mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-17 20:26:41 +07:00
9ed9895370
Currently, there is a problem with taking functional dependencies between devices into account. What I mean by a "functional dependency" is when the driver of device B needs device A to be functional and (generally) its driver to be present in order to work properly. This has certain consequences for power management (suspend/resume and runtime PM ordering) and shutdown ordering of these devices. In general, it also implies that the driver of A needs to be working for B to be probed successfully and it cannot be unbound from the device before the B's driver. Support for representing those functional dependencies between devices is added here to allow the driver core to track them and act on them in certain cases where applicable. The argument for doing that in the driver core is that there are quite a few distinct use cases involving device dependencies, they are relatively hard to get right in a driver (if one wants to address all of them properly) and it only gets worse if multiplied by the number of drivers potentially needing to do it. Morever, at least one case (asynchronous system suspend/resume) cannot be handled in a single driver at all, because it requires the driver of A to wait for B to suspend (during system suspend) and the driver of B to wait for A to resume (during system resume). For this reason, represent dependencies between devices as "links", with the help of struct device_link objects each containing pointers to the "linked" devices, a list node for each of them, status information, flags, and an RCU head for synchronization. Also add two new list heads, representing the lists of links to the devices that depend on the given one (consumers) and to the devices depended on by it (suppliers), and a "driver presence status" field (needed for figuring out initial states of device links) to struct device. The entire data structure consisting of all of the lists of link objects for all devices is protected by a mutex (for link object addition/removal and for list walks during device driver probing and removal) and by SRCU (for list walking in other case that will be introduced by subsequent change sets). If CONFIG_SRCU is not selected, however, an rwsem is used for protecting the entire data structure. In addition, each link object has an internal status field whose value reflects whether or not drivers are bound to the devices pointed to by the link or probing/removal of their drivers is in progress etc. That field is only modified under the device links mutex, but it may be read outside of it in some cases (introduced by subsequent change sets), so modifications of it are annotated with WRITE_ONCE(). New links are added by calling device_link_add() which takes three arguments: pointers to the devices in question and flags. In particular, if DL_FLAG_STATELESS is set in the flags, the link status is not to be taken into account for this link and the driver core will not manage it. In turn, if DL_FLAG_AUTOREMOVE is set in the flags, the driver core will remove the link automatically when the consumer device driver unbinds from it. One of the actions carried out by device_link_add() is to reorder the lists used for device shutdown and system suspend/resume to put the consumer device along with all of its children and all of its consumers (and so on, recursively) to the ends of those lists in order to ensure the right ordering between all of the supplier and consumer devices. For this reason, it is not possible to create a link between two devices if the would-be supplier device already depends on the would-be consumer device as either a direct descendant of it or a consumer of one of its direct descendants or one of its consumers and so on. There are two types of link objects, persistent and non-persistent. The persistent ones stay around until one of the target devices is deleted, while the non-persistent ones are removed automatically when the consumer driver unbinds from its device (ie. they are assumed to be valid only as long as the consumer device has a driver bound to it). Persistent links are created by default and non-persistent links are created when the DL_FLAG_AUTOREMOVE flag is passed to device_link_add(). Both persistent and non-persistent device links can be deleted with an explicit call to device_link_del(). Links created without the DL_FLAG_STATELESS flag set are managed by the driver core using a simple state machine. There are 5 states each link can be in: DORMANT (unused), AVAILABLE (the supplier driver is present and functional), CONSUMER_PROBE (the consumer driver is probing), ACTIVE (both supplier and consumer drivers are present and functional), and SUPPLIER_UNBIND (the supplier driver is unbinding). The driver core updates the link state automatically depending on what happens to the linked devices and for each link state specific actions are taken in addition to that. For example, if the supplier driver unbinds from its device, the driver core will also unbind the drivers of all of its consumers automatically under the assumption that they cannot function properly without the supplier. Analogously, the driver core will only allow the consumer driver to bind to its device if the supplier driver is present and functional (ie. the link is in the AVAILABLE state). If that's not the case, it will rely on the existing deferred probing mechanism to wait for the supplier driver to become available. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
168 lines
5.9 KiB
C
168 lines
5.9 KiB
C
#include <linux/notifier.h>
|
|
|
|
/**
|
|
* struct subsys_private - structure to hold the private to the driver core portions of the bus_type/class structure.
|
|
*
|
|
* @subsys - the struct kset that defines this subsystem
|
|
* @devices_kset - the subsystem's 'devices' directory
|
|
* @interfaces - list of subsystem interfaces associated
|
|
* @mutex - protect the devices, and interfaces lists.
|
|
*
|
|
* @drivers_kset - the list of drivers associated
|
|
* @klist_devices - the klist to iterate over the @devices_kset
|
|
* @klist_drivers - the klist to iterate over the @drivers_kset
|
|
* @bus_notifier - the bus notifier list for anything that cares about things
|
|
* on this bus.
|
|
* @bus - pointer back to the struct bus_type that this structure is associated
|
|
* with.
|
|
*
|
|
* @glue_dirs - "glue" directory to put in-between the parent device to
|
|
* avoid namespace conflicts
|
|
* @class - pointer back to the struct class that this structure is associated
|
|
* with.
|
|
*
|
|
* This structure is the one that is the actual kobject allowing struct
|
|
* bus_type/class to be statically allocated safely. Nothing outside of the
|
|
* driver core should ever touch these fields.
