pdev->irq, bnx2x_interrupt, flags,
|
|
bp->dev->name, bp->dev);
|
|
if (!rc)
|
|
bnx2x_fp(bp, 0, state) = BNX2X_FP_STATE_IRQ;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void bnx2x_napi_enable(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_queue(bp, i)
|
|
napi_enable(&bnx2x_fp(bp, i, napi));
|
|
}
|
|
|
|
static void bnx2x_napi_disable(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_queue(bp, i)
|
|
napi_disable(&bnx2x_fp(bp, i, napi));
|
|
}
|
|
|
|
void bnx2x_netif_start(struct bnx2x *bp)
|
|
{
|
|
int intr_sem;
|
|
|
|
intr_sem = atomic_dec_and_test(&bp->intr_sem);
|
|
smp_wmb(); /* Ensure that bp->intr_sem update is SMP-safe */
|
|
|
|
if (intr_sem) {
|
|
if (netif_running(bp->dev)) {
|
|
bnx2x_napi_enable(bp);
|
|
bnx2x_int_enable(bp);
|
|
if (bp->state == BNX2X_STATE_OPEN)
|
|
netif_tx_wake_all_queues(bp->dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
|
|
{
|
|
bnx2x_int_disable_sync(bp, disable_hw);
|
|
bnx2x_napi_disable(bp);
|
|
netif_tx_disable(bp->dev);
|
|
}
|
|
static int bnx2x_set_num_queues(struct bnx2x *bp)
|
|
{
|
|
int rc = 0;
|
|
|
|
switch (bp->int_mode) {
|
|
case INT_MODE_INTx:
|
|
case INT_MODE_MSI:
|
|
bp->num_queues = 1;
|
|
DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
|
|
break;
|
|
default:
|
|
/* Set number of queues according to bp->multi_mode value */
|
|
bnx2x_set_num_queues_msix(bp);
|
|
|
|
DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
|
|
bp->num_queues);
|
|
|
|
/* if we can't use MSI-X we only need one fp,
|
|
* so try to enable MSI-X with the requested number of fp's
|
|
* and fallback to MSI or legacy INTx with one fp
|
|
*/
|
|
rc = bnx2x_enable_msix(bp);
|
|
if (rc)
|
|
/* failed to enable MSI-X */
|
|
bp->num_queues = 1;
|
|
break;
|
|
}
|
|
bp->dev->real_num_tx_queues = bp->num_queues;
|
|
return rc;
|
|
}
|
|
|
|
/* must be called with rtnl_lock */
|
|
int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
|
|
{
|
|
u32 load_code;
|
|
int i, rc;
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return -EPERM;
|
|
#endif
|
|
|
|
bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
|
|
|
|
rc = bnx2x_set_num_queues(bp);
|
|
|
|
if (bnx2x_alloc_mem(bp)) {
|
|
bnx2x_free_irq(bp, true);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for_each_queue(bp, i)
|
|
bnx2x_fp(bp, i, disable_tpa) =
|
|
((bp->flags & TPA_ENABLE_FLAG) == 0);
|
|
|
|
for_each_queue(bp, i)
|
|
netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
|
|
bnx2x_poll, 128);
|
|
|
|
bnx2x_napi_enable(bp);
|
|
|
|
if (bp->flags & USING_MSIX_FLAG) {
|
|
rc = bnx2x_req_msix_irqs(bp);
|
|
if (rc) {
|
|
bnx2x_free_irq(bp, true);
|
|
goto load_error1;
|
|
}
|
|
} else {
|
|
/* Fall to INTx if failed to enable MSI-X due to lack of
|
|
memory (in bnx2x_set_num_queues()) */
|
|
if ((rc != -ENOMEM) && (bp->int_mode != INT_MODE_INTx))
|
|
bnx2x_enable_msi(bp);
|
|
bnx2x_ack_int(bp);
|
|
rc = bnx2x_req_irq(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
|
|
bnx2x_free_irq(bp, true);
|
|
goto load_error1;
|
|
}
|
|
if (bp->flags & USING_MSI_FLAG) {
|
|
bp->dev->irq = bp->pdev->irq;
|
|
netdev_info(bp->dev, "using MSI IRQ %d\n",
|
|
bp->pdev->irq);
|
|
}
|
|
}
|
|
|
|
/* Send LOAD_REQUEST command to MCP
|
|
Returns the type of LOAD command:
|
|
if it is the first port to be initialized
|
|
common blocks should be initialized, otherwise - not
|
|
*/
|
|
if (!BP_NOMCP(bp)) {
