linux_dsm_epyc7002/include/linux/perf_event.h
Stephane Eranian 9e6302056f perf: Use hrtimers for event multiplexing
The current scheme of using the timer tick was fine for per-thread
events. However, it was causing bias issues in system-wide mode
(including for uncore PMUs). Event groups would not get their fair
share of runtime on the PMU. With tickless kernels, if a core is idle
there is no timer tick, and thus no event rotation (multiplexing).
However, there are events (especially uncore events) which do count
even though cores are asleep.

This patch changes the timer source for multiplexing.  It introduces a
per-PMU per-cpu hrtimer. The advantage is that even when a core goes
idle, it will come back to service the hrtimer, thus multiplexing on
system-wide events works much better.

The per-PMU implementation (suggested by PeterZ) enables adjusting the
multiplexing interval per PMU. The preferred interval is stashed into
the struct pmu. If not set, it will be forced to the default interval
value.

In order to minimize the impact of the hrtimer, it is turned on and
off on demand. When the PMU on a CPU is overcommited, the hrtimer is
activated.  It is stopped when the PMU is not overcommitted.

In order for this to work properly, we had to change the order of
initialization in start_kernel() such that hrtimer_init() is run
before perf_event_init().

The default interval in milliseconds is set to a timer tick just like
with the old code. We will provide a sysctl to tune this in another
patch.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: http://lkml.kernel.org/r/1364991694-5876-2-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-28 09:07:10 +02:00

854 lines
23 KiB
C

/*
* Performance events:
*
* Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
* Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
* Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
*
* Data type definitions, declarations, prototypes.
*
* Started by: Thomas Gleixner and Ingo Molnar
*
* For licencing details see kernel-base/COPYING
*/
#ifndef _LINUX_PERF_EVENT_H
#define _LINUX_PERF_EVENT_H
#include <uapi/linux/perf_event.h>
/*
* Kernel-internal data types and definitions:
*/
#ifdef CONFIG_PERF_EVENTS
# include <asm/perf_event.h>
# include <asm/local64.h>
#endif
struct perf_guest_info_callbacks {
int (*is_in_guest)(void);
int (*is_user_mode)(void);
unsigned long (*get_guest_ip)(void);
};
#ifdef CONFIG_HAVE_HW_BREAKPOINT
#include <asm/hw_breakpoint.h>
#endif
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <linux/spinlock.h>
#include <linux/hrtimer.h>
#include <linux/fs.h>
#include <linux/pid_namespace.h>
#include <linux/workqueue.h>
#include <linux/ftrace.h>
#include <linux/cpu.h>
#include <linux/irq_work.h>
#include <linux/static_key.h>
#include <linux/atomic.h>
#include <linux/sysfs.h>
#include <linux/perf_regs.h>
#include <asm/local.h>
struct perf_callchain_entry {
__u64 nr;
__u64 ip[PERF_MAX_STACK_DEPTH];
};
struct perf_raw_record {
u32 size;
void *data;
};
/*
* single taken branch record layout:
*
* from: source instruction (may not always be a branch insn)
* to: branch target
* mispred: branch target was mispredicted
* predicted: branch target was predicted
*
* support for mispred, predicted is optional. In case it
* is not supported mispred = predicted = 0.
*/
struct perf_branch_entry {
__u64 from;
__u64 to;
__u64 mispred:1, /* target mispredicted */
predicted:1,/* target predicted */
reserved:62;
};
/*
* branch stack layout:
* nr: number of taken branches stored in entries[]
*
* Note that nr can vary from sample to sample
* branches (to, from) are stored from most recent
* to least recent, i.e., entries[0] contains the most
* recent branch.
