linux_dsm_epyc7002/drivers/media/video/cx88/cx88-input.c
Mauro Carvalho Chehab af86ce79f0 [media] remove the old RC_MAP_HAUPPAUGE_NEW RC map
The rc-hauppauge-new map is a messy thing, as it bundles 3

different remote controllers as if they were just one,
discarding the address byte. Also, some key maps are wrong.

With the conversion to the new rc-core, it is likely that
most of the devices won't be working properly, as the i2c
driver and the raw decoders are now providing 16 bits for
the remote, instead of just 8.

 delete mode 100644 drivers/media/rc/keymaps/rc-hauppauge-new.c

Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Signed-off-by: Jarod Wilson <jarod@redhat.com>
2011-03-22 19:24:16 -03:00

628 lines
16 KiB
C

/*
*
* Device driver for GPIO attached remote control interfaces
* on Conexant 2388x based TV/DVB cards.
*
* Copyright (c) 2003 Pavel Machek
* Copyright (c) 2004 Gerd Knorr
* Copyright (c) 2004, 2005 Chris Pascoe
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/hrtimer.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/module.h>
#include "cx88.h"
#include <media/rc-core.h>
#define MODULE_NAME "cx88xx"
/* ---------------------------------------------------------------------- */
struct cx88_IR {
struct cx88_core *core;
struct rc_dev *dev;
int users;
char name[32];
char phys[32];
/* sample from gpio pin 16 */
u32 sampling;
/* poll external decoder */
int polling;
struct hrtimer timer;
u32 gpio_addr;
u32 last_gpio;
u32 mask_keycode;
u32 mask_keydown;
u32 mask_keyup;
};
static unsigned ir_samplerate = 4;
module_param(ir_samplerate, uint, 0444);
MODULE_PARM_DESC(ir_samplerate, "IR samplerate in kHz, 1 - 20, default 4");
static int ir_debug;
module_param(ir_debug, int, 0644); /* debug level [IR] */
MODULE_PARM_DESC(ir_debug, "enable debug messages [IR]");
#define ir_dprintk(fmt, arg...) if (ir_debug) \
printk(KERN_DEBUG "%s IR: " fmt , ir->core->name , ##arg)
#define dprintk(fmt, arg...) if (ir_debug) \
printk(KERN_DEBUG "cx88 IR: " fmt , ##arg)
/* ---------------------------------------------------------------------- */
static void cx88_ir_handle_key(struct cx88_IR *ir)
{
struct cx88_core *core = ir->core;
u32 gpio, data, auxgpio;
/* read gpio value */
gpio = cx_read(ir->gpio_addr);
switch (core->boardnr) {
case CX88_BOARD_NPGTECH_REALTV_TOP10FM:
/* This board apparently uses a combination of 2 GPIO
to represent the keys. Additionally, the second GPIO
can be used for parity.
Example:
for key "5"
gpio = 0x758, auxgpio = 0xe5 or 0xf5
for key "Power"
gpio = 0x758, auxgpio = 0xed or 0xfd
*/
auxgpio = cx_read(MO_GP1_IO);
/* Take out the parity part */
gpio=(gpio & 0x7fd) + (auxgpio & 0xef);
break;
case CX88_BOARD_WINFAST_DTV1000:
case CX88_BOARD_WINFAST_DTV1800H:
case CX88_BOARD_WINFAST_TV2000_XP_GLOBAL:
gpio = (gpio & 0x6ff) | ((cx_read(MO_GP1_IO) << 8) & 0x900);
auxgpio = gpio;
break;
default:
auxgpio = gpio;
}
if (ir->polling) {
if (ir->last_gpio == auxgpio)
return;
ir->last_gpio = auxgpio;
}
/* extract data */
data = ir_extract_bits(gpio, ir->mask_keycode);
ir_dprintk("irq gpio=0x%x code=%d | %s%s%s\n",
gpio, data,
ir->polling ? "poll" : "irq",
(gpio & ir->mask_keydown) ? " down" : "",