|
|
load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ);
|
|
if (!load_code) {
|
|
BNX2X_ERR("MCP response failure, aborting\n");
|
|
rc = -EBUSY;
|
|
goto load_error2;
|
|
}
|
|
if (load_code == FW_MSG_CODE_DRV_LOAD_REFUSED) {
|
|
rc = -EBUSY; /* other port in diagnostic mode */
|
|
goto load_error2;
|
|
}
|
|
|
|
} else {
|
|
int port = BP_PORT(bp);
|
|
|
|
DP(NETIF_MSG_IFUP, "NO MCP - load counts %d, %d, %d\n",
|
|
load_count[0], load_count[1], load_count[2]);
|
|
load_count[0]++;
|
|
load_count[1 + port]++;
|
|
DP(NETIF_MSG_IFUP, "NO MCP - new load counts %d, %d, %d\n",
|
|
load_count[0], load_count[1], load_count[2]);
|
|
if (load_count[0] == 1)
|
|
load_code = FW_MSG_CODE_DRV_LOAD_COMMON;
|
|
else if (load_count[1 + port] == 1)
|
|
load_code = FW_MSG_CODE_DRV_LOAD_PORT;
|
|
else
|
|
load_code = FW_MSG_CODE_DRV_LOAD_FUNCTION;
|
|
}
|
|
|
|
if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
|
|
(load_code == FW_MSG_CODE_DRV_LOAD_PORT))
|
|
bp->port.pmf = 1;
|
|
else
|
|
bp->port.pmf = 0;
|
|
DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
|
|
|
|
/* Initialize HW */
|
|
rc = bnx2x_init_hw(bp, load_code);
|
|
if (rc) {
|
|
BNX2X_ERR("HW init failed, aborting\n");
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE);
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP);
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE);
|
|
goto load_error2;
|
|
}
|
|
|
|
/* Setup NIC internals and enable interrupts */
|
|
bnx2x_nic_init(bp, load_code);
|
|
|
|
if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) &&
|
|
(bp->common.shmem2_base))
|
|
SHMEM2_WR(bp, dcc_support,
|
|
(SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
|
|
SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
|
|
|
|
/* Send LOAD_DONE command to MCP */
|
|
if (!BP_NOMCP(bp)) {
|
|
load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE);
|
|
if (!load_code) {
|
|
BNX2X_ERR("MCP response failure, aborting\n");
|
|
rc = -EBUSY;
|
|
goto load_error3;
|
|
}
|
|
}
|
|
|
|
bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
|
|
|
|
rc = bnx2x_setup_leading(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("Setup leading failed!\n");
|
|
#ifndef BNX2X_STOP_ON_ERROR
|
|
goto load_error3;
|
|
#else
|
|
bp->panic = 1;
|
|
return -EBUSY;
|
|
#endif
|
|
}
|
|
|
|
if (CHIP_IS_E1H(bp))
|
|
if (bp->mf_config & FUNC_MF_CFG_FUNC_DISABLED) {
|
|
DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
|
|
bp->flags |= MF_FUNC_DIS;
|
|
}
|
|
|
|
if (bp->state == BNX2X_STATE_OPEN) {
|
|
#ifdef BCM_CNIC
|
|
/* Enable Timer scan */
|
|
REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + BP_PORT(bp)*4, 1);
|
|
#endif
|
|
for_each_nondefault_queue(bp, i) {
|
|
rc = bnx2x_setup_multi(bp, i);
|
|
if (rc)
|
|
#ifdef BCM_CNIC
|
|
goto load_error4;
|
|
#else
|
|
goto load_error3;
|
|
#endif
|
|
}
|
|
|
|
if (CHIP_IS_E1(bp))
|
|
bnx2x_set_eth_mac_addr_e1(bp, 1);
|
|
else
|
|
bnx2x_set_eth_mac_addr_e1h(bp, 1);
|
|
#ifdef BCM_CNIC
|
|
/* Set iSCSI L2 MAC */
|
|
mutex_lock(&bp->cnic_mutex);
|
|
if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD) {
|
|
bnx2x_set_iscsi_eth_mac_addr(bp, 1);
|
|
bp->cnic_flags |= BNX2X_CNIC_FLAG_MAC_SET;
|
|
bnx2x_init_sb(bp, bp->cnic_sb, bp->cnic_sb_mapping,
|
|
CNIC_SB_ID(bp));
|
|
}
|
|
mutex_unlock(&bp->cnic_mutex);
|
|
#endif
|
|
}
|
|
|
|
if (bp->port.pmf)
|
|
bnx2x_initial_phy_init(bp, load_mode);
