mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
3be3f61d25
For s390 new kernels are loaded to fixed addresses in memory before they are booted. With the current code this is a problem as it assumes the kernel will be loaded to an 'arbitrary' address. In particular, kexec_locate_mem_hole searches for a large enough memory region and sets the load address (kexec_bufer->mem) to it. Luckily there is a simple workaround for this problem. By returning 1 in arch_kexec_walk_mem, kexec_locate_mem_hole is turned off. This allows the architecture to set kbuf->mem by hand. While the trick works fine for the kernel it does not for the purgatory as here the architectures don't have access to its kexec_buffer. Give architectures access to the purgatories kexec_buffer by changing kexec_load_purgatory to take a pointer to it. With this change architectures have access to the buffer and can edit it as they need. A nice side effect of this change is that we can get rid of the purgatory_info->purgatory_load_address field. As now the information stored there can directly be accessed from kbuf->mem. Link: http://lkml.kernel.org/r/20180321112751.22196-11-prudo@linux.vnet.ibm.com Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com> Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
665 lines
18 KiB
C
665 lines
18 KiB
C
/*
|
|
* Load ELF vmlinux file for the kexec_file_load syscall.
|
|
*
|
|
* Copyright (C) 2004 Adam Litke (agl@us.ibm.com)
|
|
* Copyright (C) 2004 IBM Corp.
|
|
* Copyright (C) 2005 R Sharada (sharada@in.ibm.com)
|
|
* Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com)
|
|
* Copyright (C) 2016 IBM Corporation
|
|
*
|
|
* Based on kexec-tools' kexec-elf-exec.c and kexec-elf-ppc64.c.
|
|
* Heavily modified for the kernel by
|
|
* Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation (version 2 of the License).
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kexec_elf: " fmt
|
|
|
|
#include <linux/elf.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
|
|
#define PURGATORY_STACK_SIZE (16 * 1024)
|
|
|
|
#define elf_addr_to_cpu elf64_to_cpu
|
|
|
|
#ifndef Elf_Rel
|
|
#define Elf_Rel Elf64_Rel
|
|
#endif /* Elf_Rel */
|
|
|
|
struct elf_info {
|
|
/*
|
|
* Where the ELF binary contents are kept.
|
|
* Memory managed by the user of the struct.
|
|
*/
|
|
const char *buffer;
|
|
|
|
const struct elfhdr *ehdr;
|
|
const struct elf_phdr *proghdrs;
|
|
struct elf_shdr *sechdrs;
|
|
};
|
|
|
|
static inline bool elf_is_elf_file(const struct elfhdr *ehdr)
|
|
{
|
|
return memcmp(ehdr->e_ident, ELFMAG, SELFMAG) == 0;
|
|
}
|
|
|
|
static uint64_t elf64_to_cpu(const struct elfhdr *ehdr, uint64_t value)
|
|
{
|
|
if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
|
|
value = le64_to_cpu(value);
|
|
else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
|
|
value = be64_to_cpu(value);
|
|
|
|
return value;
|
|
}
|
|
|
|
static uint16_t elf16_to_cpu(const struct elfhdr *ehdr, uint16_t value)
|
|
{
|
|
if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
|
|
value = le16_to_cpu(value);
|
|
else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
|
|
value = be16_to_cpu(value);
|
|
|
|
return value;
|
|
}
|
|
|
|
static uint32_t elf32_to_cpu(const struct elfhdr *ehdr, uint32_t value)
|
|
{
|
|
if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
|
|
value = le32_to_cpu(value);
|
|
else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
|
|
value = be32_to_cpu(value);
|
|
|
|
return value;
|
|
}
|
|
|
|
/**
|
|
* elf_is_ehdr_sane - check that it is safe to use the ELF header
|
|
* @buf_len: size of the buffer in which the ELF file is loaded.
|
|
*/
|
|
static bool elf_is_ehdr_sane(const struct elfhdr *ehdr, size_t buf_len)
|
|
{
|
|
if (ehdr->e_phnum > 0 && ehdr->e_phentsize != sizeof(struct elf_phdr)) {
|
|
pr_debug("Bad program header size.\n");
|
|
return false;
|
|
} else if (ehdr->e_shnum > 0 &&
|
|
ehdr->e_shentsize != sizeof(struct elf_shdr)) {
|
|
pr_debug("Bad section header size.\n");
|
|
return false;
|
|
} else if (ehdr->e_ident[EI_VERSION] != EV_CURRENT ||
|
|
ehdr->e_version != EV_CURRENT) {
|
|
pr_debug("Unknown ELF version.\n");
|
|
return false;
|
|
}
|
|
|
|
if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) {
|
|
size_t phdr_size;
|
|
|
|
/*
|
|
* e_phnum is at most 65535 so calculating the size of the
|
|
* program header cannot overflow.
