mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 15:17:24 +07:00
b4b12b0d2f
The phylink conflict was between a bug fix by Russell King to make sure we have a consistent PHY interface mode, and a change in net-next to pull some code in phylink_resolve() into the helper functions phylink_mac_link_{up,down}() On the dp83867 side it's mostly overlapping changes, with the 'net' side removing a condition that was supposed to trigger for RGMII but because of how it was coded never actually could trigger. Signed-off-by: David S. Miller <davem@davemloft.net>
10467 lines
299 KiB
C
10467 lines
299 KiB
C
/*
|
|
* This file is part of the Chelsio T4 Ethernet driver for Linux.
|
|
*
|
|
* Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include "cxgb4.h"
|
|
#include "t4_regs.h"
|
|
#include "t4_values.h"
|
|
#include "t4fw_api.h"
|
|
#include "t4fw_version.h"
|
|
|
|
/**
|
|
* t4_wait_op_done_val - wait until an operation is completed
|
|
* @adapter: the adapter performing the operation
|
|
* @reg: the register to check for completion
|
|
* @mask: a single-bit field within @reg that indicates completion
|
|
* @polarity: the value of the field when the operation is completed
|
|
* @attempts: number of check iterations
|
|
* @delay: delay in usecs between iterations
|
|
* @valp: where to store the value of the register at completion time
|
|
*
|
|
* Wait until an operation is completed by checking a bit in a register
|
|
* up to @attempts times. If @valp is not NULL the value of the register
|
|
* at the time it indicated completion is stored there. Returns 0 if the
|
|
* operation completes and -EAGAIN otherwise.
|
|
*/
|
|
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
|
|
int polarity, int attempts, int delay, u32 *valp)
|
|
{
|
|
while (1) {
|
|
u32 val = t4_read_reg(adapter, reg);
|
|
|
|
if (!!(val & mask) == polarity) {
|
|
if (valp)
|
|
*valp = val;
|
|
return 0;
|
|
}
|
|
if (--attempts == 0)
|
|
return -EAGAIN;
|
|
if (delay)
|
|
udelay(delay);
|
|
}
|
|
}
|
|
|
|
static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
|
|
int polarity, int attempts, int delay)
|
|
{
|
|
return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
|
|
delay, NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_set_reg_field - set a register field to a value
|
|
* @adapter: the adapter to program
|
|
* @addr: the register address
|
|
* @mask: specifies the portion of the register to modify
|
|
* @val: the new value for the register field
|
|
*
|
|
* Sets a register field specified by the supplied mask to the
|
|
* given value.
|
|
*/
|
|
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
|
|
u32 val)
|
|
{
|
|
u32 v = t4_read_reg(adapter, addr) & ~mask;
|
|
|
|
t4_write_reg(adapter, addr, v | val);
|
|
(void) t4_read_reg(adapter, addr); /* flush */
|
|
}
|
|
|
|
/**
|
|
* t4_read_indirect - read indirectly addressed registers
|
|
* @adap: the adapter
|
|
* @addr_reg: register holding the indirect address
|
|
* @data_reg: register holding the value of the indirect register
|
|
* @vals: where the read register values are stored
|
|
* @nregs: how many indirect registers to read
|
|
* @start_idx: index of first indirect register to read
|
|
*
|
|
* Reads registers that are accessed indirectly through an address/data
|
|
* register pair.
|
|
*/
|
|
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
|
|
unsigned int data_reg, u32 *vals,
|
|
unsigned int nregs, unsigned int start_idx)
|
|
{
|
|
while (nregs--) {
|
|
t4_write_reg(adap, addr_reg, start_idx);
|
|
*vals++ = t4_read_reg(adap, data_reg);
|
|
start_idx++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_write_indirect - write indirectly addressed registers
|
|
* @adap: the adapter
|
|
* @addr_reg: register holding the indirect addresses
|
|
* @data_reg: register holding the value for the indirect registers
|
|
* @vals: values to write
|
|
* @nregs: how many indirect registers to write
|
|
* @start_idx: address of first indirect register to write
|
|
*
|
|
* Writes a sequential block of registers that are accessed indirectly
|
|
* through an address/data register pair.
|
|
*/
|
|
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
|
|
unsigned int data_reg, const u32 *vals,
|
|
unsigned int nregs, unsigned int start_idx)
|
|
{
|
|
while (nregs--) {
|
|
t4_write_reg(adap, addr_reg, start_idx++);
|
|
t4_write_reg(adap, data_reg, *vals++);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
|
|
* mechanism. This guarantees that we get the real value even if we're
|
|
* operating within a Virtual Machine and the Hypervisor is trapping our
|
|
* Configuration Space accesses.
|
|
*/
|
|
void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
|
|
{
|
|
u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
|
|
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
|
|
req |= ENABLE_F;
|
|
else
|
|
req |= T6_ENABLE_F;
|
|
|
|
if (is_t4(adap->params.chip))
|
|
req |= LOCALCFG_F;
|
|
|
|
t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
|
|
*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
|
|
|
|
/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
|
|
* Configuration Space read. (None of the other fields matter when
|
|
* ENABLE is 0 so a simple register write is easier than a
|
|
* read-modify-write via t4_set_reg_field().)
|
|
*/
|
|
t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
|
|
}
|
|
|
|
/*
|
|
* t4_report_fw_error - report firmware error
|
|
* @adap: the adapter
|
|
*
|
|
* The adapter firmware can indicate error conditions to the host.
|
|
* If the firmware has indicated an error, print out the reason for
|
|
* the firmware error.
|
|
*/
|
|
static void t4_report_fw_error(struct adapter *adap)
|
|
{
|
|
static const char *const reason[] = {
|
|
"Crash", /* PCIE_FW_EVAL_CRASH */
|
|
"During Device Preparation", /* PCIE_FW_EVAL_PREP */
|
|
"During Device Configuration", /* PCIE_FW_EVAL_CONF */
|
|
"During Device Initialization", /* PCIE_FW_EVAL_INIT */
|
|
"Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
|
|
"Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
|
|
"Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
|
|
"Reserved", /* reserved */
|
|
};
|
|
u32 pcie_fw;
|
|
|
|
pcie_fw = t4_read_reg(adap, PCIE_FW_A);
|
|
if (pcie_fw & PCIE_FW_ERR_F) {
|
|
dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
|
|
reason[PCIE_FW_EVAL_G(pcie_fw)]);
|
|
adap->flags &= ~CXGB4_FW_OK;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the reply to a mailbox command and store it in @rpl in big-endian order.
|
|
*/
|
|
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
|
|
u32 mbox_addr)
|
|
{
|
|
for ( ; nflit; nflit--, mbox_addr += 8)
|
|
*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
|
|
}
|
|
|
|
/*
|
|
* Handle a FW assertion reported in a mailbox.
|
|
*/
|
|
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
|
|
{
|
|
struct fw_debug_cmd asrt;
|
|
|
|
get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
|
|
dev_alert(adap->pdev_dev,
|
|
"FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
|
|
asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
|
|
be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
|
|
}
|
|
|
|
/**
|
|
* t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
|
|
* @adapter: the adapter
|
|
* @cmd: the Firmware Mailbox Command or Reply
|
|
* @size: command length in bytes
|
|
* @access: the time (ms) needed to access the Firmware Mailbox
|
|
* @execute: the time (ms) the command spent being executed
|
|
*/
|
|
static void t4_record_mbox(struct adapter *adapter,
|
|
const __be64 *cmd, unsigned int size,
|
|
int access, int execute)
|
|
{
|
|
struct mbox_cmd_log *log = adapter->mbox_log;
|
|
struct mbox_cmd *entry;
|
|
int i;
|
|
|
|
entry = mbox_cmd_log_entry(log, log->cursor++);
|
|
if (log->cursor == log->size)
|
|
log->cursor = 0;
|
|
|
|
for (i = 0; i < size / 8; i++)
|
|
entry->cmd[i] = be64_to_cpu(cmd[i]);
|
|
while (i < MBOX_LEN / 8)
|
|
entry->cmd[i++] = 0;
|
|
entry->timestamp = jiffies;
|
|
entry->seqno = log->seqno++;
|
|
entry->access = access;
|
|
entry->execute = execute;
|
|
}
|
|
|
|
/**
|
|
* t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
|
|
* @adap: the adapter
|
|
* @mbox: index of the mailbox to use
|
|
* @cmd: the command to write
|
|
* @size: command length in bytes
|
|
* @rpl: where to optionally store the reply
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
* @timeout: time to wait for command to finish before timing out
|
|
*
|
|
* Sends the given command to FW through the selected mailbox and waits
|
|
* for the FW to execute the command. If @rpl is not %NULL it is used to
|
|
* store the FW's reply to the command. The command and its optional
|
|
* reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
|
|
* to respond. @sleep_ok determines whether we may sleep while awaiting
|
|
* the response. If sleeping is allowed we use progressive backoff
|
|
* otherwise we spin.
|
|
*
|
|
* The return value is 0 on success or a negative errno on failure. A
|
|
* failure can happen either because we are not able to execute the
|
|
* command or FW executes it but signals an error. In the latter case
|
|
* the return value is the error code indicated by FW (negated).
|
|
*/
|
|
int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
|
|
int size, void *rpl, bool sleep_ok, int timeout)
|
|
{
|
|
static const int delay[] = {
|
|
1, 1, 3, 5, 10, 10, 20, 50, 100, 200
|
|
};
|
|
|
|
struct mbox_list entry;
|
|
u16 access = 0;
|
|
u16 execute = 0;
|
|
u32 v;
|
|
u64 res;
|
|
int i, ms, delay_idx, ret;
|
|
const __be64 *p = cmd;
|
|
u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
|
|
u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
|
|
__be64 cmd_rpl[MBOX_LEN / 8];
|
|
u32 pcie_fw;
|
|
|
|
if ((size & 15) || size > MBOX_LEN)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If the device is off-line, as in EEH, commands will time out.
|
|
* Fail them early so we don't waste time waiting.
|
|
*/
|
|
if (adap->pdev->error_state != pci_channel_io_normal)
|
|
return -EIO;
|
|
|
|
/* If we have a negative timeout, that implies that we can't sleep. */
|
|
if (timeout < 0) {
|
|
sleep_ok = false;
|
|
timeout = -timeout;
|
|
}
|
|
|
|
/* Queue ourselves onto the mailbox access list. When our entry is at
|
|
* the front of the list, we have rights to access the mailbox. So we
|
|
* wait [for a while] till we're at the front [or bail out with an
|
|
* EBUSY] ...
|
|
*/
|
|
spin_lock_bh(&adap->mbox_lock);
|
|
list_add_tail(&entry.list, &adap->mlist.list);
|
|
spin_unlock_bh(&adap->mbox_lock);
|
|
|
|
delay_idx = 0;
|
|
ms = delay[0];
|
|
|
|
for (i = 0; ; i += ms) {
|
|
/* If we've waited too long, return a busy indication. This
|
|
* really ought to be based on our initial position in the
|
|
* mailbox access list but this is a start. We very rearely
|
|
* contend on access to the mailbox ...