|
|
|
|
/* Start fast path */
|
|
switch (load_mode) {
|
|
case LOAD_NORMAL:
|
|
if (bp->state == BNX2X_STATE_OPEN) {
|
|
/* Tx queue should be only reenabled */
|
|
netif_tx_wake_all_queues(bp->dev);
|
|
}
|
|
/* Initialize the receive filter. */
|
|
bnx2x_set_rx_mode(bp->dev);
|
|
break;
|
|
|
|
case LOAD_OPEN:
|
|
netif_tx_start_all_queues(bp->dev);
|
|
if (bp->state != BNX2X_STATE_OPEN)
|
|
netif_tx_disable(bp->dev);
|
|
/* Initialize the receive filter. */
|
|
bnx2x_set_rx_mode(bp->dev);
|
|
break;
|
|
|
|
case LOAD_DIAG:
|
|
/* Initialize the receive filter. */
|
|
bnx2x_set_rx_mode(bp->dev);
|
|
bp->state = BNX2X_STATE_DIAG;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!bp->port.pmf)
|
|
bnx2x__link_status_update(bp);
|
|
|
|
/* start the timer */
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
|
|
#ifdef BCM_CNIC
|
|
bnx2x_setup_cnic_irq_info(bp);
|
|
if (bp->state == BNX2X_STATE_OPEN)
|
|
bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
|
|
#endif
|
|
bnx2x_inc_load_cnt(bp);
|
|
|
|
return 0;
|
|
|
|
#ifdef BCM_CNIC
|
|
load_error4:
|
|
/* Disable Timer scan */
|
|
REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + BP_PORT(bp)*4, 0);
|
|
#endif
|
|
load_error3:
|
|
bnx2x_int_disable_sync(bp, 1);
|
|
if (!BP_NOMCP(bp)) {
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP);
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE);
|
|
}
|
|
bp->port.pmf = 0;
|
|
/* Free SKBs, SGEs, TPA pool and driver internals */
|
|
bnx2x_free_skbs(bp);
|
|
for_each_queue(bp, i)
|
|
bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
|
|
load_error2:
|
|
/* Release IRQs */
|
|
bnx2x_free_irq(bp, false);
|
|
load_error1:
|
|
bnx2x_napi_disable(bp);
|
|
for_each_queue(bp, i)
|
|
netif_napi_del(&bnx2x_fp(bp, i, napi));
|
|
bnx2x_free_mem(bp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* must be called with rtnl_lock */
|
|
int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode)
|
|
{
|
|
int i;
|
|
|
|
if (bp->state == BNX2X_STATE_CLOSED) {
|
|
/* Interface has been removed - nothing to recover */
|
|
bp->recovery_state = BNX2X_RECOVERY_DONE;
|
|
bp->is_leader = 0;
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESERVED_08);
|
|
smp_wmb();
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
|
|
#endif
|
|
bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
|
|
|
|
/* Set "drop all" */
|
|
bp->rx_mode = BNX2X_RX_MODE_NONE;
|
|
bnx2x_set_storm_rx_mode(bp);
|
|
|
|
/* Disable HW interrupts, NAPI and Tx */
|
|
bnx2x_netif_stop(bp, 1);
|
|
netif_carrier_off(bp->dev);
|
|
|
|
del_timer_sync(&bp->timer);
|
|
SHMEM_WR(bp, func_mb[BP_FUNC(bp)].drv_pulse_mb,
|
|
(DRV_PULSE_ALWAYS_ALIVE | bp->fw_drv_pulse_wr_seq));
|
|
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
|
|
|
|
/* Release IRQs */
|
|
bnx2x_free_irq(bp, false);
|
|
|
|
/* Cleanup the chip if needed */
|
|
if (unload_mode != UNLOAD_RECOVERY)
|
|
bnx2x_chip_cleanup(bp, unload_mode);
|
|
|
|
bp->port.pmf = 0;
|
|
|
|
/* Free SKBs, SGEs, TPA pool and driver internals */
|
|
bnx2x_free_skbs(bp);
|
|
for_each_queue(bp, i)
|
|
bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
|
|
for_each_queue(bp, i)
|
|
netif_napi_del(&bnx2x_fp(bp, i, napi));
|
|
bnx2x_free_mem(bp);
|
|
|
|
bp->state = BNX2X_STATE_CLOSED;
|
|
|
|
/* The last driver must disable a "close the gate" if there is no
|
|
* parity attention or "process kill" pending.