|
|
*/
|
|
phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum;
|
|
|
|
/* Sanity check the program header table location. */
|
|
if (ehdr->e_phoff + phdr_size < ehdr->e_phoff) {
|
|
pr_debug("Program headers at invalid location.\n");
|
|
return false;
|
|
} else if (ehdr->e_phoff + phdr_size > buf_len) {
|
|
pr_debug("Program headers truncated.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) {
|
|
size_t shdr_size;
|
|
|
|
/*
|
|
* e_shnum is at most 65536 so calculating
|
|
* the size of the section header cannot overflow.
|
|
*/
|
|
shdr_size = sizeof(struct elf_shdr) * ehdr->e_shnum;
|
|
|
|
/* Sanity check the section header table location. */
|
|
if (ehdr->e_shoff + shdr_size < ehdr->e_shoff) {
|
|
pr_debug("Section headers at invalid location.\n");
|
|
return false;
|
|
} else if (ehdr->e_shoff + shdr_size > buf_len) {
|
|
pr_debug("Section headers truncated.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int elf_read_ehdr(const char *buf, size_t len, struct elfhdr *ehdr)
|
|
{
|
|
struct elfhdr *buf_ehdr;
|
|
|
|
if (len < sizeof(*buf_ehdr)) {
|
|
pr_debug("Buffer is too small to hold ELF header.\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
memset(ehdr, 0, sizeof(*ehdr));
|
|
memcpy(ehdr->e_ident, buf, sizeof(ehdr->e_ident));
|
|
if (!elf_is_elf_file(ehdr)) {
|
|
pr_debug("No ELF header magic.\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (ehdr->e_ident[EI_CLASS] != ELF_CLASS) {
|
|
pr_debug("Not a supported ELF class.\n");
|
|
return -ENOEXEC;
|
|
} else if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
|
|
ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
|
|
pr_debug("Not a supported ELF data format.\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
buf_ehdr = (struct elfhdr *) buf;
|
|
if (elf16_to_cpu(ehdr, buf_ehdr->e_ehsize) != sizeof(*buf_ehdr)) {
|
|
pr_debug("Bad ELF header size.\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
ehdr->e_type = elf16_to_cpu(ehdr, buf_ehdr->e_type);
|
|
ehdr->e_machine = elf16_to_cpu(ehdr, buf_ehdr->e_machine);
|
|
ehdr->e_version = elf32_to_cpu(ehdr, buf_ehdr->e_version);
|
|
ehdr->e_entry = elf_addr_to_cpu(ehdr, buf_ehdr->e_entry);
|
|
ehdr->e_phoff = elf_addr_to_cpu(ehdr, buf_ehdr->e_phoff);
|
|
ehdr->e_shoff = elf_addr_to_cpu(ehdr, buf_ehdr->e_shoff);
|
|
ehdr->e_flags = elf32_to_cpu(ehdr, buf_ehdr->e_flags);
|
|
ehdr->e_phentsize = elf16_to_cpu(ehdr, buf_ehdr->e_phentsize);
|
|
ehdr->e_phnum = elf16_to_cpu(ehdr, buf_ehdr->e_phnum);
|
|
ehdr->e_shentsize = elf16_to_cpu(ehdr, buf_ehdr->e_shentsize);
|
|
ehdr->e_shnum = elf16_to_cpu(ehdr, buf_ehdr->e_shnum);
|
|
ehdr->e_shstrndx = elf16_to_cpu(ehdr, buf_ehdr->e_shstrndx);
|
|
|
|
return elf_is_ehdr_sane(ehdr, len) ? 0 : -ENOEXEC;
|
|
}
|
|
|
|
/**
|
|
* elf_is_phdr_sane - check that it is safe to use the program header
|
|
* @buf_len: size of the buffer in which the ELF file is loaded.