|
|
*/
|
|
pcie_fw = t4_read_reg(adap, PCIE_FW_A);
|
|
if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
|
|
spin_lock_bh(&adap->mbox_lock);
|
|
list_del(&entry.list);
|
|
spin_unlock_bh(&adap->mbox_lock);
|
|
ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
|
|
t4_record_mbox(adap, cmd, size, access, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* If we're at the head, break out and start the mailbox
|
|
* protocol.
|
|
*/
|
|
if (list_first_entry(&adap->mlist.list, struct mbox_list,
|
|
list) == &entry)
|
|
break;
|
|
|
|
/* Delay for a bit before checking again ... */
|
|
if (sleep_ok) {
|
|
ms = delay[delay_idx]; /* last element may repeat */
|
|
if (delay_idx < ARRAY_SIZE(delay) - 1)
|
|
delay_idx++;
|
|
msleep(ms);
|
|
} else {
|
|
mdelay(ms);
|
|
}
|
|
}
|
|
|
|
/* Loop trying to get ownership of the mailbox. Return an error
|
|
* if we can't gain ownership.
|
|
*/
|
|
v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
|
|
for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
|
|
v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
|
|
if (v != MBOX_OWNER_DRV) {
|
|
spin_lock_bh(&adap->mbox_lock);
|
|
list_del(&entry.list);
|
|
spin_unlock_bh(&adap->mbox_lock);
|
|
ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
|
|
t4_record_mbox(adap, cmd, size, access, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Copy in the new mailbox command and send it on its way ... */
|
|
t4_record_mbox(adap, cmd, size, access, 0);
|
|
for (i = 0; i < size; i += 8)
|
|
t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
|
|
|
|
t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
|
|
t4_read_reg(adap, ctl_reg); /* flush write */
|
|
|
|
delay_idx = 0;
|
|
ms = delay[0];
|
|
|
|
for (i = 0;
|
|
!((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
|
|
i < timeout;
|
|
i += ms) {
|
|
if (sleep_ok) {
|
|
ms = delay[delay_idx]; /* last element may repeat */
|
|
if (delay_idx < ARRAY_SIZE(delay) - 1)
|
|
delay_idx++;
|
|
msleep(ms);
|
|
} else
|
|
mdelay(ms);
|
|
|
|
v = t4_read_reg(adap, ctl_reg);
|
|
if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
|
|
if (!(v & MBMSGVALID_F)) {
|
|
t4_write_reg(adap, ctl_reg, 0);
|
|
continue;
|
|
}
|
|
|
|
get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
|
|
res = be64_to_cpu(cmd_rpl[0]);
|
|
|
|
if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
|
|
fw_asrt(adap, data_reg);
|
|
res = FW_CMD_RETVAL_V(EIO);
|
|
} else if (rpl) {
|
|
memcpy(rpl, cmd_rpl, size);
|
|
}
|
|
|
|
t4_write_reg(adap, ctl_reg, 0);
|
|
|
|
execute = i + ms;
|
|
t4_record_mbox(adap, cmd_rpl,
|
|
MBOX_LEN, access, execute);
|
|
spin_lock_bh(&adap->mbox_lock);
|
|
list_del(&entry.list);
|
|
spin_unlock_bh(&adap->mbox_lock);
|
|
return -FW_CMD_RETVAL_G((int)res);
|
|
}
|
|
}
|
|
|
|
ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
|
|
t4_record_mbox(adap, cmd, size, access, ret);
|
|
dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
|
|
*(const u8 *)cmd, mbox);
|
|
t4_report_fw_error(adap);
|
|
spin_lock_bh(&adap->mbox_lock);
|
|
list_del(&entry.list);
|
|
spin_unlock_bh(&adap->mbox_lock);
|
|
t4_fatal_err(adap);
|
|
return ret;
|
|
}
|
|
|
|
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
|
|
void *rpl, bool sleep_ok)
|
|
{
|
|
return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
|
|
FW_CMD_MAX_TIMEOUT);
|
|
}
|
|
|
|
static int t4_edc_err_read(struct adapter *adap, int idx)
|
|
{
|
|
u32 edc_ecc_err_addr_reg;
|
|
u32 rdata_reg;
|
|
|
|
if (is_t4(adap->params.chip)) {
|
|
CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
|
|
return 0;
|
|
}
|
|
if (idx != 0 && idx != 1) {
|
|
CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
|
|
return 0;
|
|
}
|
|
|
|
edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
|
|
rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
|
|
|
|
CH_WARN(adap,
|
|
"edc%d err addr 0x%x: 0x%x.\n",
|
|
idx, edc_ecc_err_addr_reg,
|
|
t4_read_reg(adap, edc_ecc_err_addr_reg));
|
|
CH_WARN(adap,
|
|
"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
|
|
rdata_reg,
|
|
(unsigned long long)t4_read_reg64(adap, rdata_reg),
|
|
(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
|
|
(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
|
|
(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
|
|
(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
|
|
(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
|
|
(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
|
|
(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
|
|
(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_memory_rw_init - Get memory window relative offset, base, and size.
|
|
* @adap: the adapter
|
|
* @win: PCI-E Memory Window to use
|
|
* @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
|
|
* @mem_off: memory relative offset with respect to @mtype.
|
|
* @mem_base: configured memory base address.
|
|
* @mem_aperture: configured memory window aperture.
|
|
*
|
|
* Get the configured memory window's relative offset, base, and size.
|
|
*/
|
|
int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
|
|
u32 *mem_base, u32 *mem_aperture)
|
|
{
|
|
u32 edc_size, mc_size, mem_reg;
|
|
|
|
/* Offset into the region of memory which is being accessed
|
|
* MEM_EDC0 = 0
|
|
* MEM_EDC1 = 1
|
|
* MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
|
|
* MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
|
|
* MEM_HMA = 4
|
|
*/
|
|
edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
|
|
if (mtype == MEM_HMA) {
|
|
*mem_off = 2 * (edc_size * 1024 * 1024);
|
|
} else if (mtype != MEM_MC1) {
|
|
*mem_off = (mtype * (edc_size * 1024 * 1024));
|
|
} else {
|
|
mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
|
|
MA_EXT_MEMORY0_BAR_A));
|
|
*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
|
|
}
|
|
|
|
/* Each PCI-E Memory Window is programmed with a window size -- or
|
|
* "aperture" -- which controls the granularity of its mapping onto
|
|
* adapter memory. We need to grab that aperture in order to know
|
|
* how to use the specified window. The window is also programmed
|
|
* with the base address of the Memory Window in BAR0's address
|
|
* space. For T4 this is an absolute PCI-E Bus Address. For T5
|
|
* the address is relative to BAR0.
|
|
*/
|
|
mem_reg = t4_read_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
|
|
win));
|
|
/* a dead adapter will return 0xffffffff for PIO reads */
|
|
if (mem_reg == 0xffffffff)
|
|
return -ENXIO;
|
|
|
|
*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
|
|
*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
|
|
if (is_t4(adap->params.chip))
|
|
*mem_base -= adap->t4_bar0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_memory_update_win - Move memory window to specified address.
|
|
* @adap: the adapter
|
|
* @win: PCI-E Memory Window to use
|
|
* @addr: location to move.
|
|
*
|
|
* Move memory window to specified address.
|
|
*/
|
|
void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
|
|
{
|
|
t4_write_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
|
|
addr);
|
|
/* Read it back to ensure that changes propagate before we
|
|
* attempt to use the new value.
|
|
*/
|
|
t4_read_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
|
|
}
|
|
|
|
/**
|
|
* t4_memory_rw_residual - Read/Write residual data.
|
|
* @adap: the adapter
|
|
* @off: relative offset within residual to start read/write.
|
|
* @addr: address within indicated memory type.
|
|
* @buf: host memory buffer
|
|
* @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
|
|
*
|
|
* Read/Write residual data less than 32-bits.
|
|
*/
|
|
void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
|
|
int dir)
|
|
{
|
|
union {
|
|
u32 word;
|
|
char byte[4];
|
|
} last;
|
|
unsigned char *bp;
|
|
int i;
|
|
|
|
if (dir == T4_MEMORY_READ) {
|
|
last.word = le32_to_cpu((__force __le32)
|
|
t4_read_reg(adap, addr));
|
|
for (bp = (unsigned char *)buf, i = off; i < 4; i++)
|
|
bp[i] = last.byte[i];
|
|
} else {
|
|
last.word = *buf;
|
|
for (i = off; i < 4; i++)
|
|
last.byte[i] = 0;
|
|
t4_write_reg(adap, addr,
|
|
(__force u32)cpu_to_le32(last.word));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
|
|
* @adap: the adapter
|
|
* @win: PCI-E Memory Window to use
|
|
* @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
|
|
* @addr: address within indicated memory type
|
|
* @len: amount of memory to transfer
|
|
* @hbuf: host memory buffer
|
|
* @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
|
|
*
|
|
* Reads/writes an [almost] arbitrary memory region in the firmware: the
|
|
* firmware memory address and host buffer must be aligned on 32-bit
|
|
* boudaries; the length may be arbitrary. The memory is transferred as
|
|
* a raw byte sequence from/to the firmware's memory. If this memory
|
|
* contains data structures which contain multi-byte integers, it's the
|
|
* caller's responsibility to perform appropriate byte order conversions.
|
|
*/
|
|
int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
|
|
u32 len, void *hbuf, int dir)
|
|
{
|
|
u32 pos, offset, resid, memoffset;
|
|
u32 win_pf, mem_aperture, mem_base;
|
|
u32 *buf;
|
|
int ret;
|
|
|
|
/* Argument sanity checks ...
|
|
*/
|
|
if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
|
|
return -EINVAL;
|
|
buf = (u32 *)hbuf;
|
|
|
|
/* It's convenient to be able to handle lengths which aren't a
|
|
* multiple of 32-bits because we often end up transferring files to
|
|
* the firmware. So we'll handle that by normalizing the length here
|
|
* and then handling any residual transfer at the end.
|
|
*/
|
|
resid = len & 0x3;
|
|
len -= resid;
|
|
|
|
ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
|
|
&mem_aperture);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Determine the PCIE_MEM_ACCESS_OFFSET */
|
|
addr = addr + memoffset;
|
|
|
|
win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
|
|
|
|
/* Calculate our initial PCI-E Memory Window Position and Offset into
|
|
* that Window.
|
|
*/
|
|
pos = addr & ~(mem_aperture - 1);
|
|
offset = addr - pos;
|
|
|
|
/* Set up initial PCI-E Memory Window to cover the start of our
|
|
* transfer.
|
|
*/
|
|
t4_memory_update_win(adap, win, pos | win_pf);
|
|
|
|
/* Transfer data to/from the adapter as long as there's an integral
|
|
* number of 32-bit transfers to complete.