|
|
*/
|
|
if ((!bnx2x_dec_load_cnt(bp)) && (!bnx2x_chk_parity_attn(bp)) &&
|
|
bnx2x_reset_is_done(bp))
|
|
bnx2x_disable_close_the_gate(bp);
|
|
|
|
/* Reset MCP mail box sequence if there is on going recovery */
|
|
if (unload_mode == UNLOAD_RECOVERY)
|
|
bp->fw_seq = 0;
|
|
|
|
return 0;
|
|
}
|
|
int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
|
|
{
|
|
u16 pmcsr;
|
|
|
|
pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
|
|
switch (state) {
|
|
case PCI_D0:
|
|
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
|
|
((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
|
|
PCI_PM_CTRL_PME_STATUS));
|
|
|
|
if (pmcsr & PCI_PM_CTRL_STATE_MASK)
|
|
/* delay required during transition out of D3hot */
|
|
msleep(20);
|
|
break;
|
|
|
|
case PCI_D3hot:
|
|
/* If there are other clients above don't
|
|
shut down the power */
|
|
if (atomic_read(&bp->pdev->enable_cnt) != 1)
|
|
return 0;
|
|
/* Don't shut down the power for emulation and FPGA */
|
|
if (CHIP_REV_IS_SLOW(bp))
|
|
return 0;
|
|
|
|
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
pmcsr |= 3;
|
|
|
|
if (bp->wol)
|
|
pmcsr |= PCI_PM_CTRL_PME_ENABLE;
|
|
|
|
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
|
|
pmcsr);
|
|
|
|
/* No more memory access after this point until
|
|
* device is brought back to D0.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* net_device service functions
|
|
*/
|
|
|
|
static int bnx2x_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
int work_done = 0;
|
|
struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
|
|
napi);
|
|
struct bnx2x *bp = fp->bp;
|
|
|
|
while (1) {
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic)) {
|
|
napi_complete(napi);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
if (bnx2x_has_tx_work(fp))
|
|
bnx2x_tx_int(fp);
|
|
|
|
if (bnx2x_has_rx_work(fp)) {
|
|
work_done += bnx2x_rx_int(fp, budget - work_done);
|
|
|
|
/* must not complete if we consumed full budget */
|
|
if (work_done >= budget)
|
|
break;
|
|
}
|
|
|
|
/* Fall out from the NAPI loop if needed */
|
|
if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
|
|
bnx2x_update_fpsb_idx(fp);
|
|
/* bnx2x_has_rx_work() reads the status block, thus we need
|
|
* to ensure that status block indices have been actually read
|
|
* (bnx2x_update_fpsb_idx) prior to this check
|
|
* (bnx2x_has_rx_work) so that we won't write the "newer"
|
|
* value of the status block to IGU (if there was a DMA right
|
|
* after bnx2x_has_rx_work and if there is no rmb, the memory
|
|
* reading (bnx2x_update_fpsb_idx) may be postponed to right
|
|
* before bnx2x_ack_sb). In this case there will never be
|
|
* another interrupt until there is another update of the
|
|
* status block, while there is still unhandled work.
|
|
*/
|
|
rmb();
|
|
|
|
if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
|
|
napi_complete(napi);
|
|
/* Re-enable interrupts */
|
|
bnx2x_ack_sb(bp, fp->sb_id, CSTORM_ID,
|
|
le16_to_cpu(fp->fp_c_idx),
|
|
IGU_INT_NOP, 1);
|
|
bnx2x_ack_sb(bp, fp->sb_id, USTORM_ID,
|
|
le16_to_cpu(fp->fp_u_idx),
|
|
IGU_INT_ENABLE, 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return work_done;
|
|
}
|
|
|
|
|
|
/* we split the first BD into headers and data BDs
|
|
* to ease the pain of our fellow microcode engineers
|
|
* we use one mapping for both BDs
|
|
* So far this has only been observed to happen
|
|
* in Other Operating Systems(TM)
|
|
*/
|
|
static noinline u16 bnx2x_tx_split(struct bnx2x *bp,
|
|
struct bnx2x_fastpath *fp,
|
|
struct sw_tx_bd *tx_buf,
|
|
struct eth_tx_start_bd **tx_bd, u16 hlen,
|
|
u16 bd_prod, int nbd)
|
|
{
|
|
struct eth_tx_start_bd *h_tx_bd = *tx_bd;
|
|
struct eth_tx_bd *d_tx_bd;
|
|
dma_addr_t mapping;
|
|
int old_len = le16_to_cpu(h_tx_bd->nbytes);
|
|
|
|
/* first fix first BD */
|
|
h_tx_bd->nbd = cpu_to_le16(nbd);
|
|
h_tx_bd->nbytes = cpu_to_le16(hlen);
|
|
|
|
DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d "
|
|
"(%x:%x) nbd %d\n", h_tx_bd->nbytes, h_tx_bd->addr_hi,
|
|
h_tx_bd->addr_lo, h_tx_bd->nbd);
|
|
|
|
/* now get a new data BD
|
|
* (after the pbd) and fill it */
|
|
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
|
|
d_tx_bd = &fp->tx_desc_ring[bd_prod].reg_bd;
|
|