*/
struct perf_branch_stack {
__u64 nr;
struct perf_branch_entry entries[0];
};
struct perf_regs_user {
__u64 abi;
struct pt_regs *regs;
};
struct task_struct;
/*
* extra PMU register associated with an event
*/
struct hw_perf_event_extra {
u64 config; /* register value */
unsigned int reg; /* register address or index */
int alloc; /* extra register already allocated */
int idx; /* index in shared_regs->regs[] */
};
/**
* struct hw_perf_event - performance event hardware details:
*/
struct hw_perf_event {
#ifdef CONFIG_PERF_EVENTS
union {
struct { /* hardware */
u64 config;
u64 last_tag;
unsigned long config_base;
unsigned long event_base;
int event_base_rdpmc;
int idx;
int last_cpu;
int flags;
struct hw_perf_event_extra extra_reg;
struct hw_perf_event_extra branch_reg;
};
struct { /* software */
struct hrtimer hrtimer;
};
struct { /* tracepoint */
struct task_struct *tp_target;
/* for tp_event->class */
struct list_head tp_list;
};
#ifdef CONFIG_HAVE_HW_BREAKPOINT
struct { /* breakpoint */
/*
* Crufty hack to avoid the chicken and egg
* problem hw_breakpoint has with context
* creation and event initalization.
*/
struct task_struct *bp_target;
struct arch_hw_breakpoint info;
struct list_head bp_list;
};
#endif
};
int state;
local64_t prev_count;
u64 sample_period;
u64 last_period;
local64_t period_left;
u64 interrupts_seq;
u64 interrupts;
u64 freq_time_stamp;
u64 freq_count_stamp;
#endif
};
/*
* hw_perf_event::state flags
*/
#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
#define PERF_HES_ARCH 0x04
struct perf_event;
/*
* Common implementation detail of pmu::{start,commit,cancel}_txn
*/
#define PERF_EVENT_TXN 0x1
/**
* struct pmu - generic performance monitoring unit
*/
struct pmu {
struct list_head entry;
struct device *dev;
const struct attribute_group **attr_groups;
char *name;
int type;
int * __percpu pmu_disable_count;
struct perf_cpu_context * __percpu pmu_cpu_context;
int task_ctx_nr;
/*
* Fully disable/enable this PMU, can be used to protect from the PMI
* as well as for lazy/batch writing of the MSRs.
*/
void (*pmu_enable) (struct pmu *pmu); /* optional */
void (*pmu_disable) (struct pmu *pmu); /* optional */
/*
* Try and initialize the event for this PMU.
* Should return -ENOENT when the @event doesn't match this PMU.
*/
int (*event_init) (struct perf_event *event);
#define PERF_EF_START 0x01 /* start the counter when adding */
#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
/*
* Adds/Removes a counter to/from the PMU, can be done inside
* a transaction, see the ->*_txn() methods.
*/
int (*add) (struct perf_event *event, int flags);
void (*del) (struct perf_event *event, int flags);
/*
* Starts/Stops a counter present on the PMU. The PMI handler
* should stop the counter when perf_event_overflow() returns
* !0. ->start() will be used to continue.
*/
void (*start) (struct perf_event *event, int flags);
void (*stop) (struct perf_event *event, int flags);
/*
* Updates the counter value of the event.
*/
void (*read) (struct perf_event *event);
/*
* Group events scheduling is treated as a transaction, add
* group events as a whole and perform one schedulability test.
* If the test fails, roll back the whole group
*
* Start the transaction, after this ->add() doesn't need to
* do schedulability tests.
*/
void (*start_txn) (struct pmu *pmu); /* optional */
/*
* If ->start_txn() disabled the ->add() schedulability test
* then ->commit_txn() is required to perform one. On success
* the transaction is closed. On error the transaction is kept
* open until ->cancel_txn() is called.
*/
int (*commit_txn) (struct pmu *pmu); /* optional */
/*
* Will cancel the transaction, assumes ->del() is called
* for each successful ->add() during the transaction.
*/
void (*cancel_txn) (struct pmu *pmu); /* optional */
/*
* Will return the value for perf_event_mmap_page::index for this event,
* if no implementation is provided it will default to: event->hw.idx + 1.