(gpio & ir->mask_keyup) ? " up" : "");
if (ir->core->boardnr == CX88_BOARD_NORWOOD_MICRO) {
u32 gpio_key = cx_read(MO_GP0_IO);
data = (data << 4) | ((gpio_key & 0xf0) >> 4);
rc_keydown(ir->dev, data, 0);
} else if (ir->mask_keydown) {
/* bit set on keydown */
if (gpio & ir->mask_keydown)
rc_keydown_notimeout(ir->dev, data, 0);
else
rc_keyup(ir->dev);
} else if (ir->mask_keyup) {
/* bit cleared on keydown */
if (0 == (gpio & ir->mask_keyup))
rc_keydown_notimeout(ir->dev, data, 0);
else
rc_keyup(ir->dev);
} else {
/* can't distinguish keydown/up :-/ */
rc_keydown_notimeout(ir->dev, data, 0);
rc_keyup(ir->dev);
}
}
static enum hrtimer_restart cx88_ir_work(struct hrtimer *timer)
{
unsigned long missed;
struct cx88_IR *ir = container_of(timer, struct cx88_IR, timer);
cx88_ir_handle_key(ir);
missed = hrtimer_forward_now(&ir->timer,
ktime_set(0, ir->polling * 1000000));
if (missed > 1)
ir_dprintk("Missed ticks %ld\n", missed - 1);
return HRTIMER_RESTART;
}
static int __cx88_ir_start(void *priv)
{
struct cx88_core *core = priv;
struct cx88_IR *ir;
if (!core || !core->ir)
return -EINVAL;
ir = core->ir;
if (ir->polling) {
hrtimer_init(&ir->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
ir->timer.function = cx88_ir_work;
hrtimer_start(&ir->timer,
ktime_set(0, ir->polling * 1000000),
HRTIMER_MODE_REL);
}
if (ir->sampling) {
core->pci_irqmask |= PCI_INT_IR_SMPINT;
cx_write(MO_DDS_IO, 0x33F286 * ir_samplerate); /* samplerate */
cx_write(MO_DDSCFG_IO, 0x5); /* enable */
}
return 0;
}
static void __cx88_ir_stop(void *priv)
{
struct cx88_core *core = priv;
struct cx88_IR *ir;
if (!core || !core->ir)
return;
ir = core->ir;
if (ir->sampling) {
cx_write(MO_DDSCFG_IO, 0x0);
core->pci_irqmask &= ~PCI_INT_IR_SMPINT;
}
if (ir->polling)
hrtimer_cancel(&ir->timer);
}
int cx88_ir_start(struct cx88_core *core)
{
if (core->ir->users)
return __cx88_ir_start(core);
return 0;
}
void cx88_ir_stop(struct cx88_core *core)
{
if (core->ir->users)
__cx88_ir_stop(core);
}
static int cx88_ir_open(struct rc_dev *rc)
{
struct cx88_core *core = rc->priv;
core->ir->users++;
return __cx88_ir_start(core);
}
static void cx88_ir_close(struct rc_dev *rc)
{
struct cx88_core *core = rc->priv;
core->ir->users--;
if (!core->ir->users)
__cx88_ir_stop(core);
}
/* ---------------------------------------------------------------------- */
int cx88_ir_init(struct cx88_core *core, struct pci_dev *pci)
{
struct cx88_IR *ir;
struct rc_dev *dev;
char *ir_codes = NULL;
u64 rc_type = RC_TYPE_OTHER;
int err = -ENOMEM;
u32 hardware_mask = 0; /* For devices with a hardware mask, when
* used with a full-code IR table
*/
ir = kzalloc(sizeof(*ir), GFP_KERNEL);
dev = rc_allocate_device();
if (!ir || !dev)
goto err_out_free;
ir->dev = dev;
/* detect & configure */
switch (core->boardnr) {
case CX88_BOARD_DNTV_LIVE_DVB_T:
case CX88_BOARD_KWORLD_DVB_T:
case CX88_BOARD_KWORLD_DVB_T_CX22702:
ir_codes = RC_MAP_DNTV_LIVE_DVB_T;
ir->gpio_addr = MO_GP1_IO;
ir->mask_keycode = 0x1f;
ir->mask_keyup = 0x60;
ir->polling = 50; /* ms */
break;
case CX88_BOARD_TERRATEC_CINERGY_1400_DVB_T1:
ir_codes = RC_MAP_CINERGY_1400;
ir->sampling = 0xeb04; /* address */
break;