|
|
mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
|
|
le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
|
|
|
|
d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
|
|
d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
|
|
d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
|
|
|
|
/* this marks the BD as one that has no individual mapping */
|
|
tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"TSO split data size is %d (%x:%x)\n",
|
|
d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
|
|
|
|
/* update tx_bd */
|
|
*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
|
|
|
|
return bd_prod;
|
|
}
|
|
|
|
static inline u16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
|
|
{
|
|
if (fix > 0)
|
|
csum = (u16) ~csum_fold(csum_sub(csum,
|
|
csum_partial(t_header - fix, fix, 0)));
|
|
|
|
else if (fix < 0)
|
|
csum = (u16) ~csum_fold(csum_add(csum,
|
|
csum_partial(t_header, -fix, 0)));
|
|
|
|
return swab16(csum);
|
|
}
|
|
|
|
static inline u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
|
|
{
|
|
u32 rc;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
rc = XMIT_PLAIN;
|
|
|
|
else {
|
|
if (skb->protocol == htons(ETH_P_IPV6)) {
|
|
rc = XMIT_CSUM_V6;
|
|
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
|
|
rc |= XMIT_CSUM_TCP;
|
|
|
|
} else {
|
|
rc = XMIT_CSUM_V4;
|
|
if (ip_hdr(skb)->protocol == IPPROTO_TCP)
|
|
rc |= XMIT_CSUM_TCP;
|
|
}
|
|
}
|
|
|
|
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4)
|
|
rc |= (XMIT_GSO_V4 | XMIT_CSUM_V4 | XMIT_CSUM_TCP);
|
|
|
|
else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
|
|
rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP | XMIT_CSUM_V6);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
|
|
/* check if packet requires linearization (packet is too fragmented)
|
|
no need to check fragmentation if page size > 8K (there will be no
|
|
violation to FW restrictions) */
|
|
static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
|
|
u32 xmit_type)
|
|
{
|
|
int to_copy = 0;
|
|
int hlen = 0;
|
|
int first_bd_sz = 0;
|
|
|
|
/* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
|
|
if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) {
|
|
|
|
if (xmit_type & XMIT_GSO) {
|
|
unsigned short lso_mss = skb_shinfo(skb)->gso_size;
|
|
/* Check if LSO packet needs to be copied:
|
|
3 = 1 (for headers BD) + 2 (for PBD and last BD) */
|
|
int wnd_size = MAX_FETCH_BD - 3;
|
|
/* Number of windows to check */
|
|
int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
|
|
int wnd_idx = 0;
|
|
int frag_idx = 0;
|
|
u32 wnd_sum = 0;
|
|
|
|
/* Headers length */
|
|
hlen = (int)(skb_transport_header(skb) - skb->data) +
|
|
tcp_hdrlen(skb);
|
|
|
|
/* Amount of data (w/o headers) on linear part of SKB*/
|
|
first_bd_sz = skb_headlen(skb) - hlen;
|
|
|
|
wnd_sum = first_bd_sz;
|
|
|
|
/* Calculate the first sum - it's special */
|
|
for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
|
|
wnd_sum +=
|
|
skb_shinfo(skb)->frags[frag_idx].size;
|
|
|
|
/* If there was data on linear skb data - check it */
|
|
if (first_bd_sz > 0) {
|
|
if (unlikely(wnd_sum < lso_mss)) {
|
|
to_copy = 1;
|
|
goto exit_lbl;
|
|
}
|
|
|
|
wnd_sum -= first_bd_sz;
|
|
}
|
|
|
|
/* Others are easier: run through the frag list and
|
|
check all windows */
|
|
for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
|
|
wnd_sum +=
|
|
skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1].size;
|
|
|
|
if (unlikely(wnd_sum < lso_mss)) {
|
|
to_copy = 1;
|
|
break;
|
|
}
|
|
wnd_sum -=
|
|
skb_shinfo(skb)->frags[wnd_idx].size;
|
|
}
|
|
} else {
|
|
/* in non-LSO too fragmented packet should always
|
|
be linearized */
|
|
to_copy = 1;
|
|
}
|
|
}
|
|
|
|
exit_lbl:
|
|
if (unlikely(to_copy))
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"Linearization IS REQUIRED for %s packet. "
|
|
"num_frags %d hlen %d first_bd_sz %d\n",
|
|
(xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
|
|
skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
|
|
|
|
return to_copy;
|
|
}
|
|
#endif
|
|
|
|
/* called with netif_tx_lock
|
|
* bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
|
|
* netif_wake_queue()
|
|
*/
|
|
netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
