linux_dsm_epyc7002/drivers/gpu/drm/tegra/dpaux.c
Thierry Reding 9e532b3ad9 drm/tegra: dpaux: Disable interrupt when detached
When the DPAUX isn't attached to an SOR the interrupts are not useful.
This also prevents a race that could potentially cause a crash on driver
removal.

Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-08-13 13:47:49 +02:00

621 lines
14 KiB
C

/*
* Copyright (C) 2013 NVIDIA Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/regulator/consumer.h>
#include <linux/workqueue.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_panel.h>
#include "dpaux.h"
#include "drm.h"
static DEFINE_MUTEX(dpaux_lock);
static LIST_HEAD(dpaux_list);
struct tegra_dpaux {
struct drm_dp_aux aux;
struct device *dev;
void __iomem *regs;
int irq;
struct tegra_output *output;
struct reset_control *rst;
struct clk *clk_parent;
struct clk *clk;
struct regulator *vdd;
struct completion complete;
struct work_struct work;
struct list_head list;
};
static inline struct tegra_dpaux *to_dpaux(struct drm_dp_aux *aux)
{
return container_of(aux, struct tegra_dpaux, aux);
}
static inline struct tegra_dpaux *work_to_dpaux(struct work_struct *work)
{
return container_of(work, struct tegra_dpaux, work);
}
static inline u32 tegra_dpaux_readl(struct tegra_dpaux *dpaux,
unsigned long offset)
{
return readl(dpaux->regs + (offset << 2));
}
static inline void tegra_dpaux_writel(struct tegra_dpaux *dpaux,
u32 value, unsigned long offset)
{
writel(value, dpaux->regs + (offset << 2));
}
static void tegra_dpaux_write_fifo(struct tegra_dpaux *dpaux, const u8 *buffer,
size_t size)
{
size_t i, j;
for (i = 0; i < DIV_ROUND_UP(size, 4); i++) {
size_t num = min_t(size_t, size - i * 4, 4);
u32 value = 0;
for (j = 0; j < num; j++)
value |= buffer[i * 4 + j] << (j * 8);
tegra_dpaux_writel(dpaux, value, DPAUX_DP_AUXDATA_WRITE(i));
}
}
static void tegra_dpaux_read_fifo(struct tegra_dpaux *dpaux, u8 *buffer,
size_t size)
{
size_t i, j;
for (i = 0; i < DIV_ROUND_UP(size, 4); i++) {
size_t num = min_t(size_t, size - i * 4, 4);
u32 value;
value = tegra_dpaux_readl(dpaux, DPAUX_DP_AUXDATA_READ(i));
for (j = 0; j < num; j++)
buffer[i * 4 + j] = value >> (j * 8);
}
}
static ssize_t tegra_dpaux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
unsigned long timeout = msecs_to_jiffies(250);
struct tegra_dpaux *dpaux = to_dpaux(aux);
unsigned long status;
ssize_t ret = 0;
u32 value;
/* Tegra has 4x4 byte DP AUX transmit and receive FIFOs. */
if (msg->size > 16)
return -EINVAL;
/*
* Allow zero-sized messages only for I2C, in which case they specify
* address-only transactions.