*/
int (*event_idx) (struct perf_event *event); /*optional */
/*
* flush branch stack on context-switches (needed in cpu-wide mode)
*/
void (*flush_branch_stack) (void);
};
/**
* enum perf_event_active_state - the states of a event
*/
enum perf_event_active_state {
PERF_EVENT_STATE_ERROR = -2,
PERF_EVENT_STATE_OFF = -1,
PERF_EVENT_STATE_INACTIVE = 0,
PERF_EVENT_STATE_ACTIVE = 1,
};
struct file;
struct perf_sample_data;
typedef void (*perf_overflow_handler_t)(struct perf_event *,
struct perf_sample_data *,
struct pt_regs *regs);
enum perf_group_flag {
PERF_GROUP_SOFTWARE = 0x1,
};
#define SWEVENT_HLIST_BITS 8
#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
struct swevent_hlist {
struct hlist_head heads[SWEVENT_HLIST_SIZE];
struct rcu_head rcu_head;
};
#define PERF_ATTACH_CONTEXT 0x01
#define PERF_ATTACH_GROUP 0x02
#define PERF_ATTACH_TASK 0x04
struct perf_cgroup;
struct ring_buffer;
/**
* struct perf_event - performance event kernel representation:
*/
struct perf_event {
#ifdef CONFIG_PERF_EVENTS
struct list_head group_entry;
struct list_head event_entry;
struct list_head sibling_list;
struct hlist_node hlist_entry;
int nr_siblings;
int group_flags;
struct perf_event *group_leader;
struct pmu *pmu;
enum perf_event_active_state state;
unsigned int attach_state;
local64_t count;
atomic64_t child_count;
/*
* These are the total time in nanoseconds that the event
* has been enabled (i.e. eligible to run, and the task has
* been scheduled in, if this is a per-task event)
* and running (scheduled onto the CPU), respectively.
*
* They are computed from tstamp_enabled, tstamp_running and
* tstamp_stopped when the event is in INACTIVE or ACTIVE state.
*/
u64 total_time_enabled;
u64 total_time_running;
/*
* These are timestamps used for computing total_time_enabled
* and total_time_running when the event is in INACTIVE or
* ACTIVE state, measured in nanoseconds from an arbitrary point
* in time.
* tstamp_enabled: the notional time when the event was enabled
* tstamp_running: the notional time when the event was scheduled on
* tstamp_stopped: in INACTIVE state, the notional time when the
* event was scheduled off.
*/
u64 tstamp_enabled;
u64 tstamp_running;
u64 tstamp_stopped;
/*
* timestamp shadows the actual context timing but it can
* be safely used in NMI interrupt context. It reflects the
* context time as it was when the event was last scheduled in.
*
* ctx_time already accounts for ctx->timestamp. Therefore to
* compute ctx_time for a sample, simply add perf_clock().
*/
u64 shadow_ctx_time;
struct perf_event_attr attr;
u16 header_size;
u16 id_header_size;
u16 read_size;
struct hw_perf_event hw;
struct perf_event_context *ctx;
atomic_long_t refcount;
/*
* These accumulate total time (in nanoseconds) that children
* events have been enabled and running, respectively.
*/
atomic64_t child_total_time_enabled;
atomic64_t child_total_time_running;
/*
* Protect attach/detach and child_list:
*/
struct mutex child_mutex;
struct list_head child_list;
struct perf_event *parent;
int oncpu;
int cpu;
struct list_head owner_entry;
struct task_struct *owner;
/* mmap bits */
struct mutex mmap_mutex;
atomic_t mmap_count;
int mmap_locked;
struct user_struct *mmap_user;
struct ring_buffer *rb;
struct list_head rb_entry;
/* poll related */
wait_queue_head_t waitq;
struct fasync_struct *fasync;
/* delayed work for NMIs and such */
int pending_wakeup;
int pending_kill;
int pending_disable;
struct irq_work pending;
atomic_t event_limit;
void (*destroy)(struct perf_event *);
struct rcu_head rcu_head;
struct pid_namespace *ns;
u64 id;
perf_overflow_handler_t overflow_handler;
void *overflow_handler_context;
#ifdef CONFIG_EVENT_TRACING
struct ftrace_event_call *tp_event;
struct event_filter *filter;
#ifdef CONFIG_FUNCTION_TRACER
struct ftrace_ops ftrace_ops;
#endif
#endif
#ifdef CONFIG_CGROUP_PERF
struct perf_cgroup *cgrp; /* cgroup event is attach to */
int cgrp_defer_enabled;
#endif
#endif /* CONFIG_PERF_EVENTS */
};
enum perf_event_context_type {
task_context,
cpu_context,
};
/**
* struct perf_event_context - event context structure
*
* Used as a container for task events and CPU events as well:
*/
struct perf_event_context {
struct pmu *pmu;
enum perf_event_context_type type;
/*
* Protect the states of the events in the list,
* nr_active, and the list:
*/
raw_spinlock_t lock;
/*
* Protect the list of events. Locking either mutex or lock
* is sufficient to ensure the list doesn't change; to change
* the list you need to lock both the mutex and the spinlock.