struct bnx2x_fastpath *fp;
|
|
struct netdev_queue *txq;
|
|
struct sw_tx_bd *tx_buf;
|
|
struct eth_tx_start_bd *tx_start_bd;
|
|
struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
|
|
struct eth_tx_parse_bd *pbd = NULL;
|
|
u16 pkt_prod, bd_prod;
|
|
int nbd, fp_index;
|
|
dma_addr_t mapping;
|
|
u32 xmit_type = bnx2x_xmit_type(bp, skb);
|
|
int i;
|
|
u8 hlen = 0;
|
|
__le16 pkt_size = 0;
|
|
struct ethhdr *eth;
|
|
u8 mac_type = UNICAST_ADDRESS;
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return NETDEV_TX_BUSY;
|
|
#endif
|
|
|
|
fp_index = skb_get_queue_mapping(skb);
|
|
txq = netdev_get_tx_queue(dev, fp_index);
|
|
|
|
fp = &bp->fp[fp_index];
|
|
|
|
if (unlikely(bnx2x_tx_avail(fp) < (skb_shinfo(skb)->nr_frags + 3))) {
|
|
fp->eth_q_stats.driver_xoff++;
|
|
netif_tx_stop_queue(txq);
|
|
BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
DP(NETIF_MSG_TX_QUEUED, "SKB: summed %x protocol %x protocol(%x,%x)"
|
|
" gso type %x xmit_type %x\n",
|
|
skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
|
|
ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type);
|
|
|
|
eth = (struct ethhdr *)skb->data;
|
|
|
|
/* set flag according to packet type (UNICAST_ADDRESS is default)*/
|
|
if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
|
|
if (is_broadcast_ether_addr(eth->h_dest))
|
|
mac_type = BROADCAST_ADDRESS;
|
|
else
|
|
mac_type = MULTICAST_ADDRESS;
|
|
}
|
|
|
|
#if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
|
|
/* First, check if we need to linearize the skb (due to FW
|
|
restrictions). No need to check fragmentation if page size > 8K
|
|
(there will be no violation to FW restrictions) */
|
|
if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
|
|
/* Statistics of linearization */
|
|
bp->lin_cnt++;
|
|
if (skb_linearize(skb) != 0) {
|
|
DP(NETIF_MSG_TX_QUEUED, "SKB linearization failed - "
|
|
"silently dropping this SKB\n");
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
Please read carefully. First we use one BD which we mark as start,
|
|
then we have a parsing info BD (used for TSO or xsum),
|
|
and only then we have the rest of the TSO BDs.
|
|
(don't forget to mark the last one as last,
|
|
and to unmap only AFTER you write to the BD ...)
|
|
And above all, all pdb sizes are in words - NOT DWORDS!
|
|
*/
|
|
|
|
pkt_prod = fp->tx_pkt_prod++;
|
|
bd_prod = TX_BD(fp->tx_bd_prod);
|
|
|
|
/* get a tx_buf and first BD */
|
|
tx_buf = &fp->tx_buf_ring[TX_BD(pkt_prod)];
|
|
tx_start_bd = &fp->tx_desc_ring[bd_prod].start_bd;
|
|
|
|
tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
|
|
tx_start_bd->general_data = (mac_type <<
|
|
ETH_TX_START_BD_ETH_ADDR_TYPE_SHIFT);
|
|
/* header nbd */
|
|
tx_start_bd->general_data |= (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
|
|
|
|
/* remember the first BD of the packet */
|
|
tx_buf->first_bd = fp->tx_bd_prod;
|
|
tx_buf->skb = skb;
|
|
tx_buf->flags = 0;
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"sending pkt %u @%p next_idx %u bd %u @%p\n",
|
|
pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
|
|
|
|
#ifdef BCM_VLAN
|
|
if ((bp->vlgrp != NULL) && vlan_tx_tag_present(skb) &&
|
|
(bp->flags & HW_VLAN_TX_FLAG)) {
|
|
tx_start_bd->vlan = cpu_to_le16(vlan_tx_tag_get(skb));
|
|
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_VLAN_TAG;
|
|
} else
|
|
#endif
|
|
tx_start_bd->vlan = cpu_to_le16(pkt_prod);
|
|
|
|
/* turn on parsing and get a BD */
|
|
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
|
|
pbd = &fp->tx_desc_ring[bd_prod].parse_bd;
|
|
|
|
memset(pbd, 0, sizeof(struct eth_tx_parse_bd));
|
|
|
|
if (xmit_type & XMIT_CSUM) {
|
|
hlen = (skb_network_header(skb) - skb->data) / 2;
|
|
|
|
/* for now NS flag is not used in Linux */
|
|
pbd->global_data =
|
|
(hlen | ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
|
|
ETH_TX_PARSE_BD_LLC_SNAP_EN_SHIFT));
|
|
|
|
pbd->ip_hlen = (skb_transport_header(skb) -
|
|
skb_network_header(skb)) / 2;
|
|
|
|
hlen += pbd->ip_hlen + tcp_hdrlen(skb) / 2;
|
|
|
|
pbd->total_hlen = cpu_to_le16(hlen);
|
|
hlen = hlen*2;
|
|
|
|
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
|
|
|
|
if (xmit_type & XMIT_CSUM_V4)
|
|
tx_start_bd->bd_flags.as_bitfield |=
