linux_dsm_epyc7002/arch/x86/kernel/traps_32.c
Jaswinder Singh 6ac8d51f01 x86: introducing asm-x86/traps.h
Declaring x86 traps under one hood.
Declaring x86 do_traps before defining them.

Signed-off-by: Jaswinder Singh <jaswinder@infradead.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Alexander van Heukelum <heukelum@fastmail.fm>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-18 18:51:57 +02:00

1257 lines
30 KiB
C

/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* 'Traps.c' handles hardware traps and faults after we have saved some
* state in 'asm.s'.
*/
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <linux/spinlock.h>
#include <linux/highmem.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/utsname.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/unwind.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kexec.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/mm.h>
#ifdef CONFIG_EISA
#include <linux/ioport.h>
#include <linux/eisa.h>
#endif
#ifdef CONFIG_MCA
#include <linux/mca.h>
#endif
#if defined(CONFIG_EDAC)
#include <linux/edac.h>
#endif
#include <asm/arch_hooks.h>
#include <asm/stacktrace.h>
#include <asm/processor.h>
#include <asm/debugreg.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/unwind.h>
#include <asm/desc.h>
#include <asm/i387.h>
#include <asm/nmi.h>
#include <asm/smp.h>
#include <asm/io.h>
#include <asm/traps.h>
#include "mach_traps.h"
DECLARE_BITMAP(used_vectors, NR_VECTORS);
EXPORT_SYMBOL_GPL(used_vectors);
asmlinkage int system_call(void);
/* Do we ignore FPU interrupts ? */
char ignore_fpu_irq;
/*
* The IDT has to be page-aligned to simplify the Pentium
* F0 0F bug workaround.. We have a special link segment
* for this.
*/
gate_desc idt_table[256]
__attribute__((__section__(".data.idt"))) = { { { { 0, 0 } } }, };
int panic_on_unrecovered_nmi;
int kstack_depth_to_print = 24;
static unsigned int code_bytes = 64;
static int ignore_nmis;
static int die_counter;
void printk_address(unsigned long address, int reliable)
{
#ifdef CONFIG_KALLSYMS
unsigned long offset = 0;
unsigned long symsize;
const char *symname;
char *modname;
char *delim = ":";
char namebuf[KSYM_NAME_LEN];
char reliab[4] = "";
symname = kallsyms_lookup(address, &symsize, &offset,
&modname, namebuf);
if (!symname) {
printk(" [<%08lx>]\n", address);
return;
}
if (!reliable)
strcpy(reliab, "? ");
if (!modname)
modname = delim = "";
printk(" [<%08lx>] %s%s%s%s%s+0x%lx/0x%lx\n",
address, reliab, delim, modname, delim, symname, offset, symsize);
#else
printk(" [<%08lx>]\n", address);
#endif
}
static inline int valid_stack_ptr(struct thread_info *tinfo,
void *p, unsigned int size)
{
void *t = tinfo;
return p > t && p <= t + THREAD_SIZE - size;
}
/* The form of the top of the frame on the stack */
struct stack_frame {
struct stack_frame *next_frame;
unsigned long return_address;
};
static inline unsigned long
print_context_stack(struct thread_info *tinfo,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data)
{
struct stack_frame *frame = (struct stack_frame *)bp;
while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
unsigned long addr;
addr = *stack;
if (__kernel_text_address(addr)) {
if ((unsigned long) stack == bp + 4) {
ops->address(data, addr, 1);
frame = frame->next_frame;
bp = (unsigned long) frame;
} else {
ops->address(data, addr, bp == 0);
}
}
stack++;
}
return bp;
}
void dump_trace(struct task_struct *task, struct pt_regs *regs,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data)
{
if (!task)
task = current;
if (!stack) {
unsigned long dummy;
stack = &dummy;
if (task != current)
stack = (unsigned long *)task->thread.sp;
}
#ifdef CONFIG_FRAME_POINTER
if (!bp) {
if (task == current) {
/* Grab bp right from our regs */
asm("movl %%ebp, %0" : "=r" (bp) :);
} else {
/* bp is the last reg pushed by switch_to */
bp = *(unsigned long *) task->thread.sp;
}
}
#endif
for (;;) {
struct thread_info *context;
context = (struct thread_info *)
((unsigned long)stack & (~(THREAD_SIZE - 1)));
bp = print_context_stack(context, stack, bp, ops, data);
/*
* Should be after the line below, but somewhere
* in early boot context comes out corrupted and we
* can't reference it:
*/
if (ops->stack(data, "IRQ") < 0)
break;
stack = (unsigned long *)context->previous_esp;
if (!stack)
break;
touch_nmi_watchdog();
}
}
EXPORT_SYMBOL(dump_trace);
static void
print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
{
printk(data);
print_symbol(msg, symbol);
printk("\n");
}
static void print_trace_warning(void *data, char *msg)
{
printk("%s%s\n", (char *)data, msg);
}
static int print_trace_stack(void *data, char *name)
{
return 0;
}
/*
* Print one address/symbol entries per line.