*/
if (msg->size < 1) {
switch (msg->request & ~DP_AUX_I2C_MOT) {
case DP_AUX_I2C_WRITE:
case DP_AUX_I2C_READ:
value = DPAUX_DP_AUXCTL_CMD_ADDRESS_ONLY;
break;
default:
return -EINVAL;
}
} else {
/* For non-zero-sized messages, set the CMDLEN field. */
value = DPAUX_DP_AUXCTL_CMDLEN(msg->size - 1);
}
switch (msg->request & ~DP_AUX_I2C_MOT) {
case DP_AUX_I2C_WRITE:
if (msg->request & DP_AUX_I2C_MOT)
value |= DPAUX_DP_AUXCTL_CMD_MOT_WR;
else
value |= DPAUX_DP_AUXCTL_CMD_I2C_WR;
break;
case DP_AUX_I2C_READ:
if (msg->request & DP_AUX_I2C_MOT)
value |= DPAUX_DP_AUXCTL_CMD_MOT_RD;
else
value |= DPAUX_DP_AUXCTL_CMD_I2C_RD;
break;
case DP_AUX_I2C_STATUS:
if (msg->request & DP_AUX_I2C_MOT)
value |= DPAUX_DP_AUXCTL_CMD_MOT_RQ;
else
value |= DPAUX_DP_AUXCTL_CMD_I2C_RQ;
break;
case DP_AUX_NATIVE_WRITE:
value |= DPAUX_DP_AUXCTL_CMD_AUX_WR;
break;
case DP_AUX_NATIVE_READ:
value |= DPAUX_DP_AUXCTL_CMD_AUX_RD;
break;
default:
return -EINVAL;
}
tegra_dpaux_writel(dpaux, msg->address, DPAUX_DP_AUXADDR);
tegra_dpaux_writel(dpaux, value, DPAUX_DP_AUXCTL);
if ((msg->request & DP_AUX_I2C_READ) == 0) {
tegra_dpaux_write_fifo(dpaux, msg->buffer, msg->size);
ret = msg->size;
}
/* start transaction */
value = tegra_dpaux_readl(dpaux, DPAUX_DP_AUXCTL);
value |= DPAUX_DP_AUXCTL_TRANSACTREQ;
tegra_dpaux_writel(dpaux, value, DPAUX_DP_AUXCTL);
status = wait_for_completion_timeout(&dpaux->complete, timeout);
if (!status)
return -ETIMEDOUT;
/* read status and clear errors */
value = tegra_dpaux_readl(dpaux, DPAUX_DP_AUXSTAT);
tegra_dpaux_writel(dpaux, 0xf00, DPAUX_DP_AUXSTAT);
if (value & DPAUX_DP_AUXSTAT_TIMEOUT_ERROR)
return -ETIMEDOUT;
if ((value & DPAUX_DP_AUXSTAT_RX_ERROR) ||
(value & DPAUX_DP_AUXSTAT_SINKSTAT_ERROR) ||
(value & DPAUX_DP_AUXSTAT_NO_STOP_ERROR))
return -EIO;
switch ((value & DPAUX_DP_AUXSTAT_REPLY_TYPE_MASK) >> 16) {
case 0x00:
msg->reply = DP_AUX_NATIVE_REPLY_ACK;
break;
case 0x01:
msg->reply = DP_AUX_NATIVE_REPLY_NACK;
break;
case 0x02:
msg->reply = DP_AUX_NATIVE_REPLY_DEFER;
break;
case 0x04:
msg->reply = DP_AUX_I2C_REPLY_NACK;
break;
case 0x08:
msg->reply = DP_AUX_I2C_REPLY_DEFER;
break;
}
if ((msg->size > 0) && (msg->reply == DP_AUX_NATIVE_REPLY_ACK)) {
if (msg->request & DP_AUX_I2C_READ) {
size_t count = value & DPAUX_DP_AUXSTAT_REPLY_MASK;
if (WARN_ON(count != msg->size))
count = min_t(size_t, count, msg->size);
tegra_dpaux_read_fifo(dpaux, msg->buffer, count);
ret = count;
}
}
return ret;
}
static void tegra_dpaux_hotplug(struct work_struct *work)
{
struct tegra_dpaux *dpaux = work_to_dpaux(work);
if (dpaux->output)
drm_helper_hpd_irq_event(dpaux->output->connector.dev);
}
static irqreturn_t tegra_dpaux_irq(int irq, void *data)
{
struct tegra_dpaux *dpaux = data;
irqreturn_t ret = IRQ_HANDLED;
u32 value;
/* clear interrupts */
value = tegra_dpaux_readl(dpaux, DPAUX_INTR_AUX);