|
|
*/
|
|
struct subsys_private {
|
|
struct kset subsys;
|
|
struct kset *devices_kset;
|
|
struct list_head interfaces;
|
|
struct mutex mutex;
|
|
|
|
struct kset *drivers_kset;
|
|
struct klist klist_devices;
|
|
struct klist klist_drivers;
|
|
struct blocking_notifier_head bus_notifier;
|
|
unsigned int drivers_autoprobe:1;
|
|
struct bus_type *bus;
|
|
|
|
struct kset glue_dirs;
|
|
struct class *class;
|
|
};
|
|
#define to_subsys_private(obj) container_of(obj, struct subsys_private, subsys.kobj)
|
|
|
|
struct driver_private {
|
|
struct kobject kobj;
|
|
struct klist klist_devices;
|
|
struct klist_node knode_bus;
|
|
struct module_kobject *mkobj;
|
|
struct device_driver *driver;
|
|
};
|
|
#define to_driver(obj) container_of(obj, struct driver_private, kobj)
|
|
|
|
/**
|
|
* struct device_private - structure to hold the private to the driver core portions of the device structure.
|
|
*
|
|
* @klist_children - klist containing all children of this device
|
|
* @knode_parent - node in sibling list
|
|
* @knode_driver - node in driver list
|
|
* @knode_bus - node in bus list
|
|
* @deferred_probe - entry in deferred_probe_list which is used to retry the
|
|
* binding of drivers which were unable to get all the resources needed by
|
|
* the device; typically because it depends on another driver getting
|
|
* probed first.
|
|
* @device - pointer back to the struct device that this structure is
|
|
* associated with.
|
|
*
|
|
* Nothing outside of the driver core should ever touch these fields.
|
|
*/
|
|
struct device_private {
|
|
struct klist klist_children;
|
|
struct klist_node knode_parent;
|
|
struct klist_node knode_driver;
|
|
struct klist_node knode_bus;
|
|
struct list_head deferred_probe;
|
|
struct device *device;
|
|
};
|
|
#define to_device_private_parent(obj) \
|
|
container_of(obj, struct device_private, knode_parent)
|
|
#define to_device_private_driver(obj) \
|
|
container_of(obj, struct device_private, knode_driver)
|
|
#define to_device_private_bus(obj) \
|
|
container_of(obj, struct device_private, knode_bus)
|
|
|
|
extern int device_private_init(struct device *dev);
|
|
|
|
/* initialisation functions */
|
|
extern int devices_init(void);
|
|
extern int buses_init(void);
|
|
extern int classes_init(void);
|
|
extern int firmware_init(void);
|
|
#ifdef CONFIG_SYS_HYPERVISOR
|
|
extern int hypervisor_init(void);
|
|
#else
|
|
static inline int hypervisor_init(void) { return 0; }
|
|
#endif
|
|
extern int platform_bus_init(void);
|
|
extern void cpu_dev_init(void);
|
|
extern void container_dev_init(void);
|
|
|
|
struct kobject *virtual_device_parent(struct device *dev);
|
|
|
|
extern int bus_add_device(struct device *dev);
|
|
extern void bus_probe_device(struct device *dev);
|
|
extern void bus_remove_device(struct device *dev);
|
|
|
|
extern int bus_add_driver(struct device_driver *drv);
|
|
extern void bus_remove_driver(struct device_driver *drv);
|
|
extern void device_release_driver_internal(struct device *dev,
|
|
struct device_driver *drv,
|
|
struct device *parent);
|
|
|
|
extern void driver_detach(struct device_driver *drv);
|
|
extern int driver_probe_device(struct device_driver *drv, struct device *dev);
|
|
extern void driver_deferred_probe_del(struct device *dev);
|
|
static inline int driver_match_device(struct device_driver *drv,
|
|
struct device *dev)
|
|
{
|
|
return drv->bus->match ? drv->bus->match(dev, drv) : 1;
|
|
}
|
|
extern bool driver_allows_async_probing(struct device_driver *drv);
|
|
|
|
extern int driver_add_groups(struct device_driver *drv,
|
|
const struct attribute_group **groups);
|
|
extern void driver_remove_groups(struct device_driver *drv,
|
|
const struct attribute_group **groups);
|
|
|
|
extern int device_add_groups(struct device *dev,
|
|
const struct attribute_group **groups);
|
|
extern void device_remove_groups(struct device *dev,
|
|
const struct attribute_group **groups);
|
|
|
|
extern char *make_class_name(const char *name, struct kobject *kobj);
|
|
|
|
extern int devres_release_all(struct device *dev);
|
|
extern void device_block_probing(void);
|
|
extern void device_unblock_probing(void);
|
|
|
|
/* /sys/devices directory */
|
|
extern struct kset *devices_kset;
|
|
extern void devices_kset_move_last(struct device *dev);
|
|
|
|
#if defined(CONFIG_MODULES) && defined(CONFIG_SYSFS)
|
|
extern void module_add_driver(struct module *mod, struct device_driver *drv);
|
|
extern void module_remove_driver(struct device_driver *drv);
|
|
#else
|
|
static inline void module_add_driver(struct module *mod,
|
|
struct device_driver *drv) { }
|
|
static inline void module_remove_driver(struct device_driver *drv) { }
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEVTMPFS
|
|
extern int devtmpfs_init(void);
|
|
#else
|
|
static inline int devtmpfs_init(void) { return 0; }
|
|
#endif
|
|
|
|
/* Device links support */
|
|
extern int device_links_read_lock(void);
|
|
extern void device_links_read_unlock(int idx);
|
|
extern int device_links_check_suppliers(struct device *dev);
|
|
extern void device_links_driver_bound(struct device *dev);
|
|
extern void device_links_driver_cleanup(struct device *dev);
|
|
extern void device_links_no_driver(struct device *dev);
|
|
extern bool device_links_busy(struct device *dev);
|
|
extern void device_links_unbind_consumers(struct device *dev);
|