*/
static void print_trace_address(void *data, unsigned long addr, int reliable)
{
printk("%s [<%08lx>] ", (char *)data, addr);
if (!reliable)
printk("? ");
print_symbol("%s\n", addr);
touch_nmi_watchdog();
}
static const struct stacktrace_ops print_trace_ops = {
.warning = print_trace_warning,
.warning_symbol = print_trace_warning_symbol,
.stack = print_trace_stack,
.address = print_trace_address,
};
static void
show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
unsigned long *stack, unsigned long bp, char *log_lvl)
{
dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
printk("%s =======================\n", log_lvl);
}
void show_trace(struct task_struct *task, struct pt_regs *regs,
unsigned long *stack, unsigned long bp)
{
show_trace_log_lvl(task, regs, stack, bp, "");
}
static void
show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
unsigned long *sp, unsigned long bp, char *log_lvl)
{
unsigned long *stack;
int i;
if (sp == NULL) {
if (task)
sp = (unsigned long *)task->thread.sp;
else
sp = (unsigned long *)&sp;
}
stack = sp;
for (i = 0; i < kstack_depth_to_print; i++) {
if (kstack_end(stack))
break;
if (i && ((i % 8) == 0))
printk("\n%s ", log_lvl);
printk("%08lx ", *stack++);
}
printk("\n%sCall Trace:\n", log_lvl);
show_trace_log_lvl(task, regs, sp, bp, log_lvl);
}
void show_stack(struct task_struct *task, unsigned long *sp)
{
printk(" ");
show_stack_log_lvl(task, NULL, sp, 0, "");
}
/*
* The architecture-independent dump_stack generator
*/
void dump_stack(void)
{
unsigned long bp = 0;
unsigned long stack;
#ifdef CONFIG_FRAME_POINTER
if (!bp)
asm("movl %%ebp, %0" : "=r" (bp):);
#endif
printk("Pid: %d, comm: %.20s %s %s %.*s\n",
current->pid, current->comm, print_tainted(),
init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version);
show_trace(current, NULL, &stack, bp);
}
EXPORT_SYMBOL(dump_stack);
void show_registers(struct pt_regs *regs)
{
int i;
print_modules();
__show_registers(regs, 0);
printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
TASK_COMM_LEN, current->comm, task_pid_nr(current),
current_thread_info(), current, task_thread_info(current));
/*
* When in-kernel, we also print out the stack and code at the
* time of the fault..