tegra_dpaux_writel(dpaux, value, DPAUX_INTR_AUX);
if (value & (DPAUX_INTR_PLUG_EVENT | DPAUX_INTR_UNPLUG_EVENT))
schedule_work(&dpaux->work);
if (value & DPAUX_INTR_IRQ_EVENT) {
/* TODO: handle this */
}
if (value & DPAUX_INTR_AUX_DONE)
complete(&dpaux->complete);
return ret;
}
static int tegra_dpaux_probe(struct platform_device *pdev)
{
struct tegra_dpaux *dpaux;
struct resource *regs;
u32 value;
int err;
dpaux = devm_kzalloc(&pdev->dev, sizeof(*dpaux), GFP_KERNEL);
if (!dpaux)
return -ENOMEM;
INIT_WORK(&dpaux->work, tegra_dpaux_hotplug);
init_completion(&dpaux->complete);
INIT_LIST_HEAD(&dpaux->list);
dpaux->dev = &pdev->dev;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dpaux->regs = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(dpaux->regs))
return PTR_ERR(dpaux->regs);
dpaux->irq = platform_get_irq(pdev, 0);
if (dpaux->irq < 0) {
dev_err(&pdev->dev, "failed to get IRQ\n");
return -ENXIO;
}
dpaux->rst = devm_reset_control_get(&pdev->dev, "dpaux");
if (IS_ERR(dpaux->rst)) {
dev_err(&pdev->dev, "failed to get reset control: %ld\n",
PTR_ERR(dpaux->rst));
return PTR_ERR(dpaux->rst);
}
dpaux->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(dpaux->clk)) {
dev_err(&pdev->dev, "failed to get module clock: %ld\n",
PTR_ERR(dpaux->clk));
return PTR_ERR(dpaux->clk);
}
err = clk_prepare_enable(dpaux->clk);
if (err < 0) {
dev_err(&pdev->dev, "failed to enable module clock: %d\n",
err);
return err;
}
reset_control_deassert(dpaux->rst);
dpaux->clk_parent = devm_clk_get(&pdev->dev, "parent");
if (IS_ERR(dpaux->clk_parent)) {
dev_err(&pdev->dev, "failed to get parent clock: %ld\n",
PTR_ERR(dpaux->clk_parent));
return PTR_ERR(dpaux->clk_parent);
}
err = clk_prepare_enable(dpaux->clk_parent);
if (err < 0) {
dev_err(&pdev->dev, "failed to enable parent clock: %d\n",
err);
return err;
}
err = clk_set_rate(dpaux->clk_parent, 270000000);
if (err < 0) {
dev_err(&pdev->dev, "failed to set clock to 270 MHz: %d\n",
err);
return err;
}
dpaux->vdd = devm_regulator_get(&pdev->dev, "vdd");
if (IS_ERR(dpaux->vdd)) {
dev_err(&pdev->dev, "failed to get VDD supply: %ld\n",
PTR_ERR(dpaux->vdd));
return PTR_ERR(dpaux->vdd);
}
err = devm_request_irq(dpaux->dev, dpaux->irq, tegra_dpaux_irq, 0,
dev_name(dpaux->dev), dpaux);
if (err < 0) {
dev_err(dpaux->dev, "failed to request IRQ#%u: %d\n",
dpaux->irq, err);
return err;
}
disable_irq(dpaux->irq);
dpaux->aux.transfer = tegra_dpaux_transfer;
dpaux->aux.dev = &pdev->dev;
err = drm_dp_aux_register(&dpaux->aux);
if (err < 0)
return err;
/*
* Assume that by default the DPAUX/I2C pads will be used for HDMI,
* so power them up and configure them in I2C mode.
*
* The DPAUX code paths reconfigure the pads in AUX mode, but there
* is no possibility to perform the I2C mode configuration in the
* HDMI path.