|
|
*/
|
|
static bool elf_is_phdr_sane(const struct elf_phdr *phdr, size_t buf_len)
|
|
{
|
|
|
|
if (phdr->p_offset + phdr->p_filesz < phdr->p_offset) {
|
|
pr_debug("ELF segment location wraps around.\n");
|
|
return false;
|
|
} else if (phdr->p_offset + phdr->p_filesz > buf_len) {
|
|
pr_debug("ELF segment not in file.\n");
|
|
return false;
|
|
} else if (phdr->p_paddr + phdr->p_memsz < phdr->p_paddr) {
|
|
pr_debug("ELF segment address wraps around.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int elf_read_phdr(const char *buf, size_t len, struct elf_info *elf_info,
|
|
int idx)
|
|
{
|
|
/* Override the const in proghdrs, we are the ones doing the loading. */
|
|
struct elf_phdr *phdr = (struct elf_phdr *) &elf_info->proghdrs[idx];
|
|
const char *pbuf;
|
|
struct elf_phdr *buf_phdr;
|
|
|
|
pbuf = buf + elf_info->ehdr->e_phoff + (idx * sizeof(*buf_phdr));
|
|
buf_phdr = (struct elf_phdr *) pbuf;
|
|
|
|
phdr->p_type = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_type);
|
|
phdr->p_offset = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_offset);
|
|
phdr->p_paddr = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_paddr);
|
|
phdr->p_vaddr = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_vaddr);
|
|
phdr->p_flags = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_flags);
|
|
|
|
/*
|
|
* The following fields have a type equivalent to Elf_Addr
|
|
* both in 32 bit and 64 bit ELF.
|
|
*/
|
|
phdr->p_filesz = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_filesz);
|
|
phdr->p_memsz = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_memsz);
|
|
phdr->p_align = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_align);
|
|
|
|
return elf_is_phdr_sane(phdr, len) ? 0 : -ENOEXEC;
|
|
}
|
|
|
|
/**
|
|
* elf_read_phdrs - read the program headers from the buffer
|
|
*
|
|
* This function assumes that the program header table was checked for sanity.
|
|
* Use elf_is_ehdr_sane() if it wasn't.
|
|
*/
|
|
static int elf_read_phdrs(const char *buf, size_t len,
|
|
struct elf_info *elf_info)
|
|
{
|
|
size_t phdr_size, i;
|
|
const struct elfhdr *ehdr = elf_info->ehdr;
|
|
|
|
/*
|
|
* e_phnum is at most 65535 so calculating the size of the
|
|
* program header cannot overflow.
|
|
*/
|
|
phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum;
|
|
|
|
elf_info->proghdrs = kzalloc(phdr_size, GFP_KERNEL);
|
|
if (!elf_info->proghdrs)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < ehdr->e_phnum; i++) {
|
|
int ret;
|
|
|
|
ret = elf_read_phdr(buf, len, elf_info, i);
|
|
if (ret) {
|
|
kfree(elf_info->proghdrs);
|
|
elf_info->proghdrs = NULL;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* elf_is_shdr_sane - check that it is safe to use the section header
|
|
* @buf_len: size of the buffer in which the ELF file is loaded.
|
|
*/
|
|
static bool elf_is_shdr_sane(const struct elf_shdr *shdr, size_t buf_len)
|
|
{
|
|
bool size_ok;
|
|
|
|
/* SHT_NULL headers have undefined values, so we can't check them. */
|
|
if (shdr->sh_type == SHT_NULL)
|
|
return true;
|
|
|
|
/* Now verify sh_entsize */
|
|
switch (shdr->sh_type) {
|
|
case SHT_SYMTAB:
|
|
size_ok = shdr->sh_entsize == sizeof(Elf_Sym);
|
|
break;
|
|
case SHT_RELA:
|
|
size_ok = shdr->sh_entsize == sizeof(Elf_Rela);
|
|
break;
|
|
case SHT_DYNAMIC:
|
|
size_ok = shdr->sh_entsize == sizeof(Elf_Dyn);
|
|
break;
|
|
case SHT_REL:
|
|
size_ok = shdr->sh_entsize == sizeof(Elf_Rel);
|
|
break;
|
|
case SHT_NOTE:
|
|
case SHT_PROGBITS:
|
|
case SHT_HASH:
|
|
case SHT_NOBITS:
|
|
default:
|
|
/*
|
|
* This is a section whose entsize requirements
|
|
* I don't care about. If I don't know about
|
|
* the section I can't care about it's entsize
|
|
* requirements.