|
|
*
|
|
* A note on Endianness issues:
|
|
*
|
|
* The "register" reads and writes below from/to the PCI-E Memory
|
|
* Window invoke the standard adapter Big-Endian to PCI-E Link
|
|
* Little-Endian "swizzel." As a result, if we have the following
|
|
* data in adapter memory:
|
|
*
|
|
* Memory: ... | b0 | b1 | b2 | b3 | ...
|
|
* Address: i+0 i+1 i+2 i+3
|
|
*
|
|
* Then a read of the adapter memory via the PCI-E Memory Window
|
|
* will yield:
|
|
*
|
|
* x = readl(i)
|
|
* 31 0
|
|
* [ b3 | b2 | b1 | b0 ]
|
|
*
|
|
* If this value is stored into local memory on a Little-Endian system
|
|
* it will show up correctly in local memory as:
|
|
*
|
|
* ( ..., b0, b1, b2, b3, ... )
|
|
*
|
|
* But on a Big-Endian system, the store will show up in memory
|
|
* incorrectly swizzled as:
|
|
*
|
|
* ( ..., b3, b2, b1, b0, ... )
|
|
*
|
|
* So we need to account for this in the reads and writes to the
|
|
* PCI-E Memory Window below by undoing the register read/write
|
|
* swizzels.
|
|
*/
|
|
while (len > 0) {
|
|
if (dir == T4_MEMORY_READ)
|
|
*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
|
|
mem_base + offset));
|
|
else
|
|
t4_write_reg(adap, mem_base + offset,
|
|
(__force u32)cpu_to_le32(*buf++));
|
|
offset += sizeof(__be32);
|
|
len -= sizeof(__be32);
|
|
|
|
/* If we've reached the end of our current window aperture,
|
|
* move the PCI-E Memory Window on to the next. Note that
|
|
* doing this here after "len" may be 0 allows us to set up
|
|
* the PCI-E Memory Window for a possible final residual
|
|
* transfer below ...
|
|
*/
|
|
if (offset == mem_aperture) {
|
|
pos += mem_aperture;
|
|
offset = 0;
|
|
t4_memory_update_win(adap, win, pos | win_pf);
|
|
}
|
|
}
|
|
|
|
/* If the original transfer had a length which wasn't a multiple of
|
|
* 32-bits, now's where we need to finish off the transfer of the
|
|
* residual amount. The PCI-E Memory Window has already been moved
|
|
* above (if necessary) to cover this final transfer.
|
|
*/
|
|
if (resid)
|
|
t4_memory_rw_residual(adap, resid, mem_base + offset,
|
|
(u8 *)buf, dir);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return the specified PCI-E Configuration Space register from our Physical
|
|
* Function. We try first via a Firmware LDST Command since we prefer to let
|
|
* the firmware own all of these registers, but if that fails we go for it
|
|
* directly ourselves.
|
|
*/
|
|
u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
|
|
{
|
|
u32 val, ldst_addrspace;
|
|
|
|
/* If fw_attach != 0, construct and send the Firmware LDST Command to
|
|
* retrieve the specified PCI-E Configuration Space register.
|
|
*/
|
|
struct fw_ldst_cmd ldst_cmd;
|
|
int ret;
|
|
|
|
memset(&ldst_cmd, 0, sizeof(ldst_cmd));
|
|
ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
|
|
ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_READ_F |
|
|
ldst_addrspace);
|
|
ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
|
|
ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
|
|
ldst_cmd.u.pcie.ctrl_to_fn =
|
|
(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
|
|
ldst_cmd.u.pcie.r = reg;
|
|
|
|
/* If the LDST Command succeeds, return the result, otherwise
|
|
* fall through to reading it directly ourselves ...
|
|
*/
|
|
ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
|
|
&ldst_cmd);
|
|
if (ret == 0)
|
|
val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
|
|
else
|
|
/* Read the desired Configuration Space register via the PCI-E
|
|
* Backdoor mechanism.
|
|
*/
|
|
t4_hw_pci_read_cfg4(adap, reg, &val);
|
|
return val;
|
|
}
|
|
|
|
/* Get the window based on base passed to it.
|
|
* Window aperture is currently unhandled, but there is no use case for it
|
|
* right now
|
|
*/
|
|
static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
|
|
u32 memwin_base)
|
|
{
|
|
u32 ret;
|
|
|
|
if (is_t4(adap->params.chip)) {
|
|
u32 bar0;
|
|
|
|
/* Truncation intentional: we only read the bottom 32-bits of
|
|
* the 64-bit BAR0/BAR1 ... We use the hardware backdoor
|
|
* mechanism to read BAR0 instead of using
|
|
* pci_resource_start() because we could be operating from
|
|
* within a Virtual Machine which is trapping our accesses to
|
|
* our Configuration Space and we need to set up the PCI-E
|
|
* Memory Window decoders with the actual addresses which will
|
|
* be coming across the PCI-E link.
|
|
*/
|
|
bar0 = t4_read_pcie_cfg4(adap, pci_base);
|
|
bar0 &= pci_mask;
|
|
adap->t4_bar0 = bar0;
|
|
|
|
ret = bar0 + memwin_base;
|
|
} else {
|
|
/* For T5, only relative offset inside the PCIe BAR is passed */
|
|
ret = memwin_base;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Get the default utility window (win0) used by everyone */
|
|
u32 t4_get_util_window(struct adapter *adap)
|
|
{
|
|
return t4_get_window(adap, PCI_BASE_ADDRESS_0,
|
|
PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
|
|
}
|
|
|
|
/* Set up memory window for accessing adapter memory ranges. (Read
|
|
* back MA register to ensure that changes propagate before we attempt
|
|
* to use the new values.)
|
|
*/
|
|
void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
|
|
{
|
|
t4_write_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
|
|
memwin_base | BIR_V(0) |
|
|
WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
|
|
t4_read_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
|
|
}
|
|
|
|
/**
|
|
* t4_get_regs_len - return the size of the chips register set
|
|
* @adapter: the adapter
|
|
*
|
|
* Returns the size of the chip's BAR0 register space.
|
|
*/
|
|
unsigned int t4_get_regs_len(struct adapter *adapter)
|
|
{
|
|
unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
|
|
|
|
switch (chip_version) {
|
|
case CHELSIO_T4:
|
|
return T4_REGMAP_SIZE;
|
|
|
|
case CHELSIO_T5:
|
|
case CHELSIO_T6:
|
|