*/
value = tegra_dpaux_readl(dpaux, DPAUX_HYBRID_SPARE);
value &= ~DPAUX_HYBRID_SPARE_PAD_POWER_DOWN;
tegra_dpaux_writel(dpaux, value, DPAUX_HYBRID_SPARE);
value = tegra_dpaux_readl(dpaux, DPAUX_HYBRID_PADCTL);
value = DPAUX_HYBRID_PADCTL_I2C_SDA_INPUT_RCV |
DPAUX_HYBRID_PADCTL_I2C_SCL_INPUT_RCV |
DPAUX_HYBRID_PADCTL_MODE_I2C;
tegra_dpaux_writel(dpaux, value, DPAUX_HYBRID_PADCTL);
/* enable and clear all interrupts */
value = DPAUX_INTR_AUX_DONE | DPAUX_INTR_IRQ_EVENT |
DPAUX_INTR_UNPLUG_EVENT | DPAUX_INTR_PLUG_EVENT;
tegra_dpaux_writel(dpaux, value, DPAUX_INTR_EN_AUX);
tegra_dpaux_writel(dpaux, value, DPAUX_INTR_AUX);
mutex_lock(&dpaux_lock);
list_add_tail(&dpaux->list, &dpaux_list);
mutex_unlock(&dpaux_lock);
platform_set_drvdata(pdev, dpaux);
return 0;
}
static int tegra_dpaux_remove(struct platform_device *pdev)
{
struct tegra_dpaux *dpaux = platform_get_drvdata(pdev);
u32 value;
/* make sure pads are powered down when not in use */
value = tegra_dpaux_readl(dpaux, DPAUX_HYBRID_SPARE);
value |= DPAUX_HYBRID_SPARE_PAD_POWER_DOWN;
tegra_dpaux_writel(dpaux, value, DPAUX_HYBRID_SPARE);
drm_dp_aux_unregister(&dpaux->aux);
mutex_lock(&dpaux_lock);
list_del(&dpaux->list);
mutex_unlock(&dpaux_lock);
cancel_work_sync(&dpaux->work);
clk_disable_unprepare(dpaux->clk_parent);
reset_control_assert(dpaux->rst);
clk_disable_unprepare(dpaux->clk);
return 0;
}
static const struct of_device_id tegra_dpaux_of_match[] = {
{ .compatible = "nvidia,tegra210-dpaux", },
{ .compatible = "nvidia,tegra124-dpaux", },
{ },
};
MODULE_DEVICE_TABLE(of, tegra_dpaux_of_match);
struct platform_driver tegra_dpaux_driver = {
.driver = {
.name = "tegra-dpaux",
.of_match_table = tegra_dpaux_of_match,
},
.probe = tegra_dpaux_probe,
.remove = tegra_dpaux_remove,
};
struct tegra_dpaux *tegra_dpaux_find_by_of_node(struct device_node *np)
{
struct tegra_dpaux *dpaux;
mutex_lock(&dpaux_lock);
list_for_each_entry(dpaux, &dpaux_list, list)
if (np == dpaux->dev->of_node) {
mutex_unlock(&dpaux_lock);
return dpaux;
}
mutex_unlock(&dpaux_lock);
return NULL;
}
int tegra_dpaux_attach(struct tegra_dpaux *dpaux, struct tegra_output *output)
{
unsigned long timeout;
int err;
output->connector.polled = DRM_CONNECTOR_POLL_HPD;
dpaux->output = output;
err = regulator_enable(dpaux->vdd);
if (err < 0)
return err;
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
enum drm_connector_status status;
status = tegra_dpaux_detect(dpaux);
if (status == connector_status_connected) {
enable_irq(dpaux->irq);
return 0;
}
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
int tegra_dpaux_detach(struct tegra_dpaux *dpaux)
{
unsigned long timeout;
int err;
