mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 12:19:26 +07:00
b02c2b0bfd
Usually dma_supported decisions are done by the dma_map_ops instance. Switch sparc to that model by providing a ->dma_supported instance for sbus that always returns false, and implementations tailored to the sun4u and sun4v cases for sparc64, and leave it unimplemented for PCI on sparc32, which means always supported. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: David S. Miller <davem@davemloft.net>
702 lines
18 KiB
C
702 lines
18 KiB
C
/*
|
|
* ioport.c: Simple io mapping allocator.
|
|
*
|
|
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
|
|
* Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
|
|
*
|
|
* 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
|
|
*
|
|
* 2000/01/29
|
|
* <rth> zait: as long as pci_alloc_consistent produces something addressable,
|
|
* things are ok.
|
|
* <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
|
|
* pointer into the big page mapping
|
|
* <rth> zait: so what?
|
|
* <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
|
|
* <zaitcev> Hmm
|
|
* <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
|
|
* So far so good.
|
|
* <zaitcev> Now, driver calls pci_free_consistent(with result of
|
|
* remap_it_my_way()).
|
|
* <zaitcev> How do you find the address to pass to free_pages()?
|
|
* <rth> zait: walk the page tables? It's only two or three level after all.
|
|
* <rth> zait: you have to walk them anyway to remove the mapping.
|
|
* <zaitcev> Hmm
|
|
* <zaitcev> Sounds reasonable
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pci.h> /* struct pci_dev */
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/of_device.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/vaddrs.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/io-unit.h>
|
|
#include <asm/leon.h>
|
|
|
|
const struct sparc32_dma_ops *sparc32_dma_ops;
|
|
|
|
/* This function must make sure that caches and memory are coherent after DMA
|
|
* On LEON systems without cache snooping it flushes the entire D-CACHE.
|
|
*/
|
|
static inline void dma_make_coherent(unsigned long pa, unsigned long len)
|
|
{
|
|
if (sparc_cpu_model == sparc_leon) {
|
|
if (!sparc_leon3_snooping_enabled())
|
|
leon_flush_dcache_all();
|
|
}
|
|
}
|
|
|
|
static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
|
|
static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
|
|
unsigned long size, char *name);
|
|
static void _sparc_free_io(struct resource *res);
|
|
|
|
static void register_proc_sparc_ioport(void);
|
|
|
|
/* This points to the next to use virtual memory for DVMA mappings */
|
|
static struct resource _sparc_dvma = {
|
|
.name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
|
|
};
|
|
/* This points to the start of I/O mappings, cluable from outside. */
|
|
/*ext*/ struct resource sparc_iomap = {
|
|
.name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
|
|
};
|
|
|
|
/*
|
|
* Our mini-allocator...
|
|
* Boy this is gross! We need it because we must map I/O for
|
|
* timers and interrupt controller before the kmalloc is available.
|
|
*/
|
|
|
|
#define XNMLN 15
|
|
#define XNRES 10 /* SS-10 uses 8 */
|
|
|
|
struct xresource {
|
|
struct resource xres; /* Must be first */
|
|
int xflag; /* 1 == used */
|
|
char xname[XNMLN+1];
|
|
};
|
|
|
|
static struct xresource xresv[XNRES];
|
|
|
|
static struct xresource *xres_alloc(void) {
|
|
struct xresource *xrp;
|
|
int n;
|
|
|
|
xrp = xresv;
|
|
for (n = 0; n < XNRES; n++) {
|
|
if (xrp->xflag == 0) {
|
|
xrp->xflag = 1;
|
|
return xrp;
|
|
}
|
|
xrp++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void xres_free(struct xresource *xrp) {
|
|
xrp->xflag = 0;
|
|
}
|
|
|
|
/*
|
|
* These are typically used in PCI drivers
|
|
* which are trying to be cross-platform.
|
|
*
|
|
* Bus type is always zero on IIep.
|
|
*/
|
|
void __iomem *ioremap(unsigned long offset, unsigned long size)
|
|
{
|
|
char name[14];
|
|
|
|
sprintf(name, "phys_%08x", (u32)offset);
|
|
return _sparc_alloc_io(0, offset, size, name);
|
|
}
|
|
EXPORT_SYMBOL(ioremap);
|
|
|
|
/*
|
|
* Complementary to ioremap().