|
|
*/
|
|
size_ok = true;
|
|
break;
|
|
}
|
|
|
|
if (!size_ok) {
|
|
pr_debug("ELF section with wrong entry size.\n");
|
|
return false;
|
|
} else if (shdr->sh_addr + shdr->sh_size < shdr->sh_addr) {
|
|
pr_debug("ELF section address wraps around.\n");
|
|
return false;
|
|
}
|
|
|
|
if (shdr->sh_type != SHT_NOBITS) {
|
|
if (shdr->sh_offset + shdr->sh_size < shdr->sh_offset) {
|
|
pr_debug("ELF section location wraps around.\n");
|
|
return false;
|
|
} else if (shdr->sh_offset + shdr->sh_size > buf_len) {
|
|
pr_debug("ELF section not in file.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int elf_read_shdr(const char *buf, size_t len, struct elf_info *elf_info,
|
|
int idx)
|
|
{
|
|
struct elf_shdr *shdr = &elf_info->sechdrs[idx];
|
|
const struct elfhdr *ehdr = elf_info->ehdr;
|
|
const char *sbuf;
|
|
struct elf_shdr *buf_shdr;
|
|
|
|
sbuf = buf + ehdr->e_shoff + idx * sizeof(*buf_shdr);
|
|
buf_shdr = (struct elf_shdr *) sbuf;
|
|
|
|
shdr->sh_name = elf32_to_cpu(ehdr, buf_shdr->sh_name);
|
|
shdr->sh_type = elf32_to_cpu(ehdr, buf_shdr->sh_type);
|
|
shdr->sh_addr = elf_addr_to_cpu(ehdr, buf_shdr->sh_addr);
|
|
shdr->sh_offset = elf_addr_to_cpu(ehdr, buf_shdr->sh_offset);
|
|
shdr->sh_link = elf32_to_cpu(ehdr, buf_shdr->sh_link);
|
|
shdr->sh_info = elf32_to_cpu(ehdr, buf_shdr->sh_info);
|
|
|
|
/*
|
|
* The following fields have a type equivalent to Elf_Addr
|
|
* both in 32 bit and 64 bit ELF.
|
|
*/
|
|
shdr->sh_flags = elf_addr_to_cpu(ehdr, buf_shdr->sh_flags);
|
|
shdr->sh_size = elf_addr_to_cpu(ehdr, buf_shdr->sh_size);
|
|
shdr->sh_addralign = elf_addr_to_cpu(ehdr, buf_shdr->sh_addralign);
|
|
shdr->sh_entsize = elf_addr_to_cpu(ehdr, buf_shdr->sh_entsize);
|
|
|
|
return elf_is_shdr_sane(shdr, len) ? 0 : -ENOEXEC;
|
|
}
|
|
|
|
/**
|
|
* elf_read_shdrs - read the section headers from the buffer
|
|
*
|
|
* This function assumes that the section header table was checked for sanity.
|
|
* Use elf_is_ehdr_sane() if it wasn't.
|
|
*/
|
|
static int elf_read_shdrs(const char *buf, size_t len,
|
|
struct elf_info *elf_info)
|
|
{
|
|
size_t shdr_size, i;
|
|
|
|
/*
|
|
* e_shnum is at most 65536 so calculating
|
|
* the size of the section header cannot overflow.
|
|
*/
|
|
shdr_size = sizeof(struct elf_shdr) * elf_info->ehdr->e_shnum;
|
|
|
|
elf_info->sechdrs = kzalloc(shdr_size, GFP_KERNEL);
|
|
if (!elf_info->sechdrs)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < elf_info->ehdr->e_shnum; i++) {
|
|
int ret;
|
|
|
|
ret = elf_read_shdr(buf, len, elf_info, i);
|
|
if (ret) {
|
|
kfree(elf_info->sechdrs);
|
|
elf_info->sechdrs = NULL;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* elf_read_from_buffer - read ELF file and sets up ELF header and ELF info
|
|
* @buf: Buffer to read ELF file from.
|
|
* @len: Size of @buf.
|
|
* @ehdr: Pointer to existing struct which will be populated.