return T5_REGMAP_SIZE;
|
|
}
|
|
|
|
dev_err(adapter->pdev_dev,
|
|
"Unsupported chip version %d\n", chip_version);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_get_regs - read chip registers into provided buffer
|
|
* @adap: the adapter
|
|
* @buf: register buffer
|
|
* @buf_size: size (in bytes) of register buffer
|
|
*
|
|
* If the provided register buffer isn't large enough for the chip's
|
|
* full register range, the register dump will be truncated to the
|
|
* register buffer's size.
|
|
*/
|
|
void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
|
|
{
|
|
static const unsigned int t4_reg_ranges[] = {
|
|
0x1008, 0x1108,
|
|
0x1180, 0x1184,
|
|
0x1190, 0x1194,
|
|
0x11a0, 0x11a4,
|
|
0x11b0, 0x11b4,
|
|
0x11fc, 0x123c,
|
|
0x1300, 0x173c,
|
|
0x1800, 0x18fc,
|
|
0x3000, 0x30d8,
|
|
0x30e0, 0x30e4,
|
|
0x30ec, 0x5910,
|
|
0x5920, 0x5924,
|
|
0x5960, 0x5960,
|
|
0x5968, 0x5968,
|
|
0x5970, 0x5970,
|
|
0x5978, 0x5978,
|
|
0x5980, 0x5980,
|
|
0x5988, 0x5988,
|
|
0x5990, 0x5990,
|
|
0x5998, 0x5998,
|
|
0x59a0, 0x59d4,
|
|
0x5a00, 0x5ae0,
|
|
0x5ae8, 0x5ae8,
|
|
0x5af0, 0x5af0,
|
|
0x5af8, 0x5af8,
|
|
0x6000, 0x6098,
|
|
0x6100, 0x6150,
|
|
0x6200, 0x6208,
|
|
0x6240, 0x6248,
|
|
0x6280, 0x62b0,
|
|
0x62c0, 0x6338,
|
|
0x6370, 0x638c,
|
|
0x6400, 0x643c,
|
|
0x6500, 0x6524,
|
|
0x6a00, 0x6a04,
|
|
0x6a14, 0x6a38,
|
|
0x6a60, 0x6a70,
|
|
0x6a78, 0x6a78,
|
|
0x6b00, 0x6b0c,
|
|
0x6b1c, 0x6b84,
|
|
0x6bf0, 0x6bf8,
|
|
0x6c00, 0x6c0c,
|
|
0x6c1c, 0x6c84,
|
|
0x6cf0, 0x6cf8,
|
|
0x6d00, 0x6d0c,
|
|
0x6d1c, 0x6d84,
|
|
0x6df0, 0x6df8,
|
|
0x6e00, 0x6e0c,
|
|
0x6e1c, 0x6e84,
|
|
0x6ef0, 0x6ef8,
|
|
0x6f00, 0x6f0c,
|
|
0x6f1c, 0x6f84,
|
|
0x6ff0, 0x6ff8,
|
|
0x7000, 0x700c,
|
|
0x701c, 0x7084,
|
|
0x70f0, 0x70f8,
|
|
0x7100, 0x710c,
|
|
0x711c, 0x7184,
|
|
0x71f0, 0x71f8,
|
|
0x7200, 0x720c,
|
|
0x721c, 0x7284,
|
|
0x72f0, 0x72f8,
|
|
0x7300, 0x730c,
|
|
0x731c, 0x7384,
|
|
0x73f0, 0x73f8,
|
|
0x7400, 0x7450,
|
|
0x7500, 0x7530,
|
|
0x7600, 0x760c,
|
|
0x7614, 0x761c,
|
|
0x7680, 0x76cc,
|
|
0x7700, 0x7798,
|
|
0x77c0, 0x77fc,
|
|
0x7900, 0x79fc,
|
|
0x7b00, 0x7b58,
|
|
0x7b60, 0x7b84,
|
|
0x7b8c, 0x7c38,
|
|
0x7d00, 0x7d38,
|
|
0x7d40, 0x7d80,
|
|
0x7d8c, 0x7ddc,
|
|
0x7de4, 0x7e04,
|
|
0x7e10, 0x7e1c,
|
|
0x7e24, 0x7e38,
|
|
0x7e40, 0x7e44,
|
|
0x7e4c, 0x7e78,
|
|
0x7e80, 0x7ea4,
|
|
0x7eac, 0x7edc,
|
|
0x7ee8, 0x7efc,
|
|
0x8dc0, 0x8e04,
|
|
0x8e10, 0x8e1c,
|
|
0x8e30, 0x8e78,
|
|
0x8ea0, 0x8eb8,
|
|
0x8ec0, 0x8f6c,
|
|
0x8fc0, 0x9008,
|
|
0x9010, 0x9058,
|
|
0x9060, 0x9060,
|
|
0x9068, 0x9074,
|
|
0x90fc, 0x90fc,
|
|
0x9400, 0x9408,
|
|
0x9410, 0x9458,
|
|
0x9600, 0x9600,
|
|
0x9608, 0x9638,
|
|
0x9640, 0x96bc,
|
|
0x9800, 0x9808,
|
|
0x9820, 0x983c,
|
|
0x9850, 0x9864,
|
|
0x9c00, 0x9c6c,
|
|
0x9c80, 0x9cec,
|
|
0x9d00, 0x9d6c,
|
|
0x9d80, 0x9dec,
|
|
0x9e00, 0x9e6c,
|
|
0x9e80, 0x9eec,
|
|
0x9f00, 0x9f6c,
|
|
0x9f80, 0x9fec,
|
|
0xd004, 0xd004,
|
|
0xd010, 0xd03c,
|
|
0xdfc0, 0xdfe0,
|
|
0xe000, 0xea7c,
|
|
0xf000, 0x11110,
|
|
0x11118, 0x11190,
|
|
0x19040, 0x1906c,
|
|
0x19078, 0x19080,
|
|
0x1908c, 0x190e4,
|
|
0x190f0, 0x190f8,
|
|
0x19100, 0x19110,
|
|
0x19120, 0x19124,
|
|
0x19150, 0x19194,
|
|
0x1919c, 0x191b0,
|
|
0x191d0, 0x191e8,
|
|
0x19238, 0x1924c,
|
|
0x193f8, 0x1943c,
|
|
0x1944c, 0x19474,
|
|
0x19490, 0x194e0,
|
|
0x194f0, 0x194f8,
|
|
0x19800, 0x19c08,
|
|
0x19c10, 0x19c90,
|
|
0x19ca0, 0x19ce4,
|
|
0x19cf0, 0x19d40,
|
|
0x19d50, 0x19d94,
|
|
0x19da0, 0x19de8,
|
|
0x19df0, 0x19e40,
|
|
0x19e50, 0x19e90,
|
|
0x19ea0, 0x19f4c,
|
|
0x1a000, 0x1a004,
|
|
0x1a010, 0x1a06c,
|
|
0x1a0b0, 0x1a0e4,
|
|
0x1a0ec, 0x1a0f4,
|
|
0x1a100, 0x1a108,
|
|
0x1a114, 0x1a120,
|
|
0x1a128, 0x1a130,
|
|
0x1a138, 0x1a138,
|
|
0x1a190, 0x1a1c4,
|
|
0x1a1fc, 0x1a1fc,
|
|
0x1e040, 0x1e04c,
|
|
0x1e284, 0x1e28c,
|
|
0x1e2c0, 0x1e2c0,
|
|
0x1e2e0, 0x1e2e0,
|
|
0x1e300, 0x1e384,
|
|
0x1e3c0, 0x1e3c8,
|
|
0x1e440, 0x1e44c,
|
|
0x1e684, 0x1e68c,
|
|
0x1e6c0, 0x1e6c0,
|
|
0x1e6e0, 0x1e6e0,
|
|
0x1e700, 0x1e784,
|
|
0x1e7c0, 0x1e7c8,
|
|
0x1e840, 0x1e84c,
|
|
0x1ea84, 0x1ea8c,
|
|
0x1eac0, 0x1eac0,
|
|
0x1eae0, 0x1eae0,
|
|
0x1eb00, 0x1eb84,
|
|
0x1ebc0, 0x1ebc8,
|
|
0x1ec40, 0x1ec4c,
|
|
0x1ee84, 0x1ee8c,
|
|
0x1eec0, 0x1eec0,
|
|
0x1eee0, 0x1eee0,
|
|
0x1ef00, 0x1ef84,
|
|
0x1efc0, 0x1efc8,
|
|
0x1f040, 0x1f04c,
|
|
0x1f284, 0x1f28c,
|
|
0x1f2c0, 0x1f2c0,
|
|
0x1f2e0, 0x1f2e0,
|
|
0x1f300, 0x1f384,
|
|
0x1f3c0, 0x1f3c8,
|
|
0x1f440, 0x1f44c,
|
|
0x1f684, 0x1f68c,
|
|
0x1f6c0, 0x1f6c0,
|
|
0x1f6e0, 0x1f6e0,
|
|
0x1f700, 0x1f784,
|
|
0x1f7c0, 0x1f7c8,
|
|
0x1f840, 0x1f84c,
|
|
0x1fa84, 0x1fa8c,
|
|
0x1fac0, 0x1fac0,
|
|
0x1fae0, 0x1fae0,
|
|
0x1fb00, 0x1fb84,
|
|
0x1fbc0, 0x1fbc8,
|
|
0x1fc40, 0x1fc4c,
|
|
0x1fe84, 0x1fe8c,
|
|
0x1fec0, 0x1fec0,
|
|
0x1fee0, 0x1fee0,
|
|
0x1ff00, 0x1ff84,
|
|
0x1ffc0, 0x1ffc8,
|
|
0x20000, 0x2002c,
|
|
0x20100, 0x2013c,
|
|
0x20190, 0x201a0,
|
|
0x201a8, 0x201b8,
|
|
0x201c4, 0x201c8,
|
|
0x20200, 0x20318,
|
|
0x20400, 0x204b4,
|
|
0x204c0, 0x20528,
|
|
0x20540, 0x20614,
|
|
0x21000, 0x21040,
|
|
0x2104c, 0x21060,
|
|
0x210c0, 0x210ec,
|
|
0x21200, 0x21268,
|
|
0x21270, 0x21284,
|
|
0x212fc, 0x21388,
|
|
0x21400, 0x21404,
|
|
0x21500, 0x21500,
|
|
0x21510, 0x21518,
|
|
0x2152c, 0x21530,
|
|
0x2153c, 0x2153c,
|
|
0x21550, 0x21554,
|
|
0x21600, 0x21600,
|
|
0x21608, 0x2161c,
|
|
0x21624, 0x21628,
|
|
0x21630, 0x21634,
|
|
0x2163c, 0x2163c,
|
|
0x21700, 0x2171c,
|
|
0x21780, 0x2178c,
|
|
0x21800, 0x21818,
|
|
0x21820, 0x21828,
|
|
0x21830, 0x21848,
|
|
0x21850, 0x21854,
|
|
0x21860, 0x21868,
|
|
0x21870, 0x21870,
|
|
0x21878, 0x21898,
|
|
0x218a0, 0x218a8,
|
|
0x218b0, 0x218c8,
|
|
0x218d0, 0x218d4,
|
|
0x218e0, 0x218e8,
|
|
0x218f0, 0x218f0,
|
|
0x218f8, 0x21a18,
|
|
0x21a20, 0x21a28,
|
|
0x21a30, 0x21a48,
|
|
0x21a50, 0x21a54,
|
|
0x21a60, 0x21a68,
|
|
0x21a70, 0x21a70,
|
|