|
|
*/
|
|
void iounmap(volatile void __iomem *virtual)
|
|
{
|
|
unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
|
|
struct resource *res;
|
|
|
|
/*
|
|
* XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
|
|
* This probably warrants some sort of hashing.
|
|
*/
|
|
if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) {
|
|
printk("free_io/iounmap: cannot free %lx\n", vaddr);
|
|
return;
|
|
}
|
|
_sparc_free_io(res);
|
|
|
|
if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
|
|
xres_free((struct xresource *)res);
|
|
} else {
|
|
kfree(res);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(iounmap);
|
|
|
|
void __iomem *of_ioremap(struct resource *res, unsigned long offset,
|
|
unsigned long size, char *name)
|
|
{
|
|
return _sparc_alloc_io(res->flags & 0xF,
|
|
res->start + offset,
|
|
size, name);
|
|
}
|
|
EXPORT_SYMBOL(of_ioremap);
|
|
|
|
void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
|
|
{
|
|
iounmap(base);
|
|
}
|
|
EXPORT_SYMBOL(of_iounmap);
|
|
|
|
/*
|
|
* Meat of mapping
|
|
*/
|
|
static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
|
|
unsigned long size, char *name)
|
|
{
|
|
static int printed_full;
|
|
struct xresource *xres;
|
|
struct resource *res;
|
|
char *tack;
|
|
int tlen;
|
|
void __iomem *va; /* P3 diag */
|
|
|
|
if (name == NULL) name = "???";
|
|
|
|
if ((xres = xres_alloc()) != NULL) {
|
|
tack = xres->xname;
|
|
res = &xres->xres;
|
|
} else {
|
|
if (!printed_full) {
|
|
printk("ioremap: done with statics, switching to malloc\n");
|
|
printed_full = 1;
|
|
}
|
|
tlen = strlen(name);
|
|
tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
|
|
if (tack == NULL) return NULL;
|
|
memset(tack, 0, sizeof(struct resource));
|
|
res = (struct resource *) tack;
|
|
tack += sizeof (struct resource);
|
|
}
|
|
|
|
strlcpy(tack, name, XNMLN+1);
|
|
res->name = tack;
|
|
|
|
va = _sparc_ioremap(res, busno, phys, size);
|
|
/* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
|
|
return va;
|
|
}
|
|
|
|
/*
|
|
*/
|
|
static void __iomem *
|
|
_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
|
|
{
|
|
unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
|
|
|
|
if (allocate_resource(&sparc_iomap, res,
|
|
(offset + sz + PAGE_SIZE-1) & PAGE_MASK,
|
|
sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
|
|
/* Usually we cannot see printks in this case. */
|
|
prom_printf("alloc_io_res(%s): cannot occupy\n",
|
|
(res->name != NULL)? res->name: "???");
|
|
prom_halt();
|
|
}
|
|
|
|
pa &= PAGE_MASK;
|
|
srmmu_mapiorange(bus, pa, res->start, resource_size(res));
|
|
|
|
return (void __iomem *)(unsigned long)(res->start + offset);
|
|
}
|
|
|
|
/*
|
|
* Complementary to _sparc_ioremap().
|
|
*/
|
|
static void _sparc_free_io(struct resource *res)
|
|
{
|
|
unsigned long plen;
|
|
|
|
plen = resource_size(res);
|
|
BUG_ON((plen & (PAGE_SIZE-1)) != 0);
|
|
srmmu_unmapiorange(res->start, plen);
|
|
release_resource(res);
|
|
}
|
|
|
|
#ifdef CONFIG_SBUS
|
|
|
|
void sbus_set_sbus64(struct device *dev, int x)
|
|
{
|
|
printk("sbus_set_sbus64: unsupported\n");
|
|
}
|
|
EXPORT_SYMBOL(sbus_set_sbus64);
|
|
|
|
/*
|
|
* Allocate a chunk of memory suitable for DMA.
|
|
* Typically devices use them for control blocks.
|
|
* CPU may access them without any explicit flushing.