*/
if (!user_mode_vm(regs)) {
unsigned int code_prologue = code_bytes * 43 / 64;
unsigned int code_len = code_bytes;
unsigned char c;
u8 *ip;
printk("\n" KERN_EMERG "Stack: ");
show_stack_log_lvl(NULL, regs, &regs->sp, 0, KERN_EMERG);
printk(KERN_EMERG "Code: ");
ip = (u8 *)regs->ip - code_prologue;
if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
/* try starting at EIP */
ip = (u8 *)regs->ip;
code_len = code_len - code_prologue + 1;
}
for (i = 0; i < code_len; i++, ip++) {
if (ip < (u8 *)PAGE_OFFSET ||
probe_kernel_address(ip, c)) {
printk(" Bad EIP value.");
break;
}
if (ip == (u8 *)regs->ip)
printk("<%02x> ", c);
else
printk("%02x ", c);
}
}
printk("\n");
}
int is_valid_bugaddr(unsigned long ip)
{
unsigned short ud2;
if (ip < PAGE_OFFSET)
return 0;
if (probe_kernel_address((unsigned short *)ip, ud2))
return 0;
return ud2 == 0x0b0f;
}
static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;
unsigned __kprobes long oops_begin(void)
{
unsigned long flags;
oops_enter();
if (die_owner != raw_smp_processor_id()) {
console_verbose();
raw_local_irq_save(flags);
__raw_spin_lock(&die_lock);
die_owner = smp_processor_id();
die_nest_count = 0;
bust_spinlocks(1);
} else {
raw_local_irq_save(flags);
}
die_nest_count++;
return flags;
}
void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
{
bust_spinlocks(0);
die_owner = -1;
add_taint(TAINT_DIE);
__raw_spin_unlock(&die_lock);
raw_local_irq_restore(flags);
if (!regs)
return;
if (kexec_should_crash(current))
crash_kexec(regs);
if (in_interrupt())
panic("Fatal exception in interrupt");
if (panic_on_oops)
panic("Fatal exception");
oops_exit();
do_exit(signr);
}
int __kprobes __die(const char *str, struct pt_regs *regs, long err)
{
unsigned short ss;
unsigned long sp;
printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
#ifdef CONFIG_PREEMPT
printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
printk("SMP ");
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
printk("DEBUG_PAGEALLOC");
#endif
printk("\n");
if (notify_die(DIE_OOPS, str, regs, err,
current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
return 1;
show_registers(regs);
/* Executive summary in case the oops scrolled away */
sp = (unsigned long) (&regs->sp);
savesegment(ss, ss);
if (user_mode(regs)) {
sp = regs->sp;
ss = regs->ss & 0xffff;
}
printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
print_symbol("%s", regs->ip);
printk(" SS:ESP %04x:%08lx\n", ss, sp);
return 0;
}
/*
* This is gone through when something in the kernel has done something bad
* and is about to be terminated:
*/
void die(const char *str, struct pt_regs *regs, long err)
{
unsigned long flags = oops_begin();
if (die_nest_count < 3) {
report_bug(regs->ip, regs);
if (__die(str, regs, err))
regs = NULL;
} else {
printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
}
oops_end(flags, regs, SIGSEGV);
}
static inline void
die_if_kernel(const char *str, struct pt_regs *regs, long err)
{
if (!user_mode_vm(regs))
die(str, regs, err);
}
static void __kprobes
do_trap(int trapnr, int signr, char *str, int vm86, struct pt_regs *regs,
long error_code, siginfo_t *info)
{
struct task_struct *tsk = current;
if (regs->flags & X86_VM_MASK) {
if (vm86)
goto vm86_trap;
goto trap_signal;
}
if (!user_mode(regs))
goto kernel_trap;
trap_signal:
/*
* We want error_code and trap_no set for userspace faults and
* kernelspace faults which result in die(), but not
* kernelspace faults which are fixed up. die() gives the
* process no chance to handle the signal and notice the
* kernel fault information, so that won't result in polluting
* the information about previously queued, but not yet
* delivered, faults. See also do_general_protection below.
*/
tsk->thread.error_code = error_code;
tsk->thread.trap_no = trapnr;
if (info)
force_sig_info(signr, info, tsk);
else
force_sig(signr, tsk);
return;
kernel_trap:
if (!fixup_exception(regs)) {
tsk->thread.error_code = error_code;
tsk->thread.trap_no = trapnr;
die(str, regs, error_code);
}
return;
vm86_trap:
if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
error_code, trapnr))
goto trap_signal;
return;
}
#define DO_ERROR(trapnr, signr, str, name) \
void do_##name(struct pt_regs *regs, long error_code) \
{ \
trace_hardirqs_fixup(); \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
}
#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
void do_##name(struct pt_regs *regs, long error_code) \
{ \
siginfo_t info; \
if (irq) \
local_irq_enable(); \
info.si_signo = signr; \
info.si_errno = 0; \
info.si_code = sicode; \
info.si_addr = (void __user *)siaddr; \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
}
#define DO_VM86_ERROR(trapnr, signr, str, name) \
void do_##name(struct pt_regs *regs, long error_code) \
{ \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
}
#define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
void do_##name(struct pt_regs *regs, long error_code) \
{ \
siginfo_t info; \
info.si_signo = signr; \
info.si_errno = 0; \
info.si_code = sicode; \
info.si_addr = (void __user *)siaddr; \
trace_hardirqs_fixup(); \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
}
DO_VM86_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
#ifndef CONFIG_KPROBES
DO_VM86_ERROR(3, SIGTRAP, "int3", int3)
#endif
DO_VM86_ERROR(4, SIGSEGV, "overflow", overflow)
DO_VM86_ERROR(5, SIGSEGV, "bounds", bounds)
DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip, 0)
DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
DO_ERROR_INFO(32, SIGILL, "iret exception", iret_error, ILL_BADSTK, 0, 1)
void __kprobes
do_general_protection(struct pt_regs *regs, long error_code)
{
struct task_struct *tsk;
struct thread_struct *thread;
struct tss_struct *tss;
int cpu;
cpu = get_cpu();
tss = &per_cpu(init_tss, cpu);
thread = &current->thread;
/*
* Perform the lazy TSS's I/O bitmap copy. If the TSS has an
* invalid offset set (the LAZY one) and the faulting thread has
* a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
* and we set the offset field correctly. Then we let the CPU to
* restart the faulting instruction.