0x21a78, 0x21a98,
|
|
0x21aa0, 0x21aa8,
|
|
0x21ab0, 0x21ac8,
|
|
0x21ad0, 0x21ad4,
|
|
0x21ae0, 0x21ae8,
|
|
0x21af0, 0x21af0,
|
|
0x21af8, 0x21c18,
|
|
0x21c20, 0x21c20,
|
|
0x21c28, 0x21c30,
|
|
0x21c38, 0x21c38,
|
|
0x21c80, 0x21c98,
|
|
0x21ca0, 0x21ca8,
|
|
0x21cb0, 0x21cc8,
|
|
0x21cd0, 0x21cd4,
|
|
0x21ce0, 0x21ce8,
|
|
0x21cf0, 0x21cf0,
|
|
0x21cf8, 0x21d7c,
|
|
0x21e00, 0x21e04,
|
|
0x22000, 0x2202c,
|
|
0x22100, 0x2213c,
|
|
0x22190, 0x221a0,
|
|
0x221a8, 0x221b8,
|
|
0x221c4, 0x221c8,
|
|
0x22200, 0x22318,
|
|
0x22400, 0x224b4,
|
|
0x224c0, 0x22528,
|
|
0x22540, 0x22614,
|
|
0x23000, 0x23040,
|
|
0x2304c, 0x23060,
|
|
0x230c0, 0x230ec,
|
|
0x23200, 0x23268,
|
|
0x23270, 0x23284,
|
|
0x232fc, 0x23388,
|
|
0x23400, 0x23404,
|
|
0x23500, 0x23500,
|
|
0x23510, 0x23518,
|
|
0x2352c, 0x23530,
|
|
0x2353c, 0x2353c,
|
|
0x23550, 0x23554,
|
|
0x23600, 0x23600,
|
|
0x23608, 0x2361c,
|
|
0x23624, 0x23628,
|
|
0x23630, 0x23634,
|
|
0x2363c, 0x2363c,
|
|
0x23700, 0x2371c,
|
|
0x23780, 0x2378c,
|
|
0x23800, 0x23818,
|
|
0x23820, 0x23828,
|
|
0x23830, 0x23848,
|
|
0x23850, 0x23854,
|
|
0x23860, 0x23868,
|
|
0x23870, 0x23870,
|
|
0x23878, 0x23898,
|
|
0x238a0, 0x238a8,
|
|
0x238b0, 0x238c8,
|
|
0x238d0, 0x238d4,
|
|
0x238e0, 0x238e8,
|
|
0x238f0, 0x238f0,
|
|
0x238f8, 0x23a18,
|
|
0x23a20, 0x23a28,
|
|
0x23a30, 0x23a48,
|
|
0x23a50, 0x23a54,
|
|
0x23a60, 0x23a68,
|
|
0x23a70, 0x23a70,
|
|
0x23a78, 0x23a98,
|
|
0x23aa0, 0x23aa8,
|
|
0x23ab0, 0x23ac8,
|
|
0x23ad0, 0x23ad4,
|
|
0x23ae0, 0x23ae8,
|
|
0x23af0, 0x23af0,
|
|
0x23af8, 0x23c18,
|
|
0x23c20, 0x23c20,
|
|
0x23c28, 0x23c30,
|
|
0x23c38, 0x23c38,
|
|
0x23c80, 0x23c98,
|
|
0x23ca0, 0x23ca8,
|
|
0x23cb0, 0x23cc8,
|
|
0x23cd0, 0x23cd4,
|
|
0x23ce0, 0x23ce8,
|
|
0x23cf0, 0x23cf0,
|
|
0x23cf8, 0x23d7c,
|
|
0x23e00, 0x23e04,
|
|
0x24000, 0x2402c,
|
|
0x24100, 0x2413c,
|
|
0x24190, 0x241a0,
|
|
0x241a8, 0x241b8,
|
|
0x241c4, 0x241c8,
|
|
0x24200, 0x24318,
|
|
0x24400, 0x244b4,
|
|
0x244c0, 0x24528,
|
|
0x24540, 0x24614,
|
|
0x25000, 0x25040,
|
|
0x2504c, 0x25060,
|
|
0x250c0, 0x250ec,
|
|
0x25200, 0x25268,
|
|
0x25270, 0x25284,
|
|
0x252fc, 0x25388,
|
|
0x25400, 0x25404,
|
|
0x25500, 0x25500,
|
|
0x25510, 0x25518,
|
|
0x2552c, 0x25530,
|
|
0x2553c, 0x2553c,
|
|
0x25550, 0x25554,
|
|
0x25600, 0x25600,
|
|
0x25608, 0x2561c,
|
|
0x25624, 0x25628,
|
|
0x25630, 0x25634,
|
|
0x2563c, 0x2563c,
|
|
0x25700, 0x2571c,
|
|
0x25780, 0x2578c,
|
|
0x25800, 0x25818,
|
|
0x25820, 0x25828,
|
|
0x25830, 0x25848,
|
|
0x25850, 0x25854,
|
|
0x25860, 0x25868,
|
|
0x25870, 0x25870,
|
|
0x25878, 0x25898,
|
|
0x258a0, 0x258a8,
|
|
0x258b0, 0x258c8,
|
|
0x258d0, 0x258d4,
|
|
0x258e0, 0x258e8,
|
|
0x258f0, 0x258f0,
|
|
0x258f8, 0x25a18,
|
|
0x25a20, 0x25a28,
|
|
0x25a30, 0x25a48,
|
|
0x25a50, 0x25a54,
|
|
0x25a60, 0x25a68,
|
|
0x25a70, 0x25a70,
|
|
0x25a78, 0x25a98,
|
|
0x25aa0, 0x25aa8,
|
|
0x25ab0, 0x25ac8,
|
|
0x25ad0, 0x25ad4,
|
|
0x25ae0, 0x25ae8,
|
|
0x25af0, 0x25af0,
|
|
0x25af8, 0x25c18,
|
|
0x25c20, 0x25c20,
|
|
0x25c28, 0x25c30,
|
|
0x25c38, 0x25c38,
|
|
0x25c80, 0x25c98,
|
|
0x25ca0, 0x25ca8,
|
|
0x25cb0, 0x25cc8,
|
|
0x25cd0, 0x25cd4,
|
|
0x25ce0, 0x25ce8,
|
|
0x25cf0, 0x25cf0,
|
|
0x25cf8, 0x25d7c,
|
|
0x25e00, 0x25e04,
|
|
0x26000, 0x2602c,
|
|
0x26100, 0x2613c,
|
|
0x26190, 0x261a0,
|
|
0x261a8, 0x261b8,
|
|
0x261c4, 0x261c8,
|
|
0x26200, 0x26318,
|
|
0x26400, 0x264b4,
|
|
0x264c0, 0x26528,
|
|
0x26540, 0x26614,
|
|
0x27000, 0x27040,
|
|
0x2704c, 0x27060,
|
|
0x270c0, 0x270ec,
|
|
0x27200, 0x27268,
|
|
0x27270, 0x27284,
|
|
0x272fc, 0x27388,
|
|
0x27400, 0x27404,
|
|
0x27500, 0x27500,
|
|
0x27510, 0x27518,
|
|
0x2752c, 0x27530,
|
|
0x2753c, 0x2753c,
|
|
0x27550, 0x27554,
|
|
0x27600, 0x27600,
|
|
0x27608, 0x2761c,
|
|
0x27624, 0x27628,
|
|
0x27630, 0x27634,
|
|
0x2763c, 0x2763c,
|
|
0x27700, 0x2771c,
|
|
0x27780, 0x2778c,
|
|
0x27800, 0x27818,
|
|
0x27820, 0x27828,
|
|
0x27830, 0x27848,
|
|
0x27850, 0x27854,
|
|
0x27860, 0x27868,
|
|
0x27870, 0x27870,
|
|
0x27878, 0x27898,
|
|
0x278a0, 0x278a8,
|
|
0x278b0, 0x278c8,
|
|
0x278d0, 0x278d4,
|
|
0x278e0, 0x278e8,
|
|
0x278f0, 0x278f0,
|
|
0x278f8, 0x27a18,
|
|
0x27a20, 0x27a28,
|
|
0x27a30, 0x27a48,
|
|
0x27a50, 0x27a54,
|
|
0x27a60, 0x27a68,
|
|
0x27a70, 0x27a70,
|
|
0x27a78, 0x27a98,
|
|
0x27aa0, 0x27aa8,
|
|
0x27ab0, 0x27ac8,
|
|
0x27ad0, 0x27ad4,
|
|
0x27ae0, 0x27ae8,
|
|
0x27af0, 0x27af0,
|
|
0x27af8, 0x27c18,
|
|
0x27c20, 0x27c20,
|
|
0x27c28, 0x27c30,
|
|
0x27c38, 0x27c38,
|
|
0x27c80, 0x27c98,
|
|
0x27ca0, 0x27ca8,
|
|
0x27cb0, 0x27cc8,
|
|
0x27cd0, 0x27cd4,
|
|
0x27ce0, 0x27ce8,
|
|
0x27cf0, 0x27cf0,
|
|
0x27cf8, 0x27d7c,
|
|
0x27e00, 0x27e04,
|
|
};
|
|
|
|
static const unsigned int t5_reg_ranges[] = {
|
|
0x1008, 0x10c0,
|
|
0x10cc, 0x10f8,
|
|
0x1100, 0x1100,
|
|
0x110c, 0x1148,
|
|
0x1180, 0x1184,
|
|
0x1190, 0x1194,
|
|
0x11a0, 0x11a4,
|
|
0x11b0, 0x11b4,
|
|
0x11fc, 0x123c,
|
|
0x1280, 0x173c,
|
|
0x1800, 0x18fc,
|
|
0x3000, 0x3028,
|
|
0x3060, 0x30b0,
|
|
0x30b8, 0x30d8,
|
|
0x30e0, 0x30fc,
|
|
0x3140, 0x357c,
|
|
0x35a8, 0x35cc,
|
|
0x35ec, 0x35ec,
|
|
0x3600, 0x5624,
|
|
0x56cc, 0x56ec,
|
|
0x56f4, 0x5720,
|
|
0x5728, 0x575c,
|
|
0x580c, 0x5814,
|
|
0x5890, 0x589c,
|
|
0x58a4, 0x58ac,
|
|
0x58b8, 0x58bc,
|
|
0x5940, 0x59c8,
|
|
0x59d0, 0x59dc,
|
|
0x59fc, 0x5a18,
|
|
0x5a60, 0x5a70,
|
|
0x5a80, 0x5a9c,
|
|
0x5b94, 0x5bfc,
|
|
0x6000, 0x6020,
|
|
0x6028, 0x6040,
|
|
0x6058, 0x609c,
|
|
0x60a8, 0x614c,
|
|
0x7700, 0x7798,
|
|
0x77c0, 0x78fc,
|
|
0x7b00, 0x7b58,
|
|
0x7b60, 0x7b84,
|
|
0x7b8c, 0x7c54,
|
|
0x7d00, 0x7d38,
|
|
0x7d40, 0x7d80,
|
|
0x7d8c, 0x7ddc,
|
|
0x7de4, 0x7e04,
|
|
0x7e10, 0x7e1c,
|
|
0x7e24, 0x7e38,
|
|
0x7e40, 0x7e44,
|
|
0x7e4c, 0x7e78,
|
|
0x7e80, 0x7edc,
|
|
0x7ee8, 0x7efc,
|
|
0x8dc0, 0x8de0,
|
|
0x8df8, 0x8e04,
|
|
0x8e10, 0x8e84,
|
|
0x8ea0, 0x8f84,
|
|
0x8fc0, 0x9058,
|
|