|
|
*/
|
|
static void *sbus_alloc_coherent(struct device *dev, size_t len,
|
|
dma_addr_t *dma_addrp, gfp_t gfp,
|
|
unsigned long attrs)
|
|
{
|
|
struct platform_device *op = to_platform_device(dev);
|
|
unsigned long len_total = PAGE_ALIGN(len);
|
|
unsigned long va;
|
|
struct resource *res;
|
|
int order;
|
|
|
|
/* XXX why are some lengths signed, others unsigned? */
|
|
if (len <= 0) {
|
|
return NULL;
|
|
}
|
|
/* XXX So what is maxphys for us and how do drivers know it? */
|
|
if (len > 256*1024) { /* __get_free_pages() limit */
|
|
return NULL;
|
|
}
|
|
|
|
order = get_order(len_total);
|
|
va = __get_free_pages(gfp, order);
|
|
if (va == 0)
|
|
goto err_nopages;
|
|
|
|
if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
|
|
goto err_nomem;
|
|
|
|
if (allocate_resource(&_sparc_dvma, res, len_total,
|
|
_sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
|
|
printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
|
|
goto err_nova;
|
|
}
|
|
|
|
// XXX The sbus_map_dma_area does this for us below, see comments.
|
|
// srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
|
|
/*
|
|
* XXX That's where sdev would be used. Currently we load
|
|
* all iommu tables with the same translations.
|
|
*/
|
|
if (sbus_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
|
|
goto err_noiommu;
|
|
|
|
res->name = op->dev.of_node->name;
|
|
|
|
return (void *)(unsigned long)res->start;
|
|
|
|
err_noiommu:
|
|
release_resource(res);
|
|
err_nova:
|
|
kfree(res);
|
|
err_nomem:
|
|
free_pages(va, order);
|
|
err_nopages:
|
|
return NULL;
|
|
}
|
|
|
|
static void sbus_free_coherent(struct device *dev, size_t n, void *p,
|
|
dma_addr_t ba, unsigned long attrs)
|
|
{
|
|
struct resource *res;
|
|
struct page *pgv;
|
|
|
|
if ((res = lookup_resource(&_sparc_dvma,
|
|
(unsigned long)p)) == NULL) {
|
|
printk("sbus_free_consistent: cannot free %p\n", p);
|
|
return;
|
|
}
|
|
|
|
if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
|
|
printk("sbus_free_consistent: unaligned va %p\n", p);
|
|
return;
|
|
}
|
|
|
|
n = PAGE_ALIGN(n);
|
|
if (resource_size(res) != n) {
|
|
printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
|
|
(long)resource_size(res), n);
|
|
return;
|
|
}
|
|
|
|
release_resource(res);
|
|
kfree(res);
|
|
|
|
pgv = virt_to_page(p);
|
|
sbus_unmap_dma_area(dev, ba, n);
|
|
|
|
__free_pages(pgv, get_order(n));
|
|
}
|
|
|
|
/*
|
|
* Map a chunk of memory so that devices can see it.
|
|
* CPU view of this memory may be inconsistent with
|
|
* a device view and explicit flushing is necessary.
|
|
*/
|
|
static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t len,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
void *va = page_address(page) + offset;
|
|
|
|
/* XXX why are some lengths signed, others unsigned? */
|
|
if (len <= 0) {
|
|
return 0;
|
|
}
|
|
/* XXX So what is maxphys for us and how do drivers know it? */
|
|
if (len > 256*1024) { /* __get_free_pages() limit */
|
|
return 0;
|
|
}
|
|
return mmu_get_scsi_one(dev, va, len);
|
|
}
|
|
|
|
static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
mmu_release_scsi_one(dev, ba, n);
|
|
}
|
|
|
|
static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
mmu_get_scsi_sgl(dev, sg, n);
|
|
return n;
|
|
}
|
|
|
|
static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
mmu_release_scsi_sgl(dev, sg, n);
|
|
}
|
|
|
|
static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
int n, enum dma_data_direction dir)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
int n, enum dma_data_direction dir)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
static int sbus_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static const struct dma_map_ops sbus_dma_ops = {
|
|
.alloc = sbus_alloc_coherent,
|
|
.free = sbus_free_coherent,
|
|
.map_page = sbus_map_page,
|
|
.unmap_page = sbus_unmap_page,
|
|
.map_sg = sbus_map_sg,
|
|
.unmap_sg = sbus_unmap_sg,
|
|
.sync_sg_for_cpu = sbus_sync_sg_for_cpu,
|
|
.sync_sg_for_device = sbus_sync_sg_for_device,
|
|
.dma_supported = sbus_dma_supported,
|
|
};
|
|
|
|
static int __init sparc_register_ioport(void)
|
|
{
|
|
register_proc_sparc_ioport();
|
|
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(sparc_register_ioport);
|
|
|
|
#endif /* CONFIG_SBUS */
|
|
|
|
|
|
/* Allocate and map kernel buffer using consistent mode DMA for a device.