*/
if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
thread->io_bitmap_ptr) {
memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
thread->io_bitmap_max);
/*
* If the previously set map was extending to higher ports
* than the current one, pad extra space with 0xff (no access).
*/
if (thread->io_bitmap_max < tss->io_bitmap_max) {
memset((char *) tss->io_bitmap +
thread->io_bitmap_max, 0xff,
tss->io_bitmap_max - thread->io_bitmap_max);
}
tss->io_bitmap_max = thread->io_bitmap_max;
tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
tss->io_bitmap_owner = thread;
put_cpu();
return;
}
put_cpu();
if (regs->flags & X86_VM_MASK)
goto gp_in_vm86;
tsk = current;
if (!user_mode(regs))
goto gp_in_kernel;
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 13;
if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
printk_ratelimit()) {
printk(KERN_INFO
"%s[%d] general protection ip:%lx sp:%lx error:%lx",
tsk->comm, task_pid_nr(tsk),
regs->ip, regs->sp, error_code);
print_vma_addr(" in ", regs->ip);
printk("\n");
}
force_sig(SIGSEGV, tsk);
return;
gp_in_vm86:
local_irq_enable();
handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
return;
gp_in_kernel:
if (fixup_exception(regs))
return;
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 13;
if (notify_die(DIE_GPF, "general protection fault", regs,
error_code, 13, SIGSEGV) == NOTIFY_STOP)
return;
die("general protection fault", regs, error_code);
}
static notrace __kprobes void
mem_parity_error(unsigned char reason, struct pt_regs *regs)
{
printk(KERN_EMERG
"Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
reason, smp_processor_id());
printk(KERN_EMERG
"You have some hardware problem, likely on the PCI bus.\n");
#if defined(CONFIG_EDAC)
if (edac_handler_set()) {
edac_atomic_assert_error();
return;
}
#endif
if (panic_on_unrecovered_nmi)
panic("NMI: Not continuing");
printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
/* Clear and disable the memory parity error line. */
clear_mem_error(reason);
}
static notrace __kprobes void
io_check_error(unsigned char reason, struct pt_regs *regs)
{
unsigned long i;
printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
show_registers(regs);
/* Re-enable the IOCK line, wait for a few seconds */
reason = (reason & 0xf) | 8;
outb(reason, 0x61);
i = 2000;
while (--i)
udelay(1000);
reason &= ~8;
outb(reason, 0x61);
}
static notrace __kprobes void
unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
{
if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
return;
#ifdef CONFIG_MCA
/*
* Might actually be able to figure out what the guilty party
* is:
*/
if (MCA_bus) {
mca_handle_nmi();
return;
}
#endif
printk(KERN_EMERG
"Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
reason, smp_processor_id());
printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
if (panic_on_unrecovered_nmi)
panic("NMI: Not continuing");
printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
}
static DEFINE_SPINLOCK(nmi_print_lock);
void notrace __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
{
if (notify_die(DIE_NMIWATCHDOG, str, regs, 0, 2, SIGINT) == NOTIFY_STOP)
return;
spin_lock(&nmi_print_lock);
/*
* We are in trouble anyway, lets at least try
* to get a message out:
*/
bust_spinlocks(1);
printk(KERN_EMERG "%s", str);
printk(" on CPU%d, ip %08lx, registers:\n",
smp_processor_id(), regs->ip);
show_registers(regs);
if (do_panic)
panic("Non maskable interrupt");
console_silent();
spin_unlock(&nmi_print_lock);
bust_spinlocks(0);
/*
* If we are in kernel we are probably nested up pretty bad
* and might aswell get out now while we still can:
*/
if (!user_mode_vm(regs)) {
current->thread.trap_no = 2;
crash_kexec(regs);
}
do_exit(SIGSEGV);
}
static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
{
unsigned char reason = 0;
int cpu;
cpu = smp_processor_id();
/* Only the BSP gets external NMIs from the system. */
if (!cpu)
reason = get_nmi_reason();
if (!(reason & 0xc0)) {
if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
== NOTIFY_STOP)
return;
#ifdef CONFIG_X86_LOCAL_APIC
/*
* Ok, so this is none of the documented NMI sources,
* so it must be the NMI watchdog.