0x9060, 0x9060,
|
|
0x9068, 0x90f8,
|
|
0x9400, 0x9408,
|
|
0x9410, 0x9470,
|
|
0x9600, 0x9600,
|
|
0x9608, 0x9638,
|
|
0x9640, 0x96f4,
|
|
0x9800, 0x9808,
|
|
0x9820, 0x983c,
|
|
0x9850, 0x9864,
|
|
0x9c00, 0x9c6c,
|
|
0x9c80, 0x9cec,
|
|
0x9d00, 0x9d6c,
|
|
0x9d80, 0x9dec,
|
|
0x9e00, 0x9e6c,
|
|
0x9e80, 0x9eec,
|
|
0x9f00, 0x9f6c,
|
|
0x9f80, 0xa020,
|
|
0xd004, 0xd004,
|
|
0xd010, 0xd03c,
|
|
0xdfc0, 0xdfe0,
|
|
0xe000, 0x1106c,
|
|
0x11074, 0x11088,
|
|
0x1109c, 0x1117c,
|
|
0x11190, 0x11204,
|
|
0x19040, 0x1906c,
|
|
0x19078, 0x19080,
|
|
0x1908c, 0x190e8,
|
|
0x190f0, 0x190f8,
|
|
0x19100, 0x19110,
|
|
0x19120, 0x19124,
|
|
0x19150, 0x19194,
|
|
0x1919c, 0x191b0,
|
|
0x191d0, 0x191e8,
|
|
0x19238, 0x19290,
|
|
0x193f8, 0x19428,
|
|
0x19430, 0x19444,
|
|
0x1944c, 0x1946c,
|
|
0x19474, 0x19474,
|
|
0x19490, 0x194cc,
|
|
0x194f0, 0x194f8,
|
|
0x19c00, 0x19c08,
|
|
0x19c10, 0x19c60,
|
|
0x19c94, 0x19ce4,
|
|
0x19cf0, 0x19d40,
|
|
0x19d50, 0x19d94,
|
|
0x19da0, 0x19de8,
|
|
0x19df0, 0x19e10,
|
|
0x19e50, 0x19e90,
|
|
0x19ea0, 0x19f24,
|
|
0x19f34, 0x19f34,
|
|
0x19f40, 0x19f50,
|
|
0x19f90, 0x19fb4,
|
|
0x19fc4, 0x19fe4,
|
|
0x1a000, 0x1a004,
|
|
0x1a010, 0x1a06c,
|
|
0x1a0b0, 0x1a0e4,
|
|
0x1a0ec, 0x1a0f8,
|
|
0x1a100, 0x1a108,
|
|
0x1a114, 0x1a120,
|
|
0x1a128, 0x1a130,
|
|
0x1a138, 0x1a138,
|
|
0x1a190, 0x1a1c4,
|
|
0x1a1fc, 0x1a1fc,
|
|
0x1e008, 0x1e00c,
|
|
0x1e040, 0x1e044,
|
|
0x1e04c, 0x1e04c,
|
|
0x1e284, 0x1e290,
|
|
0x1e2c0, 0x1e2c0,
|
|
0x1e2e0, 0x1e2e0,
|
|
0x1e300, 0x1e384,
|
|
0x1e3c0, 0x1e3c8,
|
|
0x1e408, 0x1e40c,
|
|
0x1e440, 0x1e444,
|
|
0x1e44c, 0x1e44c,
|
|
0x1e684, 0x1e690,
|
|
0x1e6c0, 0x1e6c0,
|
|
0x1e6e0, 0x1e6e0,
|
|
0x1e700, 0x1e784,
|
|
0x1e7c0, 0x1e7c8,
|
|
0x1e808, 0x1e80c,
|
|
0x1e840, 0x1e844,
|
|
0x1e84c, 0x1e84c,
|
|
0x1ea84, 0x1ea90,
|
|
0x1eac0, 0x1eac0,
|
|
0x1eae0, 0x1eae0,
|
|
0x1eb00, 0x1eb84,
|
|
0x1ebc0, 0x1ebc8,
|
|
0x1ec08, 0x1ec0c,
|
|
0x1ec40, 0x1ec44,
|
|
0x1ec4c, 0x1ec4c,
|
|
0x1ee84, 0x1ee90,
|
|
0x1eec0, 0x1eec0,
|
|
0x1eee0, 0x1eee0,
|
|
0x1ef00, 0x1ef84,
|
|
0x1efc0, 0x1efc8,
|
|
0x1f008, 0x1f00c,
|
|
0x1f040, 0x1f044,
|
|
0x1f04c, 0x1f04c,
|
|
0x1f284, 0x1f290,
|
|
0x1f2c0, 0x1f2c0,
|
|
0x1f2e0, 0x1f2e0,
|
|
0x1f300, 0x1f384,
|
|
0x1f3c0, 0x1f3c8,
|
|
0x1f408, 0x1f40c,
|
|
0x1f440, 0x1f444,
|
|
0x1f44c, 0x1f44c,
|
|
0x1f684, 0x1f690,
|
|
0x1f6c0, 0x1f6c0,
|
|
0x1f6e0, 0x1f6e0,
|
|
0x1f700, 0x1f784,
|
|
0x1f7c0, 0x1f7c8,
|
|
0x1f808, 0x1f80c,
|
|
0x1f840, 0x1f844,
|
|
0x1f84c, 0x1f84c,
|
|
0x1fa84, 0x1fa90,
|
|
0x1fac0, 0x1fac0,
|
|
0x1fae0, 0x1fae0,
|
|
0x1fb00, 0x1fb84,
|
|
0x1fbc0, 0x1fbc8,
|
|
0x1fc08, 0x1fc0c,
|
|
0x1fc40, 0x1fc44,
|
|
0x1fc4c, 0x1fc4c,
|
|
0x1fe84, 0x1fe90,
|
|
0x1fec0, 0x1fec0,
|
|
0x1fee0, 0x1fee0,
|
|
0x1ff00, 0x1ff84,
|
|
0x1ffc0, 0x1ffc8,
|
|
0x30000, 0x30030,
|
|
0x30100, 0x30144,
|
|
0x30190, 0x301a0,
|
|
0x301a8, 0x301b8,
|
|
0x301c4, 0x301c8,
|
|
0x301d0, 0x301d0,
|
|
0x30200, 0x30318,
|
|
0x30400, 0x304b4,
|
|
0x304c0, 0x3052c,
|
|
0x30540, 0x3061c,
|
|
0x30800, 0x30828,
|
|
0x30834, 0x30834,
|
|
0x308c0, 0x30908,
|
|
0x30910, 0x309ac,
|
|
0x30a00, 0x30a14,
|
|
0x30a1c, 0x30a2c,
|
|
0x30a44, 0x30a50,
|
|
0x30a74, 0x30a74,
|
|
0x30a7c, 0x30afc,
|
|
0x30b08, 0x30c24,
|
|
0x30d00, 0x30d00,
|
|
0x30d08, 0x30d14,
|
|
0x30d1c, 0x30d20,
|
|
0x30d3c, 0x30d3c,
|
|
0x30d48, 0x30d50,
|
|
0x31200, 0x3120c,
|
|
0x31220, 0x31220,
|
|
0x31240, 0x31240,
|
|
0x31600, 0x3160c,
|
|
0x31a00, 0x31a1c,
|
|
0x31e00, 0x31e20,
|
|
0x31e38, 0x31e3c,
|
|
0x31e80, 0x31e80,
|
|
0x31e88, 0x31ea8,
|
|
0x31eb0, 0x31eb4,
|
|
0x31ec8, 0x31ed4,
|
|
0x31fb8, 0x32004,
|
|
0x32200, 0x32200,
|
|
0x32208, 0x32240,
|
|
0x32248, 0x32280,
|
|
0x32288, 0x322c0,
|
|
0x322c8, 0x322fc,
|
|
0x32600, 0x32630,
|
|
0x32a00, 0x32abc,
|
|
0x32b00, 0x32b10,
|
|
0x32b20, 0x32b30,
|
|
0x32b40, 0x32b50,
|
|
0x32b60, 0x32b70,
|
|
0x33000, 0x33028,
|
|
0x33030, 0x33048,
|
|
0x33060, 0x33068,
|
|
0x33070, 0x3309c,
|
|
0x330f0, 0x33128,
|
|
0x33130, 0x33148,
|
|
0x33160, 0x33168,
|
|
0x33170, 0x3319c,
|
|
0x331f0, 0x33238,
|
|
0x33240, 0x33240,
|
|
0x33248, 0x33250,
|
|
0x3325c, 0x33264,
|
|
0x33270, 0x332b8,
|
|
0x332c0, 0x332e4,
|
|
0x332f8, 0x33338,
|
|
0x33340, 0x33340,
|
|
0x33348, 0x33350,
|
|
0x3335c, 0x33364,
|
|
0x33370, 0x333b8,
|
|
0x333c0, 0x333e4,
|
|
0x333f8, 0x33428,
|
|
0x33430, 0x33448,
|
|
0x33460, 0x33468,
|
|
0x33470, 0x3349c,
|
|
0x334f0, 0x33528,
|
|
0x33530, 0x33548,
|
|
0x33560, 0x33568,
|
|
0x33570, 0x3359c,
|
|
0x335f0, 0x33638,
|
|
0x33640, 0x33640,
|
|
0x33648, 0x33650,
|
|
0x3365c, 0x33664,
|
|
0x33670, 0x336b8,
|
|
0x336c0, 0x336e4,
|
|
0x336f8, 0x33738,
|
|
0x33740, 0x33740,
|
|
0x33748, 0x33750,
|
|
0x3375c, 0x33764,
|
|
0x33770, 0x337b8,
|
|
0x337c0, 0x337e4,
|
|
0x337f8, 0x337fc,
|
|
0x33814, 0x33814,
|
|
0x3382c, 0x3382c,
|
|
0x33880, 0x3388c,
|
|
0x338e8, 0x338ec,
|
|
0x33900, 0x33928,
|
|
0x33930, 0x33948,
|
|
0x33960, 0x33968,
|
|
0x33970, 0x3399c,
|
|
0x339f0, 0x33a38,
|
|
0x33a40, 0x33a40,
|
|
0x33a48, 0x33a50,
|
|
0x33a5c, 0x33a64,
|
|
0x33a70, 0x33ab8,
|
|
0x33ac0, 0x33ae4,
|
|
0x33af8, 0x33b10,
|
|
0x33b28, 0x33b28,
|
|
0x33b3c, 0x33b50,
|
|
0x33bf0, 0x33c10,
|
|
0x33c28, 0x33c28,
|
|
0x33c3c, 0x33c50,
|
|
0x33cf0, 0x33cfc,
|
|
0x34000, 0x34030,
|
|
0x34100, 0x34144,
|
|
0x34190, 0x341a0,
|
|
0x341a8, 0x341b8,
|
|
0x341c4, 0x341c8,
|
|
0x341d0, 0x341d0,
|
|
0x34200, 0x34318,
|
|
0x34400, 0x344b4,
|
|
0x344c0, 0x3452c,
|
|
0x34540, 0x3461c,
|
|
0x34800, 0x34828,
|
|
0x34834, 0x34834,
|
|
0x348c0, 0x34908,
|
|
0x34910, 0x349ac,
|
|
0x34a00, 0x34a14,
|
|
0x34a1c, 0x34a2c,
|
|
0x34a44, 0x34a50,
|
|
0x34a74, 0x34a74,
|
|
0x34a7c, 0x34afc,
|
|
0x34b08, 0x34c24,
|
|
0x34d00, 0x34d00,
|
|
0x34d08, 0x34d14,
|
|
0x34d1c, 0x34d20,
|
|
0x34d3c, 0x34d3c,
|
|
0x34d48, 0x34d50,
|
|
0x35200, 0x3520c,
|
|
0x35220, 0x35220,
|
|
0x35240, 0x35240,