|
|
* hwdev should be valid struct pci_dev pointer for PCI devices.
|
|
*/
|
|
static void *pci32_alloc_coherent(struct device *dev, size_t len,
|
|
dma_addr_t *pba, gfp_t gfp,
|
|
unsigned long attrs)
|
|
{
|
|
unsigned long len_total = PAGE_ALIGN(len);
|
|
void *va;
|
|
struct resource *res;
|
|
int order;
|
|
|
|
if (len == 0) {
|
|
return NULL;
|
|
}
|
|
if (len > 256*1024) { /* __get_free_pages() limit */
|
|
return NULL;
|
|
}
|
|
|
|
order = get_order(len_total);
|
|
va = (void *) __get_free_pages(gfp, order);
|
|
if (va == NULL) {
|
|
printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
|
|
goto err_nopages;
|
|
}
|
|
|
|
if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
|
|
printk("pci_alloc_consistent: no core\n");
|
|
goto err_nomem;
|
|
}
|
|
|
|
if (allocate_resource(&_sparc_dvma, res, len_total,
|
|
_sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
|
|
printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
|
|
goto err_nova;
|
|
}
|
|
srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
|
|
|
|
*pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
|
|
return (void *) res->start;
|
|
|
|
err_nova:
|
|
kfree(res);
|
|
err_nomem:
|
|
free_pages((unsigned long)va, order);
|
|
err_nopages:
|
|
return NULL;
|
|
}
|
|
|
|
/* Free and unmap a consistent DMA buffer.
|
|
* cpu_addr is what was returned from pci_alloc_consistent,
|
|
* size must be the same as what as passed into pci_alloc_consistent,
|
|
* and likewise dma_addr must be the same as what *dma_addrp was set to.
|
|
*
|
|
* References to the memory and mappings associated with cpu_addr/dma_addr
|
|
* past this call are illegal.
|
|
*/
|
|
static void pci32_free_coherent(struct device *dev, size_t n, void *p,
|
|
dma_addr_t ba, unsigned long attrs)
|
|
{
|
|
struct resource *res;
|
|
|
|
if ((res = lookup_resource(&_sparc_dvma,
|
|
(unsigned long)p)) == NULL) {
|
|
printk("pci_free_consistent: cannot free %p\n", p);
|
|
return;
|
|
}
|
|
|
|
if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
|
|
printk("pci_free_consistent: unaligned va %p\n", p);
|
|
return;
|
|
}
|
|
|
|
n = PAGE_ALIGN(n);
|
|
if (resource_size(res) != n) {
|
|
printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
|
|
(long)resource_size(res), (long)n);
|
|
return;
|
|
}
|
|
|
|
dma_make_coherent(ba, n);
|
|
srmmu_unmapiorange((unsigned long)p, n);
|
|
|
|
release_resource(res);
|
|
kfree(res);
|
|
free_pages((unsigned long)phys_to_virt(ba), get_order(n));
|
|
}
|
|
|
|
/*
|
|
* Same as pci_map_single, but with pages.
|
|
*/
|
|
static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
/* IIep is write-through, not flushing. */
|
|
return page_to_phys(page) + offset;
|
|
}
|
|
|
|
static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
dma_make_coherent(ba, PAGE_ALIGN(size));
|
|
}
|
|
|
|
/* Map a set of buffers described by scatterlist in streaming
|
|
* mode for DMA. This is the scatter-gather version of the
|
|
* above pci_map_single interface. Here the scatter gather list
|
|
* elements are each tagged with the appropriate dma address
|
|
* and length. They are obtained via sg_dma_{address,length}(SG).
|
|
*
|
|
* NOTE: An implementation may be able to use a smaller number of
|
|
* DMA address/length pairs than there are SG table elements.