*/
if (nmi_watchdog_tick(regs, reason))
return;
if (!do_nmi_callback(regs, cpu))
unknown_nmi_error(reason, regs);
#else
unknown_nmi_error(reason, regs);
#endif
return;
}
if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
return;
/* AK: following checks seem to be broken on modern chipsets. FIXME */
if (reason & 0x80)
mem_parity_error(reason, regs);
if (reason & 0x40)
io_check_error(reason, regs);
/*
* Reassert NMI in case it became active meanwhile
* as it's edge-triggered:
*/
reassert_nmi();
}
notrace __kprobes void do_nmi(struct pt_regs *regs, long error_code)
{
int cpu;
nmi_enter();
cpu = smp_processor_id();
++nmi_count(cpu);
if (!ignore_nmis)
default_do_nmi(regs);
nmi_exit();
}
void stop_nmi(void)
{
acpi_nmi_disable();
ignore_nmis++;
}
void restart_nmi(void)
{
ignore_nmis--;
acpi_nmi_enable();
}
#ifdef CONFIG_KPROBES
void __kprobes do_int3(struct pt_regs *regs, long error_code)
{
trace_hardirqs_fixup();
if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
== NOTIFY_STOP)
return;
/*
* This is an interrupt gate, because kprobes wants interrupts
* disabled. Normal trap handlers don't.
*/
restore_interrupts(regs);
do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
}
#endif
/*
* Our handling of the processor debug registers is non-trivial.
* We do not clear them on entry and exit from the kernel. Therefore
* it is possible to get a watchpoint trap here from inside the kernel.
* However, the code in ./ptrace.c has ensured that the user can
* only set watchpoints on userspace addresses. Therefore the in-kernel
* watchpoint trap can only occur in code which is reading/writing
* from user space. Such code must not hold kernel locks (since it
* can equally take a page fault), therefore it is safe to call
* force_sig_info even though that claims and releases locks.
*
* Code in ./signal.c ensures that the debug control register
* is restored before we deliver any signal, and therefore that
* user code runs with the correct debug control register even though
* we clear it here.
*
* Being careful here means that we don't have to be as careful in a
* lot of more complicated places (task switching can be a bit lazy
* about restoring all the debug state, and ptrace doesn't have to
* find every occurrence of the TF bit that could be saved away even
* by user code)
*/
void __kprobes do_debug(struct pt_regs *regs, long error_code)
{
struct task_struct *tsk = current;
unsigned int condition;
trace_hardirqs_fixup();
get_debugreg(condition, 6);
/*
* The processor cleared BTF, so don't mark that we need it set.
*/
clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
tsk->thread.debugctlmsr = 0;
if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
SIGTRAP) == NOTIFY_STOP)
return;
/* It's safe to allow irq's after DR6 has been saved */
if (regs->flags & X86_EFLAGS_IF)
local_irq_enable();
/* Mask out spurious debug traps due to lazy DR7 setting */
if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
if (!tsk->thread.debugreg7)
goto clear_dr7;
}
if (regs->flags & X86_VM_MASK)
goto debug_vm86;
/* Save debug status register where ptrace can see it */
tsk->thread.debugreg6 = condition;
/*
* Single-stepping through TF: make sure we ignore any events in
* kernel space (but re-enable TF when returning to user mode).
*/
if (condition & DR_STEP) {
/*
* We already checked v86 mode above, so we can
* check for kernel mode by just checking the CPL
* of CS.