|
|
ETH_TX_BD_FLAGS_IP_CSUM;
|
|
else
|
|
tx_start_bd->bd_flags.as_bitfield |=
|
|
ETH_TX_BD_FLAGS_IPV6;
|
|
|
|
if (xmit_type & XMIT_CSUM_TCP) {
|
|
pbd->tcp_pseudo_csum = swab16(tcp_hdr(skb)->check);
|
|
|
|
} else {
|
|
s8 fix = SKB_CS_OFF(skb); /* signed! */
|
|
|
|
pbd->global_data |= ETH_TX_PARSE_BD_UDP_CS_FLG;
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"hlen %d fix %d csum before fix %x\n",
|
|
le16_to_cpu(pbd->total_hlen), fix, SKB_CS(skb));
|
|
|
|
/* HW bug: fixup the CSUM */
|
|
pbd->tcp_pseudo_csum =
|
|
bnx2x_csum_fix(skb_transport_header(skb),
|
|
SKB_CS(skb), fix);
|
|
|
|
DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
|
|
pbd->tcp_pseudo_csum);
|
|
}
|
|
}
|
|
|
|
mapping = dma_map_single(&bp->pdev->dev, skb->data,
|
|
skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
|
|
tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
|
|
nbd = skb_shinfo(skb)->nr_frags + 2; /* start_bd + pbd + frags */
|
|
tx_start_bd->nbd = cpu_to_le16(nbd);
|
|
tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
|
|
pkt_size = tx_start_bd->nbytes;
|
|
|
|
DP(NETIF_MSG_TX_QUEUED, "first bd @%p addr (%x:%x) nbd %d"
|
|
" nbytes %d flags %x vlan %x\n",
|
|
tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
|
|
le16_to_cpu(tx_start_bd->nbd), le16_to_cpu(tx_start_bd->nbytes),
|
|
tx_start_bd->bd_flags.as_bitfield, le16_to_cpu(tx_start_bd->vlan));
|
|
|
|
if (xmit_type & XMIT_GSO) {
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"TSO packet len %d hlen %d total len %d tso size %d\n",
|
|
skb->len, hlen, skb_headlen(skb),
|
|
skb_shinfo(skb)->gso_size);
|
|
|
|
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
|
|
|
|
if (unlikely(skb_headlen(skb) > hlen))
|
|
bd_prod = bnx2x_tx_split(bp, fp, tx_buf, &tx_start_bd,
|
|
hlen, bd_prod, ++nbd);
|
|
|
|
pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
|
|
pbd->tcp_send_seq = swab32(tcp_hdr(skb)->seq);
|
|
pbd->tcp_flags = pbd_tcp_flags(skb);
|
|
|
|
if (xmit_type & XMIT_GSO_V4) {
|
|
pbd->ip_id = swab16(ip_hdr(skb)->id);
|
|
pbd->tcp_pseudo_csum =
|
|
swab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
|
|
ip_hdr(skb)->daddr,
|
|
0, IPPROTO_TCP, 0));
|
|
|
|
} else
|
|
pbd->tcp_pseudo_csum =
|
|
swab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
|
|
&ipv6_hdr(skb)->daddr,
|
|
0, IPPROTO_TCP, 0));
|
|
|
|
pbd->global_data |= ETH_TX_PARSE_BD_PSEUDO_CS_WITHOUT_LEN;
|
|
}
|
|
tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
|
|
tx_data_bd = &fp->tx_desc_ring[bd_prod].reg_bd;
|
|
if (total_pkt_bd == NULL)
|
|
total_pkt_bd = &fp->tx_desc_ring[bd_prod].reg_bd;
|
|
|
|
mapping = dma_map_page(&bp->pdev->dev, frag->page,
|
|
frag->page_offset,
|
|
frag->size, DMA_TO_DEVICE);
|
|
|
|
tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
|
|
tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
|
|
tx_data_bd->nbytes = cpu_to_le16(frag->size);
|
|
le16_add_cpu(&pkt_size, frag->size);
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"frag %d bd @%p addr (%x:%x) nbytes %d\n",
|
|
i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
|
|
le16_to_cpu(tx_data_bd->nbytes));
|
|
}
|
|
|
|
DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
|
|
|
|
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
|
|
|
|
/* now send a tx doorbell, counting the next BD
|
|
* if the packet contains or ends with it
|
|
*/
|
|
if (TX_BD_POFF(bd_prod) < nbd)
|
|
nbd++;
|
|
|
|
if (total_pkt_bd != NULL)
|
|
total_pkt_bd->total_pkt_bytes = pkt_size;
|
|
|
|
if (pbd)
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"PBD @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u"
|
|
" tcp_flags %x xsum %x seq %u hlen %u\n",
|
|
pbd, pbd->global_data, pbd->ip_hlen, pbd->ip_id,
|
|
pbd->lso_mss, pbd->tcp_flags, pbd->tcp_pseudo_csum,
|
|
pbd->tcp_send_seq, le16_to_cpu(pbd->total_hlen));
|
|
|
|
DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
|
|
|
|
/*
|
|
* Make sure that the BD data is updated before updating the producer
|
|
* since FW might read the BD right after the producer is updated.
|
|
* This is only applicable for weak-ordered memory model archs such
|
|
* as IA-64. The following barrier is also mandatory since FW will
|
|
* assumes packets must have BDs.