case CX88_BOARD_HAUPPAUGE:
case CX88_BOARD_HAUPPAUGE_DVB_T1:
case CX88_BOARD_HAUPPAUGE_NOVASE2_S1:
case CX88_BOARD_HAUPPAUGE_NOVASPLUS_S1:
case CX88_BOARD_HAUPPAUGE_HVR1100:
case CX88_BOARD_HAUPPAUGE_HVR3000:
case CX88_BOARD_HAUPPAUGE_HVR4000:
case CX88_BOARD_HAUPPAUGE_HVR4000LITE:
case CX88_BOARD_PCHDTV_HD3000:
case CX88_BOARD_PCHDTV_HD5500:
case CX88_BOARD_HAUPPAUGE_IRONLY:
ir_codes = RC_MAP_HAUPPAUGE;
ir->sampling = 1;
break;
case CX88_BOARD_WINFAST_DTV2000H:
case CX88_BOARD_WINFAST_DTV2000H_J:
case CX88_BOARD_WINFAST_DTV1800H:
ir_codes = RC_MAP_WINFAST;
ir->gpio_addr = MO_GP0_IO;
ir->mask_keycode = 0x8f8;
ir->mask_keyup = 0x100;
ir->polling = 50; /* ms */
break;
case CX88_BOARD_WINFAST2000XP_EXPERT:
case CX88_BOARD_WINFAST_DTV1000:
case CX88_BOARD_WINFAST_TV2000_XP_GLOBAL:
ir_codes = RC_MAP_WINFAST;
ir->gpio_addr = MO_GP0_IO;
ir->mask_keycode = 0x8f8;
ir->mask_keyup = 0x100;
ir->polling = 1; /* ms */
break;
case CX88_BOARD_IODATA_GVBCTV7E:
ir_codes = RC_MAP_IODATA_BCTV7E;
ir->gpio_addr = MO_GP0_IO;
ir->mask_keycode = 0xfd;
ir->mask_keydown = 0x02;
ir->polling = 5; /* ms */
break;
case CX88_BOARD_PROLINK_PLAYTVPVR:
case CX88_BOARD_PIXELVIEW_PLAYTV_ULTRA_PRO:
/*
* It seems that this hardware is paired with NEC extended
* address 0x866b. So, unfortunately, its usage with other
* IR's with different address won't work. Still, there are
* other IR's from the same manufacturer that works, like the
* 002-T mini RC, provided with newer PV hardware
*/
ir_codes = RC_MAP_PIXELVIEW_MK12;
ir->gpio_addr = MO_GP1_IO;
ir->mask_keyup = 0x80;
ir->polling = 10; /* ms */
hardware_mask = 0x3f; /* Hardware returns only 6 bits from command part */
break;
case CX88_BOARD_PROLINK_PV_8000GT:
case CX88_BOARD_PROLINK_PV_GLOBAL_XTREME:
ir_codes = RC_MAP_PIXELVIEW_NEW;
ir->gpio_addr = MO_GP1_IO;
ir->mask_keycode = 0x3f;
ir->mask_keyup = 0x80;
ir->polling = 1; /* ms */
break;
case CX88_BOARD_KWORLD_LTV883:
ir_codes = RC_MAP_PIXELVIEW;
ir->gpio_addr = MO_GP1_IO;
ir->mask_keycode = 0x1f;
ir->mask_keyup = 0x60;
ir->polling = 1; /* ms */
break;
case CX88_BOARD_ADSTECH_DVB_T_PCI:
ir_codes = RC_MAP_ADSTECH_DVB_T_PCI;
ir->gpio_addr = MO_GP1_IO;
ir->mask_keycode = 0xbf;
ir->mask_keyup = 0x40;
ir->polling = 50; /* ms */
break;
case CX88_BOARD_MSI_TVANYWHERE_MASTER:
ir_codes = RC_MAP_MSI_TVANYWHERE;
ir->gpio_addr = MO_GP1_IO;
ir->mask_keycode = 0x1f;
ir->mask_keyup = 0x40;
ir->polling = 1; /* ms */
break;
case CX88_BOARD_AVERTV_303:
case CX88_BOARD_AVERTV_STUDIO_303:
ir_codes = RC_MAP_AVERTV_303;
ir->gpio_addr = MO_GP2_IO;
ir->mask_keycode = 0xfb;
ir->mask_keydown = 0x02;
ir->polling = 50; /* ms */
break;
case CX88_BOARD_OMICOM_SS4_PCI:
case CX88_BOARD_SATTRADE_ST4200:
case CX88_BOARD_TBS_8920:
case CX88_BOARD_TBS_8910:
case CX88_BOARD_PROF_7300:
case CX88_BOARD_PROF_7301:
case CX88_BOARD_PROF_6200:
ir_codes = RC_MAP_TBS_NEC;
ir->sampling = 0xff00; /* address */
break;
case CX88_BOARD_TEVII_S464:
case CX88_BOARD_TEVII_S460:
case CX88_BOARD_TEVII_S420:
ir_codes = RC_MAP_TEVII_NEC;
ir->sampling = 0xff00; /* address */
break;
case CX88_BOARD_DNTV_LIVE_DVB_T_PRO:
ir_codes = RC_MAP_DNTV_LIVE_DVBT_PRO;
ir->sampling = 0xff00; /* address */
break;