|
|
0x35600, 0x3560c,
|
|
0x35a00, 0x35a1c,
|
|
0x35e00, 0x35e20,
|
|
0x35e38, 0x35e3c,
|
|
0x35e80, 0x35e80,
|
|
0x35e88, 0x35ea8,
|
|
0x35eb0, 0x35eb4,
|
|
0x35ec8, 0x35ed4,
|
|
0x35fb8, 0x36004,
|
|
0x36200, 0x36200,
|
|
0x36208, 0x36240,
|
|
0x36248, 0x36280,
|
|
0x36288, 0x362c0,
|
|
0x362c8, 0x362fc,
|
|
0x36600, 0x36630,
|
|
0x36a00, 0x36abc,
|
|
0x36b00, 0x36b10,
|
|
0x36b20, 0x36b30,
|
|
0x36b40, 0x36b50,
|
|
0x36b60, 0x36b70,
|
|
0x37000, 0x37028,
|
|
0x37030, 0x37048,
|
|
0x37060, 0x37068,
|
|
0x37070, 0x3709c,
|
|
0x370f0, 0x37128,
|
|
0x37130, 0x37148,
|
|
0x37160, 0x37168,
|
|
0x37170, 0x3719c,
|
|
0x371f0, 0x37238,
|
|
0x37240, 0x37240,
|
|
0x37248, 0x37250,
|
|
0x3725c, 0x37264,
|
|
0x37270, 0x372b8,
|
|
0x372c0, 0x372e4,
|
|
0x372f8, 0x37338,
|
|
0x37340, 0x37340,
|
|
0x37348, 0x37350,
|
|
0x3735c, 0x37364,
|
|
0x37370, 0x373b8,
|
|
0x373c0, 0x373e4,
|
|
0x373f8, 0x37428,
|
|
0x37430, 0x37448,
|
|
0x37460, 0x37468,
|
|
0x37470, 0x3749c,
|
|
0x374f0, 0x37528,
|
|
0x37530, 0x37548,
|
|
0x37560, 0x37568,
|
|
0x37570, 0x3759c,
|
|
0x375f0, 0x37638,
|
|
0x37640, 0x37640,
|
|
0x37648, 0x37650,
|
|
0x3765c, 0x37664,
|
|
0x37670, 0x376b8,
|
|
0x376c0, 0x376e4,
|
|
0x376f8, 0x37738,
|
|
0x37740, 0x37740,
|
|
0x37748, 0x37750,
|
|
0x3775c, 0x37764,
|
|
0x37770, 0x377b8,
|
|
0x377c0, 0x377e4,
|
|
0x377f8, 0x377fc,
|
|
0x37814, 0x37814,
|
|
0x3782c, 0x3782c,
|
|
0x37880, 0x3788c,
|
|
0x378e8, 0x378ec,
|
|
0x37900, 0x37928,
|
|
0x37930, 0x37948,
|
|
0x37960, 0x37968,
|
|
0x37970, 0x3799c,
|
|
0x379f0, 0x37a38,
|
|
0x37a40, 0x37a40,
|
|
0x37a48, 0x37a50,
|
|
0x37a5c, 0x37a64,
|
|
0x37a70, 0x37ab8,
|
|
0x37ac0, 0x37ae4,
|
|
0x37af8, 0x37b10,
|
|
0x37b28, 0x37b28,
|
|
0x37b3c, 0x37b50,
|
|
0x37bf0, 0x37c10,
|
|
0x37c28, 0x37c28,
|
|
0x37c3c, 0x37c50,
|
|
0x37cf0, 0x37cfc,
|
|
0x38000, 0x38030,
|
|
0x38100, 0x38144,
|
|
0x38190, 0x381a0,
|
|
0x381a8, 0x381b8,
|
|
0x381c4, 0x381c8,
|
|
0x381d0, 0x381d0,
|
|
0x38200, 0x38318,
|
|
0x38400, 0x384b4,
|
|
0x384c0, 0x3852c,
|
|
0x38540, 0x3861c,
|
|
0x38800, 0x38828,
|
|
0x38834, 0x38834,
|
|
0x388c0, 0x38908,
|
|
0x38910, 0x389ac,
|
|
0x38a00, 0x38a14,
|
|
0x38a1c, 0x38a2c,
|
|
0x38a44, 0x38a50,
|
|
0x38a74, 0x38a74,
|
|
0x38a7c, 0x38afc,
|
|
0x38b08, 0x38c24,
|
|
0x38d00, 0x38d00,
|
|
0x38d08, 0x38d14,
|
|
0x38d1c, 0x38d20,
|
|
0x38d3c, 0x38d3c,
|
|
0x38d48, 0x38d50,
|
|
0x39200, 0x3920c,
|
|
0x39220, 0x39220,
|
|
0x39240, 0x39240,
|
|
0x39600, 0x3960c,
|
|
0x39a00, 0x39a1c,
|
|
0x39e00, 0x39e20,
|
|
0x39e38, 0x39e3c,
|
|
0x39e80, 0x39e80,
|
|
0x39e88, 0x39ea8,
|
|
0x39eb0, 0x39eb4,
|
|
0x39ec8, 0x39ed4,
|
|
0x39fb8, 0x3a004,
|
|
0x3a200, 0x3a200,
|
|
0x3a208, 0x3a240,
|
|
0x3a248, 0x3a280,
|
|
0x3a288, 0x3a2c0,
|
|
0x3a2c8, 0x3a2fc,
|
|
0x3a600, 0x3a630,
|
|
0x3aa00, 0x3aabc,
|
|
0x3ab00, 0x3ab10,
|
|
0x3ab20, 0x3ab30,
|
|
0x3ab40, 0x3ab50,
|
|
0x3ab60, 0x3ab70,
|
|
0x3b000, 0x3b028,
|
|
0x3b030, 0x3b048,
|
|
0x3b060, 0x3b068,
|
|
0x3b070, 0x3b09c,
|
|
0x3b0f0, 0x3b128,
|
|
0x3b130, 0x3b148,
|
|
0x3b160, 0x3b168,
|
|
0x3b170, 0x3b19c,
|
|
0x3b1f0, 0x3b238,
|
|
0x3b240, 0x3b240,
|
|
0x3b248, 0x3b250,
|
|
0x3b25c, 0x3b264,
|
|
0x3b270, 0x3b2b8,
|
|
0x3b2c0, 0x3b2e4,
|
|
0x3b2f8, 0x3b338,
|
|
0x3b340, 0x3b340,
|
|
0x3b348, 0x3b350,
|
|
0x3b35c, 0x3b364,
|
|
0x3b370, 0x3b3b8,
|
|
0x3b3c0, 0x3b3e4,
|
|
0x3b3f8, 0x3b428,
|
|
0x3b430, 0x3b448,
|
|
0x3b460, 0x3b468,
|
|
0x3b470, 0x3b49c,
|
|
0x3b4f0, 0x3b528,
|
|
0x3b530, 0x3b548,
|
|
0x3b560, 0x3b568,
|
|
0x3b570, 0x3b59c,
|
|
0x3b5f0, 0x3b638,
|
|
0x3b640, 0x3b640,
|
|
0x3b648, 0x3b650,
|
|
0x3b65c, 0x3b664,
|
|
0x3b670, 0x3b6b8,
|
|
0x3b6c0, 0x3b6e4,
|
|
0x3b6f8, 0x3b738,
|
|
0x3b740, 0x3b740,
|
|
0x3b748, 0x3b750,
|
|
0x3b75c, 0x3b764,
|
|
0x3b770, 0x3b7b8,
|
|
0x3b7c0, 0x3b7e4,
|
|
0x3b7f8, 0x3b7fc,
|
|
0x3b814, 0x3b814,
|
|
0x3b82c, 0x3b82c,
|
|
0x3b880, 0x3b88c,
|
|
0x3b8e8, 0x3b8ec,
|
|
0x3b900, 0x3b928,
|
|
0x3b930, 0x3b948,
|
|
0x3b960, 0x3b968,
|
|
0x3b970, 0x3b99c,
|
|
0x3b9f0, 0x3ba38,
|
|
0x3ba40, 0x3ba40,
|
|
0x3ba48, 0x3ba50,
|
|
0x3ba5c, 0x3ba64,
|
|
0x3ba70, 0x3bab8,
|
|
0x3bac0, 0x3bae4,
|
|
0x3baf8, 0x3bb10,
|
|
0x3bb28, 0x3bb28,
|
|
0x3bb3c, 0x3bb50,
|
|
0x3bbf0, 0x3bc10,
|
|
0x3bc28, 0x3bc28,
|
|
0x3bc3c, 0x3bc50,
|
|
0x3bcf0, 0x3bcfc,
|
|
0x3c000, 0x3c030,
|
|
0x3c100, 0x3c144,
|
|
0x3c190, 0x3c1a0,
|
|
0x3c1a8, 0x3c1b8,
|
|
0x3c1c4, 0x3c1c8,
|
|
0x3c1d0, 0x3c1d0,
|
|
0x3c200, 0x3c318,
|
|
0x3c400, 0x3c4b4,
|
|
0x3c4c0, 0x3c52c,
|
|
0x3c540, 0x3c61c,
|
|
0x3c800, 0x3c828,
|
|
0x3c834, 0x3c834,
|
|
0x3c8c0, 0x3c908,
|
|
0x3c910, 0x3c9ac,
|
|
0x3ca00, 0x3ca14,
|
|
0x3ca1c, 0x3ca2c,
|
|
0x3ca44, 0x3ca50,
|
|
0x3ca74, 0x3ca74,
|
|
0x3ca7c, 0x3cafc,
|
|
0x3cb08, 0x3cc24,
|
|
0x3cd00, 0x3cd00,
|
|
0x3cd08, 0x3cd14,
|
|
0x3cd1c, 0x3cd20,
|
|
0x3cd3c, 0x3cd3c,
|
|
0x3cd48, 0x3cd50,
|
|
0x3d200, 0x3d20c,
|
|
0x3d220, 0x3d220,
|
|
0x3d240, 0x3d240,
|
|
0x3d600, 0x3d60c,
|
|
0x3da00, 0x3da1c,
|
|
0x3de00, 0x3de20,
|
|
0x3de38, 0x3de3c,
|
|
0x3de80, 0x3de80,
|
|
0x3de88, 0x3dea8,
|
|
0x3deb0, 0x3deb4,
|
|
0x3dec8, 0x3ded4,
|
|
0x3dfb8, 0x3e004,
|
|
0x3e200, 0x3e200,
|
|
0x3e208, 0x3e240,
|
|
0x3e248, 0x3e280,
|
|
0x3e288, 0x3e2c0,
|
|
0x3e2c8, 0x3e2fc,
|
|
0x3e600, 0x3e630,
|
|
0x3ea00, 0x3eabc,
|
|
0x3eb00, 0x3eb10,
|
|
0x3eb20, 0x3eb30,
|
|
0x3eb40, 0x3eb50,
|
|
0x3eb60, 0x3eb70,
|
|
0x3f000, 0x3f028,
|
|
0x3f030, 0x3f048,
|
|
0x3f060, 0x3f068,
|
|
0x3f070, 0x3f09c,
|
|
0x3f0f0, 0x3f128,
|
|
0x3f130, 0x3f148,
|
|
0x3f160, 0x3f168,
|
|
0x3f170, 0x3f19c,
|
|
0x3f1f0, 0x3f238,
|
|
0x3f240, 0x3f240,
|
|
0x3f248, 0x3f250,
|
|
0x3f25c, 0x3f264,
|
|
0x3f270, 0x3f2b8,
|
|
0x3f2c0, 0x3f2e4,
|
|
0x3f2f8, 0x3f338,
|
|
0x3f340, 0x3f340,
|
|
0x3f348, 0x3f350,
|
|
0x3f35c, 0x3f364,
|
|
0x3f370, 0x3f3b8,
|
|
0x3f3c0, 0x3f3e4,
|
|
0x3f3f8, 0x3f428,
|
|
0x3f430, 0x3f448,
|
|
0x3f460, 0x3f468,
|
|
0x3f470, 0x3f49c,