*/
struct mutex mutex;
struct list_head pinned_groups;
struct list_head flexible_groups;
struct list_head event_list;
int nr_events;
int nr_active;
int is_active;
int nr_stat;
int nr_freq;
int rotate_disable;
atomic_t refcount;
struct task_struct *task;
/*
* Context clock, runs when context enabled.
*/
u64 time;
u64 timestamp;
/*
* These fields let us detect when two contexts have both
* been cloned (inherited) from a common ancestor.
*/
struct perf_event_context *parent_ctx;
u64 parent_gen;
u64 generation;
int pin_count;
int nr_cgroups; /* cgroup evts */
int nr_branch_stack; /* branch_stack evt */
struct rcu_head rcu_head;
};
/*
* Number of contexts where an event can trigger:
* task, softirq, hardirq, nmi.
*/
#define PERF_NR_CONTEXTS 4
/**
* struct perf_event_cpu_context - per cpu event context structure
*/
struct perf_cpu_context {
struct perf_event_context ctx;
struct perf_event_context *task_ctx;
int active_oncpu;
int exclusive;
struct hrtimer hrtimer;
ktime_t hrtimer_interval;
struct list_head rotation_list;
struct pmu *unique_pmu;
struct perf_cgroup *cgrp;
};
struct perf_output_handle {
struct perf_event *event;
struct ring_buffer *rb;
unsigned long wakeup;
unsigned long size;
void *addr;
int page;
};
#ifdef CONFIG_PERF_EVENTS
extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
extern void perf_pmu_unregister(struct pmu *pmu);
extern int perf_num_counters(void);
extern const char *perf_pmu_name(void);
extern void __perf_event_task_sched_in(struct task_struct *prev,
struct task_struct *task);
extern void __perf_event_task_sched_out(struct task_struct *prev,
struct task_struct *next);
extern int perf_event_init_task(struct task_struct *child);
extern void perf_event_exit_task(struct task_struct *child);
extern void perf_event_free_task(struct task_struct *task);
extern void perf_event_delayed_put(struct task_struct *task);
extern void perf_event_print_debug(void);
extern void perf_pmu_disable(struct pmu *pmu);
extern void perf_pmu_enable(struct pmu *pmu);
extern int perf_event_task_disable(void);
extern int perf_event_task_enable(void);
extern int perf_event_refresh(struct perf_event *event, int refresh);
extern void perf_event_update_userpage(struct perf_event *event);
extern int perf_event_release_kernel(struct perf_event *event);
extern struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr,
int cpu,
struct task_struct *task,
perf_overflow_handler_t callback,
void *context);
extern void perf_pmu_migrate_context(struct pmu *pmu,
int src_cpu, int dst_cpu);
extern u64 perf_event_read_value(struct perf_event *event,
u64 *enabled, u64 *running);
struct perf_sample_data {
u64 type;
u64 ip;
struct {
u32 pid;
u32 tid;
} tid_entry;
u64 time;
u64 addr;
u64 id;
u64 stream_id;
struct {
u32 cpu;
u32 reserved;
} cpu_entry;
u64 period;
union perf_mem_data_src data_src;
struct perf_callchain_entry *callchain;
struct perf_raw_record *raw;
struct perf_branch_stack *br_stack;
struct perf_regs_user regs_user;
u64 stack_user_size;
u64 weight;
};
static inline void perf_sample_data_init(struct perf_sample_data *data,
u64 addr, u64 period)
{
/* remaining struct members initialized in perf_prepare_sample() */
data->addr = addr;
data->raw = NULL;
data->br_stack = NULL;
data->period = period;
data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
data->regs_user.regs = NULL;
data->stack_user_size = 0;
data->weight = 0;
data->data_src.val = 0;
}
extern void perf_output_sample(struct perf_output_handle *handle,
struct perf_event_header *header,
struct perf_sample_data *data,
struct perf_event *event);
extern void perf_prepare_sample(struct perf_event_header *header,
struct perf_sample_data *data,
struct perf_event *event,
struct pt_regs *regs);