|
|
*/
|
|
wmb();
|
|
|
|
fp->tx_db.data.prod += nbd;
|
|
barrier();
|
|
DOORBELL(bp, fp->index, fp->tx_db.raw);
|
|
|
|
mmiowb();
|
|
|
|
fp->tx_bd_prod += nbd;
|
|
|
|
if (unlikely(bnx2x_tx_avail(fp) < MAX_SKB_FRAGS + 3)) {
|
|
netif_tx_stop_queue(txq);
|
|
|
|
/* paired memory barrier is in bnx2x_tx_int(), we have to keep
|
|
* ordering of set_bit() in netif_tx_stop_queue() and read of
|
|
* fp->bd_tx_cons */
|
|
smp_mb();
|
|
|
|
fp->eth_q_stats.driver_xoff++;
|
|
if (bnx2x_tx_avail(fp) >= MAX_SKB_FRAGS + 3)
|
|
netif_tx_wake_queue(txq);
|
|
}
|
|
fp->tx_pkt++;
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
/* called with rtnl_lock */
|
|
int bnx2x_change_mac_addr(struct net_device *dev, void *p)
|
|
{
|
|
struct sockaddr *addr = p;
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
if (!is_valid_ether_addr((u8 *)(addr->sa_data)))
|
|
return -EINVAL;
|
|
|
|
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
|
|
if (netif_running(dev)) {
|
|
if (CHIP_IS_E1(bp))
|
|
bnx2x_set_eth_mac_addr_e1(bp, 1);
|
|
else
|
|
bnx2x_set_eth_mac_addr_e1h(bp, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* called with rtnl_lock */
|
|
int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
int rc = 0;
|
|
|
|
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
|
|
printk(KERN_ERR "Handling parity error recovery. Try again later\n");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) ||
|
|
((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE))
|
|
return -EINVAL;
|
|
|
|
/* This does not race with packet allocation
|
|
* because the actual alloc size is
|
|
* only updated as part of load
|
|
*/
|
|
dev->mtu = new_mtu;
|
|
|
|
if (netif_running(dev)) {
|
|
bnx2x_nic_unload(bp, UNLOAD_NORMAL);
|
|
rc = bnx2x_nic_load(bp, LOAD_NORMAL);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void bnx2x_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (!bp->panic)
|
|
bnx2x_panic();
|
|
#endif
|
|
/* This allows the netif to be shutdown gracefully before resetting */
|
|
schedule_delayed_work(&bp->reset_task, 0);
|
|
}
|
|
|
|
#ifdef BCM_VLAN
|
|
/* called with rtnl_lock */
|
|
void bnx2x_vlan_rx_register(struct net_device *dev,
|
|
struct vlan_group *vlgrp)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
bp->vlgrp = vlgrp;
|
|
|
|
/* Set flags according to the required capabilities */
|
|
bp->flags &= ~(HW_VLAN_RX_FLAG | HW_VLAN_TX_FLAG);
|
|
|
|
if (dev->features & NETIF_F_HW_VLAN_TX)
|
|
bp->flags |= HW_VLAN_TX_FLAG;
|
|
|
|
if (dev->features & NETIF_F_HW_VLAN_RX)
|
|
bp->flags |= HW_VLAN_RX_FLAG;
|
|
|
|
if (netif_running(dev))
|
|
bnx2x_set_client_config(bp);
|
|
}
|
|
|
|
#endif
|
|
int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2x *bp;
|
|
|
|
if (!dev) {
|
|
dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
|
|
return -ENODEV;
|
|
}
|
|
bp = netdev_priv(dev);
|
|
|
|
rtnl_lock();
|
|
|
|
pci_save_state(pdev);
|
|
|
|
if (!netif_running(dev)) {
|
|
rtnl_unlock();
|
|
return 0;
|
|
}
|
|
|
|
netif_device_detach(dev);
|
|
|
|
bnx2x_nic_unload(bp, UNLOAD_CLOSE);
|
|
|
|
bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
|
|
|
|
rtnl_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bnx2x_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2x *bp;
|
|
int rc;
|
|
|
|
if (!dev) {
|
|
dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
|
|
return -ENODEV;
|
|
}
|
|
bp = netdev_priv(dev);
|
|
|
|
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
|
|
printk(KERN_ERR "Handling parity error recovery. Try again later\n");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
rtnl_lock();
|
|
|
|
pci_restore_state(pdev);
|
|
|
|
if (!netif_running(dev)) {
|
|
rtnl_unlock();
|
|
return 0;
|
|
}
|
|
|
|
bnx2x_set_power_state(bp, PCI_D0);
|
|
netif_device_attach(dev);
|
|
|
|
rc = bnx2x_nic_load(bp, LOAD_OPEN);
|
|
|
|
rtnl_unlock();
|
|
|
|
return rc;
|
|
}
|