disable_irq(dpaux->irq);
err = regulator_disable(dpaux->vdd);
if (err < 0)
return err;
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
enum drm_connector_status status;
status = tegra_dpaux_detect(dpaux);
if (status == connector_status_disconnected) {
dpaux->output = NULL;
return 0;
}
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
enum drm_connector_status tegra_dpaux_detect(struct tegra_dpaux *dpaux)
{
u32 value;
value = tegra_dpaux_readl(dpaux, DPAUX_DP_AUXSTAT);
if (value & DPAUX_DP_AUXSTAT_HPD_STATUS)
return connector_status_connected;
return connector_status_disconnected;
}
int tegra_dpaux_enable(struct tegra_dpaux *dpaux)
{
u32 value;
value = DPAUX_HYBRID_PADCTL_AUX_CMH(2) |
DPAUX_HYBRID_PADCTL_AUX_DRVZ(4) |
DPAUX_HYBRID_PADCTL_AUX_DRVI(0x18) |
DPAUX_HYBRID_PADCTL_AUX_INPUT_RCV |
DPAUX_HYBRID_PADCTL_MODE_AUX;
tegra_dpaux_writel(dpaux, value, DPAUX_HYBRID_PADCTL);
value = tegra_dpaux_readl(dpaux, DPAUX_HYBRID_SPARE);
value &= ~DPAUX_HYBRID_SPARE_PAD_POWER_DOWN;
tegra_dpaux_writel(dpaux, value, DPAUX_HYBRID_SPARE);
return 0;
}
int tegra_dpaux_disable(struct tegra_dpaux *dpaux)
{
u32 value;
value = tegra_dpaux_readl(dpaux, DPAUX_HYBRID_SPARE);
value |= DPAUX_HYBRID_SPARE_PAD_POWER_DOWN;
tegra_dpaux_writel(dpaux, value, DPAUX_HYBRID_SPARE);
return 0;
}
int tegra_dpaux_prepare(struct tegra_dpaux *dpaux, u8 encoding)
{
int err;
err = drm_dp_dpcd_writeb(&dpaux->aux, DP_MAIN_LINK_CHANNEL_CODING_SET,
encoding);
if (err < 0)
return err;
return 0;
}
int tegra_dpaux_train(struct tegra_dpaux *dpaux, struct drm_dp_link *link,
u8 pattern)
{
u8 tp = pattern & DP_TRAINING_PATTERN_MASK;
u8 status[DP_LINK_STATUS_SIZE], values[4];
unsigned int i;
int err;
err = drm_dp_dpcd_writeb(&dpaux->aux, DP_TRAINING_PATTERN_SET, pattern);
if (err < 0)
return err;
if (tp == DP_TRAINING_PATTERN_DISABLE)
return 0;
for (i = 0; i < link->num_lanes; i++)
values[i] = DP_TRAIN_MAX_PRE_EMPHASIS_REACHED |
DP_TRAIN_PRE_EMPH_LEVEL_0 |
DP_TRAIN_MAX_SWING_REACHED |
DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
err = drm_dp_dpcd_write(&dpaux->aux, DP_TRAINING_LANE0_SET, values,
link->num_lanes);
if (err < 0)
return err;
usleep_range(500, 1000);
err = drm_dp_dpcd_read_link_status(&dpaux->aux, status);
if (err < 0)
return err;
switch (tp) {
case DP_TRAINING_PATTERN_1:
if (!drm_dp_clock_recovery_ok(status, link->num_lanes))
return -EAGAIN;
break;
case DP_TRAINING_PATTERN_2:
if (!drm_dp_channel_eq_ok(status, link->num_lanes))
return -EAGAIN;
break;
default:
dev_err(dpaux->dev, "unsupported training pattern %u\n", tp);
return -EINVAL;
}
err = drm_dp_dpcd_writeb(&dpaux->aux, DP_EDP_CONFIGURATION_SET, 0);
if (err < 0)
return err;
return 0;
}