*/
if (!user_mode(regs))
goto clear_TF_reenable;
}
/* Ok, finally something we can handle */
send_sigtrap(tsk, regs, error_code);
/*
* Disable additional traps. They'll be re-enabled when
* the signal is delivered.
*/
clear_dr7:
set_debugreg(0, 7);
return;
debug_vm86:
handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
return;
clear_TF_reenable:
set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
regs->flags &= ~X86_EFLAGS_TF;
return;
}
/*
* Note that we play around with the 'TS' bit in an attempt to get
* the correct behaviour even in the presence of the asynchronous
* IRQ13 behaviour
*/
void math_error(void __user *ip)
{
struct task_struct *task;
siginfo_t info;
unsigned short cwd, swd;
/*
* Save the info for the exception handler and clear the error.
*/
task = current;
save_init_fpu(task);
task->thread.trap_no = 16;
task->thread.error_code = 0;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = __SI_FAULT;
info.si_addr = ip;
/*
* (~cwd & swd) will mask out exceptions that are not set to unmasked
* status. 0x3f is the exception bits in these regs, 0x200 is the
* C1 reg you need in case of a stack fault, 0x040 is the stack
* fault bit. We should only be taking one exception at a time,
* so if this combination doesn't produce any single exception,
* then we have a bad program that isn't synchronizing its FPU usage
* and it will suffer the consequences since we won't be able to
* fully reproduce the context of the exception
*/
cwd = get_fpu_cwd(task);
swd = get_fpu_swd(task);
switch (swd & ~cwd & 0x3f) {
case 0x000: /* No unmasked exception */
return;
default: /* Multiple exceptions */
break;
case 0x001: /* Invalid Op */
/*
* swd & 0x240 == 0x040: Stack Underflow
* swd & 0x240 == 0x240: Stack Overflow
* User must clear the SF bit (0x40) if set
*/
info.si_code = FPE_FLTINV;
break;
case 0x002: /* Denormalize */
case 0x010: /* Underflow */
info.si_code = FPE_FLTUND;
break;
case 0x004: /* Zero Divide */
info.si_code = FPE_FLTDIV;
break;
case 0x008: /* Overflow */
info.si_code = FPE_FLTOVF;
break;
case 0x020: /* Precision */
info.si_code = FPE_FLTRES;
break;
}
force_sig_info(SIGFPE, &info, task);
}
void do_coprocessor_error(struct pt_regs *regs, long error_code)
{
ignore_fpu_irq = 1;
math_error((void __user *)regs->ip);
}
static void simd_math_error(void __user *ip)
{
struct task_struct *task;
siginfo_t info;
unsigned short mxcsr;
/*
* Save the info for the exception handler and clear the error.
*/
task = current;
save_init_fpu(task);
task->thread.trap_no = 19;
task->thread.error_code = 0;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = __SI_FAULT;
info.si_addr = ip;
/*
* The SIMD FPU exceptions are handled a little differently, as there
* is only a single status/control register. Thus, to determine which
* unmasked exception was caught we must mask the exception mask bits
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
*/
mxcsr = get_fpu_mxcsr(task);
switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
case 0x000:
default:
break;
case 0x001: /* Invalid Op */
info.si_code = FPE_FLTINV;
break;
case 0x002: /* Denormalize */
case 0x010: /* Underflow */
info.si_code = FPE_FLTUND;
break;
case 0x004: /* Zero Divide */
info.si_code = FPE_FLTDIV;
break;
case 0x008: /* Overflow */
info.si_code = FPE_FLTOVF;
break;
case 0x020: /* Precision */
info.si_code = FPE_FLTRES;
break;
}
force_sig_info(SIGFPE, &info, task);
}
void do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
{
if (cpu_has_xmm) {
/* Handle SIMD FPU exceptions on PIII+ processors. */
ignore_fpu_irq = 1;
simd_math_error((void __user *)regs->ip);
return;
}
/*
* Handle strange cache flush from user space exception
* in all other cases. This is undocumented behaviour.
