linux_dsm_epyc7002/arch/arm/crypto/Kconfig
Ard Biesheuvel cc477bf645 crypto: arm/aes - replace bit-sliced OpenSSL NEON code
This replaces the unwieldy generated implementation of bit-sliced AES
in CBC/CTR/XTS modes that originated in the OpenSSL project with a
new version that is heavily based on the OpenSSL implementation, but
has a number of advantages over the old version:
- it does not rely on the scalar AES cipher that also originated in the
  OpenSSL project and contains redundant lookup tables and key schedule
  generation routines (which we already have in crypto/aes_generic.)
- it uses the same expanded key schedule for encryption and decryption,
  reducing the size of the per-key data structure by 1696 bytes
- it adds an implementation of AES in ECB mode, which can be wrapped by
  other generic chaining mode implementations
- it moves the handling of corner cases that are non critical to performance
  to the glue layer written in C
- it was written directly in assembler rather than generated from a Perl
  script

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-13 18:27:31 +08:00

123 lines
3.6 KiB
Plaintext

menuconfig ARM_CRYPTO
bool "ARM Accelerated Cryptographic Algorithms"
depends on ARM
help
Say Y here to choose from a selection of cryptographic algorithms
implemented using ARM specific CPU features or instructions.
if ARM_CRYPTO
config CRYPTO_SHA1_ARM
tristate "SHA1 digest algorithm (ARM-asm)"
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using optimized ARM assembler.
config CRYPTO_SHA1_ARM_NEON
tristate "SHA1 digest algorithm (ARM NEON)"
depends on KERNEL_MODE_NEON
select CRYPTO_SHA1_ARM
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using optimized ARM NEON assembly, when NEON instructions are
available.
config CRYPTO_SHA1_ARM_CE
tristate "SHA1 digest algorithm (ARM v8 Crypto Extensions)"
depends on KERNEL_MODE_NEON
select CRYPTO_SHA1_ARM
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using special ARMv8 Crypto Extensions.
config CRYPTO_SHA2_ARM_CE
tristate "SHA-224/256 digest algorithm (ARM v8 Crypto Extensions)"
depends on KERNEL_MODE_NEON
select CRYPTO_SHA256_ARM
select CRYPTO_HASH
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using special ARMv8 Crypto Extensions.
config CRYPTO_SHA256_ARM
tristate "SHA-224/256 digest algorithm (ARM-asm and NEON)"
select CRYPTO_HASH
depends on !CPU_V7M
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using optimized ARM assembler and NEON, when available.
config CRYPTO_SHA512_ARM
tristate "SHA-384/512 digest algorithm (ARM-asm and NEON)"
select CRYPTO_HASH
depends on !CPU_V7M
help
SHA-512 secure hash standard (DFIPS 180-2) implemented
using optimized ARM assembler and NEON, when available.
config CRYPTO_AES_ARM
tristate "Scalar AES cipher for ARM"
select CRYPTO_ALGAPI
select CRYPTO_AES
help
Use optimized AES assembler routines for ARM platforms.
config CRYPTO_AES_ARM_BS
tristate "Bit sliced AES using NEON instructions"
depends on KERNEL_MODE_NEON
select CRYPTO_BLKCIPHER
select CRYPTO_SIMD
select CRYPTO_AES_ARM
help
Use a faster and more secure NEON based implementation of AES in CBC,
CTR and XTS modes
Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode
and for XTS mode encryption, CBC and XTS mode decryption speedup is
around 25%. (CBC encryption speed is not affected by this driver.)
This implementation does not rely on any lookup tables so it is
believed to be invulnerable to cache timing attacks.
config CRYPTO_AES_ARM_CE
tristate "Accelerated AES using ARMv8 Crypto Extensions"
depends on KERNEL_MODE_NEON
select CRYPTO_BLKCIPHER
select CRYPTO_SIMD
help
Use an implementation of AES in CBC, CTR and XTS modes that uses
ARMv8 Crypto Extensions
config CRYPTO_GHASH_ARM_CE
tristate "PMULL-accelerated GHASH using ARMv8 Crypto Extensions"
depends on KERNEL_MODE_NEON
select CRYPTO_HASH
select CRYPTO_CRYPTD
help
Use an implementation of GHASH (used by the GCM AEAD chaining mode)
that uses the 64x64 to 128 bit polynomial multiplication (vmull.p64)
that is part of the ARMv8 Crypto Extensions
config CRYPTO_CRCT10DIF_ARM_CE
tristate "CRCT10DIF digest algorithm using PMULL instructions"
depends on KERNEL_MODE_NEON && CRC_T10DIF
select CRYPTO_HASH
config CRYPTO_CRC32_ARM_CE
tristate "CRC32(C) digest algorithm using CRC and/or PMULL instructions"
depends on KERNEL_MODE_NEON && CRC32
select CRYPTO_HASH
config CRYPTO_CHACHA20_NEON
tristate "NEON accelerated ChaCha20 symmetric cipher"
depends on KERNEL_MODE_NEON
select CRYPTO_BLKCIPHER
select CRYPTO_CHACHA20
endif