|
|
* @elf_info: Pointer to existing struct which will be populated.
|
|
*
|
|
* This function allows reading ELF files with different byte order than
|
|
* the kernel, byte-swapping the fields as needed.
|
|
*
|
|
* Return:
|
|
* On success returns 0, and the caller should call elf_free_info(elf_info) to
|
|
* free the memory allocated for the section and program headers.
|
|
*/
|
|
int elf_read_from_buffer(const char *buf, size_t len, struct elfhdr *ehdr,
|
|
struct elf_info *elf_info)
|
|
{
|
|
int ret;
|
|
|
|
ret = elf_read_ehdr(buf, len, ehdr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
elf_info->buffer = buf;
|
|
elf_info->ehdr = ehdr;
|
|
if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) {
|
|
ret = elf_read_phdrs(buf, len, elf_info);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) {
|
|
ret = elf_read_shdrs(buf, len, elf_info);
|
|
if (ret) {
|
|
kfree(elf_info->proghdrs);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* elf_free_info - free memory allocated by elf_read_from_buffer
|
|
*/
|
|
void elf_free_info(struct elf_info *elf_info)
|
|
{
|
|
kfree(elf_info->proghdrs);
|
|
kfree(elf_info->sechdrs);
|
|
memset(elf_info, 0, sizeof(*elf_info));
|
|
}
|
|
/**
|
|
* build_elf_exec_info - read ELF executable and check that we can use it
|
|
*/
|
|
static int build_elf_exec_info(const char *buf, size_t len, struct elfhdr *ehdr,
|
|
struct elf_info *elf_info)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
ret = elf_read_from_buffer(buf, len, ehdr, elf_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Big endian vmlinux has type ET_DYN. */
|
|
if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) {
|
|
pr_err("Not an ELF executable.\n");
|
|
goto error;
|
|
} else if (!elf_info->proghdrs) {
|
|
pr_err("No ELF program header.\n");
|
|
goto error;
|
|
}
|
|
|
|
for (i = 0; i < ehdr->e_phnum; i++) {
|
|
/*
|
|
* Kexec does not support loading interpreters.
|
|
* In addition this check keeps us from attempting
|
|
* to kexec ordinay executables.
|
|
*/
|
|
if (elf_info->proghdrs[i].p_type == PT_INTERP) {
|
|
pr_err("Requires an ELF interpreter.\n");
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
elf_free_info(elf_info);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
static int elf64_probe(const char *buf, unsigned long len)
|
|
{
|
|
struct elfhdr ehdr;
|
|
struct elf_info elf_info;
|
|
int ret;
|
|
|
|
ret = build_elf_exec_info(buf, len, &ehdr, &elf_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
elf_free_info(&elf_info);
|
|
|
|
return elf_check_arch(&ehdr) ? 0 : -ENOEXEC;
|
|
}
|
|
|
|
/**
|
|
* elf_exec_load - load ELF executable image
|
|
* @lowest_load_addr: On return, will be the address where the first PT_LOAD
|
|
* section will be loaded in memory.
|
|
*
|
|
* Return:
|
|
* 0 on success, negative value on failure.