*/
if (regs->flags & X86_VM_MASK) {
handle_vm86_fault((struct kernel_vm86_regs *)regs, error_code);
return;
}
current->thread.trap_no = 19;
current->thread.error_code = error_code;
die_if_kernel("cache flush denied", regs, error_code);
force_sig(SIGSEGV, current);
}
void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
{
#if 0
/* No need to warn about this any longer. */
printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
#endif
}
unsigned long patch_espfix_desc(unsigned long uesp, unsigned long kesp)
{
struct desc_struct *gdt = get_cpu_gdt_table(smp_processor_id());
unsigned long base = (kesp - uesp) & -THREAD_SIZE;
unsigned long new_kesp = kesp - base;
unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
__u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
/* Set up base for espfix segment */
desc &= 0x00f0ff0000000000ULL;
desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
((((__u64)base) << 32) & 0xff00000000000000ULL) |
((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
(lim_pages & 0xffff);
*(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
return new_kesp;
}
/*
* 'math_state_restore()' saves the current math information in the
* old math state array, and gets the new ones from the current task
*
* Careful.. There are problems with IBM-designed IRQ13 behaviour.
* Don't touch unless you *really* know how it works.
*
* Must be called with kernel preemption disabled (in this case,
* local interrupts are disabled at the call-site in entry.S).
*/
asmlinkage void math_state_restore(void)
{
struct thread_info *thread = current_thread_info();
struct task_struct *tsk = thread->task;
if (!tsk_used_math(tsk)) {
local_irq_enable();
/*
* does a slab alloc which can sleep
*/
if (init_fpu(tsk)) {
/*
* ran out of memory!
*/
do_group_exit(SIGKILL);
return;
}
local_irq_disable();
}
clts(); /* Allow maths ops (or we recurse) */
restore_fpu(tsk);
thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
tsk->fpu_counter++;
}
EXPORT_SYMBOL_GPL(math_state_restore);
#ifndef CONFIG_MATH_EMULATION
asmlinkage void math_emulate(long arg)
{
printk(KERN_EMERG
"math-emulation not enabled and no coprocessor found.\n");
printk(KERN_EMERG "killing %s.\n", current->comm);
force_sig(SIGFPE, current);
schedule();
}
#endif /* CONFIG_MATH_EMULATION */
void __init trap_init(void)
{
int i;
#ifdef CONFIG_EISA
void __iomem *p = early_ioremap(0x0FFFD9, 4);
if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
EISA_bus = 1;
early_iounmap(p, 4);
#endif
set_trap_gate(0, &divide_error);
set_intr_gate(1, &debug);
set_intr_gate(2, &nmi);
set_system_intr_gate(3, &int3); /* int3 can be called from all */
set_system_gate(4, &overflow); /* int4 can be called from all */
set_trap_gate(5, &bounds);
set_trap_gate(6, &invalid_op);
set_trap_gate(7, &device_not_available);
set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
set_trap_gate(9, &coprocessor_segment_overrun);
set_trap_gate(10, &invalid_TSS);
set_trap_gate(11, &segment_not_present);
set_trap_gate(12, &stack_segment);
set_trap_gate(13, &general_protection);
set_intr_gate(14, &page_fault);
set_trap_gate(15, &spurious_interrupt_bug);
set_trap_gate(16, &coprocessor_error);
set_trap_gate(17, &alignment_check);
#ifdef CONFIG_X86_MCE
set_trap_gate(18, &machine_check);
#endif
set_trap_gate(19, &simd_coprocessor_error);
if (cpu_has_fxsr) {
printk(KERN_INFO "Enabling fast FPU save and restore... ");
set_in_cr4(X86_CR4_OSFXSR);
printk("done.\n");
}
if (cpu_has_xmm) {
printk(KERN_INFO
"Enabling unmasked SIMD FPU exception support... ");
set_in_cr4(X86_CR4_OSXMMEXCPT);
printk("done.\n");
}
set_system_gate(SYSCALL_VECTOR, &system_call);
/* Reserve all the builtin and the syscall vector: */
for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
set_bit(i, used_vectors);
set_bit(SYSCALL_VECTOR, used_vectors);
init_thread_xstate();
/*
* Should be a barrier for any external CPU state:
*/
cpu_init();
trap_init_hook();
}
static int __init kstack_setup(char *s)
{
kstack_depth_to_print = simple_strtoul(s, NULL, 0);
return 1;
}
__setup("kstack=", kstack_setup);
static int __init code_bytes_setup(char *s)
{
code_bytes = simple_strtoul(s, NULL, 0);
if (code_bytes > 8192)
code_bytes = 8192;
return 1;
}
__setup("code_bytes=", code_bytes_setup);