case CX88_BOARD_NORWOOD_MICRO:
ir_codes = RC_MAP_NORWOOD;
ir->gpio_addr = MO_GP1_IO;
ir->mask_keycode = 0x0e;
ir->mask_keyup = 0x80;
ir->polling = 50; /* ms */
break;
case CX88_BOARD_NPGTECH_REALTV_TOP10FM:
ir_codes = RC_MAP_NPGTECH;
ir->gpio_addr = MO_GP0_IO;
ir->mask_keycode = 0xfa;
ir->polling = 50; /* ms */
break;
case CX88_BOARD_PINNACLE_PCTV_HD_800i:
ir_codes = RC_MAP_PINNACLE_PCTV_HD;
ir->sampling = 1;
break;
case CX88_BOARD_POWERCOLOR_REAL_ANGEL:
ir_codes = RC_MAP_POWERCOLOR_REAL_ANGEL;
ir->gpio_addr = MO_GP2_IO;
ir->mask_keycode = 0x7e;
ir->polling = 100; /* ms */
break;
case CX88_BOARD_TWINHAN_VP1027_DVBS:
ir_codes = RC_MAP_TWINHAN_VP1027_DVBS;
rc_type = RC_TYPE_NEC;
ir->sampling = 0xff00; /* address */
break;
}
if (!ir_codes) {
err = -ENODEV;
goto err_out_free;
}
/*
* The usage of mask_keycode were very convenient, due to several
* reasons. Among others, the scancode tables were using the scancode
* as the index elements. So, the less bits it was used, the smaller
* the table were stored. After the input changes, the better is to use
* the full scancodes, since it allows replacing the IR remote by
* another one. Unfortunately, there are still some hardware, like
* Pixelview Ultra Pro, where only part of the scancode is sent via
* GPIO. So, there's no way to get the full scancode. Due to that,
* hardware_mask were introduced here: it represents those hardware
* that has such limits.
*/
if (hardware_mask && !ir->mask_keycode)
ir->mask_keycode = hardware_mask;
/* init input device */
snprintf(ir->name, sizeof(ir->name), "cx88 IR (%s)", core->board.name);
snprintf(ir->phys, sizeof(ir->phys), "pci-%s/ir0", pci_name(pci));
dev->input_name = ir->name;
dev->input_phys = ir->phys;
dev->input_id.bustype = BUS_PCI;
dev->input_id.version = 1;
if (pci->subsystem_vendor) {
dev->input_id.vendor = pci->subsystem_vendor;
dev->input_id.product = pci->subsystem_device;
} else {
dev->input_id.vendor = pci->vendor;
dev->input_id.product = pci->device;
}
dev->dev.parent = &pci->dev;
dev->map_name = ir_codes;
dev->driver_name = MODULE_NAME;
dev->priv = core;
dev->open = cx88_ir_open;
dev->close = cx88_ir_close;
dev->scanmask = hardware_mask;
if (ir->sampling) {
dev->driver_type = RC_DRIVER_IR_RAW;
dev->timeout = 10 * 1000 * 1000; /* 10 ms */
} else {
dev->driver_type = RC_DRIVER_SCANCODE;
dev->allowed_protos = rc_type;
}
ir->core = core;
core->ir = ir;
/* all done */
err = rc_register_device(dev);
if (err)
goto err_out_free;
return 0;
err_out_free:
rc_free_device(dev);
core->ir = NULL;
kfree(ir);
return err;
}
int cx88_ir_fini(struct cx88_core *core)
{
struct cx88_IR *ir = core->ir;
/* skip detach on non attached boards */
if (NULL == ir)
return 0;
cx88_ir_stop(core);
rc_unregister_device(ir->dev);
kfree(ir);
/* done */
core->ir = NULL;
return 0;
}
/* ---------------------------------------------------------------------- */
void cx88_ir_irq(struct cx88_core *core)
{
struct cx88_IR *ir = core->ir;
u32 samples;
unsigned todo, bits;
struct ir_raw_event ev;
if (!ir || !ir->sampling)
return;
/*
* Samples are stored in a 32 bit register, oldest sample in
* the msb. A set bit represents space and an unset bit
* represents a pulse.