|
|
*/
|
|
static int elf_exec_load(struct kimage *image, struct elfhdr *ehdr,
|
|
struct elf_info *elf_info,
|
|
unsigned long *lowest_load_addr)
|
|
{
|
|
unsigned long base = 0, lowest_addr = UINT_MAX;
|
|
int ret;
|
|
size_t i;
|
|
struct kexec_buf kbuf = { .image = image, .buf_max = ppc64_rma_size,
|
|
.top_down = false };
|
|
|
|
/* Read in the PT_LOAD segments. */
|
|
for (i = 0; i < ehdr->e_phnum; i++) {
|
|
unsigned long load_addr;
|
|
size_t size;
|
|
const struct elf_phdr *phdr;
|
|
|
|
phdr = &elf_info->proghdrs[i];
|
|
if (phdr->p_type != PT_LOAD)
|
|
continue;
|
|
|
|
size = phdr->p_filesz;
|
|
if (size > phdr->p_memsz)
|
|
size = phdr->p_memsz;
|
|
|
|
kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
|
|
kbuf.bufsz = size;
|
|
kbuf.memsz = phdr->p_memsz;
|
|
kbuf.buf_align = phdr->p_align;
|
|
kbuf.buf_min = phdr->p_paddr + base;
|
|
ret = kexec_add_buffer(&kbuf);
|
|
if (ret)
|
|
goto out;
|
|
load_addr = kbuf.mem;
|
|
|
|
if (load_addr < lowest_addr)
|
|
lowest_addr = load_addr;
|
|
}
|
|
|
|
/* Update entry point to reflect new load address. */
|
|
ehdr->e_entry += base;
|
|
|
|
*lowest_load_addr = lowest_addr;
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void *elf64_load(struct kimage *image, char *kernel_buf,
|
|
unsigned long kernel_len, char *initrd,
|
|
unsigned long initrd_len, char *cmdline,
|
|
unsigned long cmdline_len)
|
|
{
|
|
int ret;
|
|
unsigned int fdt_size;
|
|
unsigned long kernel_load_addr;
|
|
unsigned long initrd_load_addr = 0, fdt_load_addr;
|
|
void *fdt;
|
|
const void *slave_code;
|
|
struct elfhdr ehdr;
|
|
struct elf_info elf_info;
|
|
struct kexec_buf kbuf = { .image = image, .buf_min = 0,
|
|
.buf_max = ppc64_rma_size };
|
|
struct kexec_buf pbuf = { .image = image, .buf_min = 0,
|
|
.buf_max = ppc64_rma_size, .top_down = true };
|
|
|
|
ret = build_elf_exec_info(kernel_buf, kernel_len, &ehdr, &elf_info);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = elf_exec_load(image, &ehdr, &elf_info, &kernel_load_addr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pr_debug("Loaded the kernel at 0x%lx\n", kernel_load_addr);
|
|
|
|
ret = kexec_load_purgatory(image, &pbuf);
|
|
if (ret) {
|
|
pr_err("Loading purgatory failed.\n");
|
|
goto out;
|
|
}
|
|
|
|
pr_debug("Loaded purgatory at 0x%lx\n", pbuf.mem);
|
|
|
|
if (initrd != NULL) {
|
|
kbuf.buffer = initrd;
|
|
kbuf.bufsz = kbuf.memsz = initrd_len;
|
|
kbuf.buf_align = PAGE_SIZE;
|
|
kbuf.top_down = false;
|
|
ret = kexec_add_buffer(&kbuf);
|
|
if (ret)
|
|
goto out;
|
|
initrd_load_addr = kbuf.mem;
|
|
|
|
pr_debug("Loaded initrd at 0x%lx\n", initrd_load_addr);
|
|
}
|
|
|
|
fdt_size = fdt_totalsize(initial_boot_params) * 2;
|
|
fdt = kmalloc(fdt_size, GFP_KERNEL);
|
|
if (!fdt) {
|
|
pr_err("Not enough memory for the device tree.\n");
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ret = fdt_open_into(initial_boot_params, fdt, fdt_size);
|
|
if (ret < 0) {
|
|
pr_err("Error setting up the new device tree.\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = setup_new_fdt(image, fdt, initrd_load_addr, initrd_len, cmdline);
|
|
if (ret)
|
|
goto out;
|
|
|
|
fdt_pack(fdt);
|
|
|
|
kbuf.buffer = fdt;
|
|
kbuf.bufsz = kbuf.memsz = fdt_size;
|
|
kbuf.buf_align = PAGE_SIZE;
|
|
kbuf.top_down = true;
|
|
ret = kexec_add_buffer(&kbuf);
|
|
if (ret)
|
|
goto out;
|
|
fdt_load_addr = kbuf.mem;
|
|
|
|
pr_debug("Loaded device tree at 0x%lx\n", fdt_load_addr);
|
|
|
|
slave_code = elf_info.buffer + elf_info.proghdrs[0].p_offset;
|
|
ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
|
|
fdt_load_addr);
|
|
if (ret)
|
|
pr_err("Error setting up the purgatory.\n");
|
|
|
|
out:
|
|
elf_free_info(&elf_info);
|
|
|
|
/* Make kimage_file_post_load_cleanup free the fdt buffer for us. */
|
|
return ret ? ERR_PTR(ret) : fdt;
|
|
}
|
|
|
|
const struct kexec_file_ops kexec_elf64_ops = {
|
|
.probe = elf64_probe,
|
|
.load = elf64_load,
|
|
};
|