extern int perf_event_overflow(struct perf_event *event,
struct perf_sample_data *data,
struct pt_regs *regs);
static inline bool is_sampling_event(struct perf_event *event)
{
return event->attr.sample_period != 0;
}
/*
* Return 1 for a software event, 0 for a hardware event
*/
static inline int is_software_event(struct perf_event *event)
{
return event->pmu->task_ctx_nr == perf_sw_context;
}
extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
#ifndef perf_arch_fetch_caller_regs
static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
#endif
/*
* Take a snapshot of the regs. Skip ip and frame pointer to
* the nth caller. We only need a few of the regs:
* - ip for PERF_SAMPLE_IP
* - cs for user_mode() tests
* - bp for callchains
* - eflags, for future purposes, just in case
*/
static inline void perf_fetch_caller_regs(struct pt_regs *regs)
{
memset(regs, 0, sizeof(*regs));
perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
}
static __always_inline void
perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
struct pt_regs hot_regs;
if (static_key_false(&perf_swevent_enabled[event_id])) {
if (!regs) {
perf_fetch_caller_regs(&hot_regs);
regs = &hot_regs;
}
__perf_sw_event(event_id, nr, regs, addr);
}
}
extern struct static_key_deferred perf_sched_events;
static inline void perf_event_task_sched_in(struct task_struct *prev,
struct task_struct *task)
{
if (static_key_false(&perf_sched_events.key))
__perf_event_task_sched_in(prev, task);
}
static inline void perf_event_task_sched_out(struct task_struct *prev,
struct task_struct *next)
{
perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
if (static_key_false(&perf_sched_events.key))
__perf_event_task_sched_out(prev, next);
}
extern void perf_event_mmap(struct vm_area_struct *vma);
extern struct perf_guest_info_callbacks *perf_guest_cbs;
extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
extern void perf_event_comm(struct task_struct *tsk);
extern void perf_event_fork(struct task_struct *tsk);
/* Callchains */
DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
{
if (entry->nr < PERF_MAX_STACK_DEPTH)
entry->ip[entry->nr++] = ip;
}
extern int sysctl_perf_event_paranoid;
extern int sysctl_perf_event_mlock;
extern int sysctl_perf_event_sample_rate;
extern int perf_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos);
static inline bool perf_paranoid_tracepoint_raw(void)
{
return sysctl_perf_event_paranoid > -1;
}
static inline bool perf_paranoid_cpu(void)
{
return sysctl_perf_event_paranoid > 0;
}
static inline bool perf_paranoid_kernel(void)
{
return sysctl_perf_event_paranoid > 1;
}
extern void perf_event_init(void);
extern void perf_tp_event(u64 addr, u64 count, void *record,
int entry_size, struct pt_regs *regs,
struct hlist_head *head, int rctx,
struct task_struct *task);
extern void perf_bp_event(struct perf_event *event, void *data);
#ifndef perf_misc_flags
# define perf_misc_flags(regs) \
(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
# define perf_instruction_pointer(regs) instruction_pointer(regs)
#endif
static inline bool has_branch_stack(struct perf_event *event)
{
return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
}
extern int perf_output_begin(struct perf_output_handle *handle,
struct perf_event *event, unsigned int size);
extern void perf_output_end(struct perf_output_handle *handle);
extern unsigned int perf_output_copy(struct perf_output_handle *handle,
const void *buf, unsigned int len);
extern unsigned int perf_output_skip(struct perf_output_handle *handle,
unsigned int len);
extern int perf_swevent_get_recursion_context(void);
extern void perf_swevent_put_recursion_context(int rctx);
extern u64 perf_swevent_set_period(struct perf_event *event);