|
|
* (for example via virtual mapping capabilities)
|
|
* The routine returns the number of addr/length pairs actually
|
|
* used, at most nents.
|
|
*
|
|
* Device ownership issues as mentioned above for pci_map_single are
|
|
* the same here.
|
|
*/
|
|
static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
|
|
int nents, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int n;
|
|
|
|
/* IIep is write-through, not flushing. */
|
|
for_each_sg(sgl, sg, nents, n) {
|
|
sg->dma_address = sg_phys(sg);
|
|
sg->dma_length = sg->length;
|
|
}
|
|
return nents;
|
|
}
|
|
|
|
/* Unmap a set of streaming mode DMA translations.
|
|
* Again, cpu read rules concerning calls here are the same as for
|
|
* pci_unmap_single() above.
|
|
*/
|
|
static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
|
|
int nents, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int n;
|
|
|
|
if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
|
|
for_each_sg(sgl, sg, nents, n) {
|
|
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make physical memory consistent for a single
|
|
* streaming mode DMA translation before or after a transfer.
|
|
*
|
|
* If you perform a pci_map_single() but wish to interrogate the
|
|
* buffer using the cpu, yet do not wish to teardown the PCI dma
|
|
* mapping, you must call this function before doing so. At the
|
|
* next point you give the PCI dma address back to the card, you
|
|
* must first perform a pci_dma_sync_for_device, and then the
|
|
* device again owns the buffer.
|
|
*/
|
|
static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
if (dir != PCI_DMA_TODEVICE) {
|
|
dma_make_coherent(ba, PAGE_ALIGN(size));
|
|
}
|
|
}
|
|
|
|
static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
if (dir != PCI_DMA_TODEVICE) {
|
|
dma_make_coherent(ba, PAGE_ALIGN(size));
|
|
}
|
|
}
|
|
|
|
/* Make physical memory consistent for a set of streaming
|
|
* mode DMA translations after a transfer.
|
|
*
|
|
* The same as pci_dma_sync_single_* but for a scatter-gather list,
|
|
* same rules and usage.
|
|
*/
|
|
static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int n;
|
|
|
|
if (dir != PCI_DMA_TODEVICE) {
|
|
for_each_sg(sgl, sg, nents, n) {
|
|
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int n;
|
|
|
|
if (dir != PCI_DMA_TODEVICE) {
|
|
for_each_sg(sgl, sg, nents, n) {
|
|
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* note: leon re-uses pci32_dma_ops */
|
|
const struct dma_map_ops pci32_dma_ops = {
|
|
.alloc = pci32_alloc_coherent,
|
|
.free = pci32_free_coherent,
|
|
.map_page = pci32_map_page,
|
|
.unmap_page = pci32_unmap_page,
|
|
.map_sg = pci32_map_sg,
|
|
.unmap_sg = pci32_unmap_sg,
|
|
.sync_single_for_cpu = pci32_sync_single_for_cpu,
|
|
.sync_single_for_device = pci32_sync_single_for_device,
|
|
.sync_sg_for_cpu = pci32_sync_sg_for_cpu,
|
|
.sync_sg_for_device = pci32_sync_sg_for_device,
|
|
};
|
|
EXPORT_SYMBOL(pci32_dma_ops);
|
|
|
|
const struct dma_map_ops *dma_ops = &sbus_dma_ops;
|
|
EXPORT_SYMBOL(dma_ops);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
static int sparc_io_proc_show(struct seq_file *m, void *v)
|
|
{
|
|
struct resource *root = m->private, *r;
|
|
const char *nm;
|
|
|
|
for (r = root->child; r != NULL; r = r->sibling) {
|
|
if ((nm = r->name) == NULL) nm = "???";
|
|
seq_printf(m, "%016llx-%016llx: %s\n",
|
|
(unsigned long long)r->start,
|
|
(unsigned long long)r->end, nm);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sparc_io_proc_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, sparc_io_proc_show, PDE_DATA(inode));
|
|
}
|
|
|
|
static const struct file_operations sparc_io_proc_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = sparc_io_proc_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
static void register_proc_sparc_ioport(void)
|
|
{
|
|
#ifdef CONFIG_PROC_FS
|
|
proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
|
|
proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
|
|
#endif
|
|
}
|