*/
samples = cx_read(MO_SAMPLE_IO);
if (samples == 0xff && ir->dev->idle)
return;
init_ir_raw_event(&ev);
for (todo = 32; todo > 0; todo -= bits) {
ev.pulse = samples & 0x80000000 ? false : true;
bits = min(todo, 32U - fls(ev.pulse ? samples : ~samples));
ev.duration = (bits * NSEC_PER_SEC) / (1000 * ir_samplerate);
ir_raw_event_store_with_filter(ir->dev, &ev);
samples <<= bits;
}
ir_raw_event_handle(ir->dev);
}
static int get_key_pvr2000(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
{
int flags, code;
/* poll IR chip */
flags = i2c_smbus_read_byte_data(ir->c, 0x10);
if (flags < 0) {
dprintk("read error\n");
return 0;
}
/* key pressed ? */
if (0 == (flags & 0x80))
return 0;
/* read actual key code */
code = i2c_smbus_read_byte_data(ir->c, 0x00);
if (code < 0) {
dprintk("read error\n");
return 0;
}
dprintk("IR Key/Flags: (0x%02x/0x%02x)\n",
code & 0xff, flags & 0xff);
*ir_key = code & 0xff;
*ir_raw = code;
return 1;
}
void cx88_i2c_init_ir(struct cx88_core *core)
{
struct i2c_board_info info;
const unsigned short default_addr_list[] = {
0x18, 0x6b, 0x71,
I2C_CLIENT_END
};
const unsigned short pvr2000_addr_list[] = {
0x18, 0x1a,
I2C_CLIENT_END
};
const unsigned short *addr_list = default_addr_list;
const unsigned short *addrp;
/* Instantiate the IR receiver device, if present */
if (0 != core->i2c_rc)
return;
memset(&info, 0, sizeof(struct i2c_board_info));
strlcpy(info.type, "ir_video", I2C_NAME_SIZE);
switch (core->boardnr) {
case CX88_BOARD_LEADTEK_PVR2000:
addr_list = pvr2000_addr_list;
core->init_data.name = "cx88 Leadtek PVR 2000 remote";
core->init_data.type = RC_TYPE_UNKNOWN;
core->init_data.get_key = get_key_pvr2000;
core->init_data.ir_codes = RC_MAP_EMPTY;
break;
}
/*
* We can't call i2c_new_probed_device() because it uses
* quick writes for probing and at least some RC receiver
* devices only reply to reads.
* Also, Hauppauge XVR needs to be specified, as address 0x71
* conflicts with another remote type used with saa7134
*/
for (addrp = addr_list; *addrp != I2C_CLIENT_END; addrp++) {
info.platform_data = NULL;
memset(&core->init_data, 0, sizeof(core->init_data));
if (*addrp == 0x71) {
/* Hauppauge XVR */
core->init_data.name = "cx88 Hauppauge XVR remote";
core->init_data.ir_codes = RC_MAP_HAUPPAUGE;
core->init_data.type = RC_TYPE_RC5;
core->init_data.internal_get_key_func = IR_KBD_GET_KEY_HAUP_XVR;
info.platform_data = &core->init_data;
}
if (i2c_smbus_xfer(&core->i2c_adap, *addrp, 0,
I2C_SMBUS_READ, 0,
I2C_SMBUS_QUICK, NULL) >= 0) {
info.addr = *addrp;
i2c_new_device(&core->i2c_adap, &info);
break;
}
}
}
/* ---------------------------------------------------------------------- */
MODULE_AUTHOR("Gerd Knorr, Pavel Machek, Chris Pascoe");
MODULE_DESCRIPTION("input driver for cx88 GPIO-based IR remote controls");
MODULE_LICENSE("GPL");