extern void perf_event_enable(struct perf_event *event);
extern void perf_event_disable(struct perf_event *event);
extern int __perf_event_disable(void *info);
extern void perf_event_task_tick(void);
#else
static inline void
perf_event_task_sched_in(struct task_struct *prev,
struct task_struct *task) { }
static inline void
perf_event_task_sched_out(struct task_struct *prev,
struct task_struct *next) { }
static inline int perf_event_init_task(struct task_struct *child) { return 0; }
static inline void perf_event_exit_task(struct task_struct *child) { }
static inline void perf_event_free_task(struct task_struct *task) { }
static inline void perf_event_delayed_put(struct task_struct *task) { }
static inline void perf_event_print_debug(void) { }
static inline int perf_event_task_disable(void) { return -EINVAL; }
static inline int perf_event_task_enable(void) { return -EINVAL; }
static inline int perf_event_refresh(struct perf_event *event, int refresh)
{
return -EINVAL;
}
static inline void
perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
static inline void
perf_bp_event(struct perf_event *event, void *data) { }
static inline int perf_register_guest_info_callbacks
(struct perf_guest_info_callbacks *callbacks) { return 0; }
static inline int perf_unregister_guest_info_callbacks
(struct perf_guest_info_callbacks *callbacks) { return 0; }
static inline void perf_event_mmap(struct vm_area_struct *vma) { }
static inline void perf_event_comm(struct task_struct *tsk) { }
static inline void perf_event_fork(struct task_struct *tsk) { }
static inline void perf_event_init(void) { }
static inline int perf_swevent_get_recursion_context(void) { return -1; }
static inline void perf_swevent_put_recursion_context(int rctx) { }
static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
static inline void perf_event_enable(struct perf_event *event) { }
static inline void perf_event_disable(struct perf_event *event) { }
static inline int __perf_event_disable(void *info) { return -1; }
static inline void perf_event_task_tick(void) { }
#endif
#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
extern bool perf_event_can_stop_tick(void);
#else
static inline bool perf_event_can_stop_tick(void) { return true; }
#endif
#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
extern void perf_restore_debug_store(void);
#else
static inline void perf_restore_debug_store(void) { }
#endif
#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
/*
* This has to have a higher priority than migration_notifier in sched.c.
*/
#define perf_cpu_notifier(fn) \
do { \
static struct notifier_block fn##_nb __cpuinitdata = \
{ .notifier_call = fn, .priority = CPU_PRI_PERF }; \
unsigned long cpu = smp_processor_id(); \
unsigned long flags; \
fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
(void *)(unsigned long)cpu); \
local_irq_save(flags); \
fn(&fn##_nb, (unsigned long)CPU_STARTING, \
(void *)(unsigned long)cpu); \
local_irq_restore(flags); \
fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
(void *)(unsigned long)cpu); \
register_cpu_notifier(&fn##_nb); \
} while (0)
struct perf_pmu_events_attr {
struct device_attribute attr;
u64 id;
const char *event_str;
};
#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
static struct perf_pmu_events_attr _var = { \
.attr = __ATTR(_name, 0444, _show, NULL), \
.id = _id, \
};
#define PMU_FORMAT_ATTR(_name, _format) \
static ssize_t \
_name##_show(struct device *dev, \
struct device_attribute *attr, \
char *page) \
{ \
BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
return sprintf(page, _format "\n"); \
} \
\
static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
#endif /* _LINUX_PERF_EVENT_H */