|
|
0x3f4f0, 0x3f528,
|
|
0x3f530, 0x3f548,
|
|
0x3f560, 0x3f568,
|
|
0x3f570, 0x3f59c,
|
|
0x3f5f0, 0x3f638,
|
|
0x3f640, 0x3f640,
|
|
0x3f648, 0x3f650,
|
|
0x3f65c, 0x3f664,
|
|
0x3f670, 0x3f6b8,
|
|
0x3f6c0, 0x3f6e4,
|
|
0x3f6f8, 0x3f738,
|
|
0x3f740, 0x3f740,
|
|
0x3f748, 0x3f750,
|
|
0x3f75c, 0x3f764,
|
|
0x3f770, 0x3f7b8,
|
|
0x3f7c0, 0x3f7e4,
|
|
0x3f7f8, 0x3f7fc,
|
|
0x3f814, 0x3f814,
|
|
0x3f82c, 0x3f82c,
|
|
0x3f880, 0x3f88c,
|
|
0x3f8e8, 0x3f8ec,
|
|
0x3f900, 0x3f928,
|
|
0x3f930, 0x3f948,
|
|
0x3f960, 0x3f968,
|
|
0x3f970, 0x3f99c,
|
|
0x3f9f0, 0x3fa38,
|
|
0x3fa40, 0x3fa40,
|
|
0x3fa48, 0x3fa50,
|
|
0x3fa5c, 0x3fa64,
|
|
0x3fa70, 0x3fab8,
|
|
0x3fac0, 0x3fae4,
|
|
0x3faf8, 0x3fb10,
|
|
0x3fb28, 0x3fb28,
|
|
0x3fb3c, 0x3fb50,
|
|
0x3fbf0, 0x3fc10,
|
|
0x3fc28, 0x3fc28,
|
|
0x3fc3c, 0x3fc50,
|
|
0x3fcf0, 0x3fcfc,
|
|
0x40000, 0x4000c,
|
|
0x40040, 0x40050,
|
|
0x40060, 0x40068,
|
|
0x4007c, 0x4008c,
|
|
0x40094, 0x400b0,
|
|
0x400c0, 0x40144,
|
|
0x40180, 0x4018c,
|
|
0x40200, 0x40254,
|
|
0x40260, 0x40264,
|
|
0x40270, 0x40288,
|
|
0x40290, 0x40298,
|
|
0x402ac, 0x402c8,
|
|
0x402d0, 0x402e0,
|
|
0x402f0, 0x402f0,
|
|
0x40300, 0x4033c,
|
|
0x403f8, 0x403fc,
|
|
0x41304, 0x413c4,
|
|
0x41400, 0x4140c,
|
|
0x41414, 0x4141c,
|
|
0x41480, 0x414d0,
|
|
0x44000, 0x44054,
|
|
0x4405c, 0x44078,
|
|
0x440c0, 0x44174,
|
|
0x44180, 0x441ac,
|
|
0x441b4, 0x441b8,
|
|
0x441c0, 0x44254,
|
|
0x4425c, 0x44278,
|
|
0x442c0, 0x44374,
|
|
0x44380, 0x443ac,
|
|
0x443b4, 0x443b8,
|
|
0x443c0, 0x44454,
|
|
0x4445c, 0x44478,
|
|
0x444c0, 0x44574,
|
|
0x44580, 0x445ac,
|
|
0x445b4, 0x445b8,
|
|
0x445c0, 0x44654,
|
|
0x4465c, 0x44678,
|
|
0x446c0, 0x44774,
|
|
0x44780, 0x447ac,
|
|
0x447b4, 0x447b8,
|
|
0x447c0, 0x44854,
|
|
0x4485c, 0x44878,
|
|
0x448c0, 0x44974,
|
|
0x44980, 0x449ac,
|
|
0x449b4, 0x449b8,
|
|
0x449c0, 0x449fc,
|
|
0x45000, 0x45004,
|
|
0x45010, 0x45030,
|
|
0x45040, 0x45060,
|
|
0x45068, 0x45068,
|
|
0x45080, 0x45084,
|
|
0x450a0, 0x450b0,
|
|
0x45200, 0x45204,
|
|
0x45210, 0x45230,
|
|
0x45240, 0x45260,
|
|
0x45268, 0x45268,
|
|
0x45280, 0x45284,
|
|
0x452a0, 0x452b0,
|
|
0x460c0, 0x460e4,
|
|
0x47000, 0x4703c,
|
|
0x47044, 0x4708c,
|
|
0x47200, 0x47250,
|
|
0x47400, 0x47408,
|
|
0x47414, 0x47420,
|
|
0x47600, 0x47618,
|
|
0x47800, 0x47814,
|
|
0x48000, 0x4800c,
|
|
0x48040, 0x48050,
|
|
0x48060, 0x48068,
|
|
0x4807c, 0x4808c,
|
|
0x48094, 0x480b0,
|
|
0x480c0, 0x48144,
|
|
0x48180, 0x4818c,
|
|
0x48200, 0x48254,
|
|
0x48260, 0x48264,
|
|
0x48270, 0x48288,
|
|
0x48290, 0x48298,
|
|
0x482ac, 0x482c8,
|
|
0x482d0, 0x482e0,
|
|
0x482f0, 0x482f0,
|
|
0x48300, 0x4833c,
|
|
0x483f8, 0x483fc,
|
|
0x49304, 0x493c4,
|
|
0x49400, 0x4940c,
|
|
0x49414, 0x4941c,
|
|
0x49480, 0x494d0,
|
|
0x4c000, 0x4c054,
|
|
0x4c05c, 0x4c078,
|
|
0x4c0c0, 0x4c174,
|
|
0x4c180, 0x4c1ac,
|
|
0x4c1b4, 0x4c1b8,
|
|
0x4c1c0, 0x4c254,
|
|
0x4c25c, 0x4c278,
|
|
0x4c2c0, 0x4c374,
|
|
0x4c380, 0x4c3ac,
|
|
0x4c3b4, 0x4c3b8,
|
|
0x4c3c0, 0x4c454,
|
|
0x4c45c, 0x4c478,
|
|
0x4c4c0, 0x4c574,
|
|
0x4c580, 0x4c5ac,
|
|
0x4c5b4, 0x4c5b8,
|
|
0x4c5c0, 0x4c654,
|
|
0x4c65c, 0x4c678,
|
|
0x4c6c0, 0x4c774,
|
|
0x4c780, 0x4c7ac,
|
|
0x4c7b4, 0x4c7b8,
|
|
0x4c7c0, 0x4c854,
|
|
0x4c85c, 0x4c878,
|
|
0x4c8c0, 0x4c974,
|
|
0x4c980, 0x4c9ac,
|
|
0x4c9b4, 0x4c9b8,
|
|
0x4c9c0, 0x4c9fc,
|
|
0x4d000, 0x4d004,
|
|
0x4d010, 0x4d030,
|
|
0x4d040, 0x4d060,
|
|
0x4d068, 0x4d068,
|
|
0x4d080, 0x4d084,
|
|
0x4d0a0, 0x4d0b0,
|
|
0x4d200, 0x4d204,
|
|
0x4d210, 0x4d230,
|
|
0x4d240, 0x4d260,
|
|
0x4d268, 0x4d268,
|
|
0x4d280, 0x4d284,
|
|
0x4d2a0, 0x4d2b0,
|
|
0x4e0c0, 0x4e0e4,
|
|
0x4f000, 0x4f03c,
|
|
0x4f044, 0x4f08c,
|
|
0x4f200, 0x4f250,
|
|
0x4f400, 0x4f408,
|
|
0x4f414, 0x4f420,
|
|
0x4f600, 0x4f618,
|
|
0x4f800, 0x4f814,
|
|
0x50000, 0x50084,
|
|
0x50090, 0x500cc,
|
|
0x50400, 0x50400,
|
|
0x50800, 0x50884,
|
|
0x50890, 0x508cc,
|
|
0x50c00, 0x50c00,
|
|
0x51000, 0x5101c,
|
|
0x51300, 0x51308,
|
|
};
|
|
|
|
static const unsigned int t6_reg_ranges[] = {
|
|
0x1008, 0x101c,
|
|
0x1024, 0x10a8,
|
|
0x10b4, 0x10f8,
|
|
0x1100, 0x1114,
|
|
0x111c, 0x112c,
|
|
0x1138, 0x113c,
|
|
0x1144, 0x114c,
|
|
0x1180, 0x1184,
|
|
0x1190, 0x1194,
|
|
0x11a0, 0x11a4,
|
|
0x11b0, 0x11b4,
|
|
0x11fc, 0x1274,
|
|
0x1280, 0x133c,
|
|
0x1800, 0x18fc,
|
|
0x3000, 0x302c,
|
|
0x3060, 0x30b0,
|
|
0x30b8, 0x30d8,
|
|
0x30e0, 0x30fc,
|
|
0x3140, 0x357c,
|
|
0x35a8, 0x35cc,
|
|
0x35ec, 0x35ec,
|
|
0x3600, 0x5624,
|
|
0x56cc, 0x56ec,
|
|
0x56f4, 0x5720,
|
|
0x5728, 0x575c,
|
|
0x580c, 0x5814,
|
|
0x5890, 0x589c,
|
|
0x58a4, 0x58ac,
|
|
0x58b8, 0x58bc,
|
|
0x5940, 0x595c,
|
|
0x5980, 0x598c,
|
|
0x59b0, 0x59c8,
|
|
0x59d0, 0x59dc,
|
|
0x59fc, 0x5a18,
|
|
0x5a60, 0x5a6c,
|
|
0x5a80, 0x5a8c,
|
|
0x5a94, 0x5a9c,
|
|
0x5b94, 0x5bfc,
|
|
0x5c10, 0x5e48,
|
|
0x5e50, 0x5e94,
|
|
0x5ea0, 0x5eb0,
|
|
0x5ec0, 0x5ec0,
|
|
0x5ec8, 0x5ed0,
|
|
0x5ee0, 0x5ee0,
|
|
0x5ef0, 0x5ef0,
|
|
0x5f00, 0x5f00,
|
|
0x6000, 0x6020,
|
|
0x6028, 0x6040,
|
|
0x6058, 0x609c,
|
|
0x60a8, 0x619c,
|
|
0x7700, 0x7798,
|
|
0x77c0, 0x7880,
|
|
0x78cc, 0x78fc,
|
|
0x7b00, 0x7b58,
|
|
0x7b60, 0x7b84,
|
|
0x7b8c, 0x7c54,
|
|
0x7d00, 0x7d38,
|
|
0x7d40, 0x7d84,
|
|
0x7d8c, 0x7ddc,
|
|
0x7de4, 0x7e04,
|
|
0x7e10, 0x7e1c,
|
|
0x7e24, 0x7e38,
|
|
0x7e40, 0x7e44,
|
|
0x7e4c, 0x7e78,
|
|
0x7e80, 0x7edc,
|
|
0x7ee8, 0x7efc,
|
|
0x8dc0, 0x8de4,
|
|
0x8df8, 0x8e04,
|
|
0x8e10, 0x8e84,
|
|
0x8ea0, 0x8f88,
|
|
0x8fb8, 0x9058,
|
|
0x9060, 0x9060,
|
|
0x9068, 0x90f8,
|
|
0x9100, 0x9124,
|
|
0x9400, 0x9470,
|
|
0x9600, 0x9600,
|
|
0x9608, 0x9638,
|
|
0x9640, 0x9704,
|
|
0x9710, 0x971c,
|
|
0x9800, 0x9808,
|
|
0x9820, 0x983c,
|
|
0x9850, 0x9864,
|
|
0x9c00, 0x9c6c,
|
|
0x9c80, 0x9cec,
|
|
0x9d00, 0x9d6c,
|
|
0x9d80, 0x9dec,
|
|
0x9e00, 0x9e6c,
|
|
0x9e80, 0x9eec,
|
|
0x9f00, 0x9f6c,
|
|
0x9f80, 0xa020,
|
|
0xd004, 0xd03c,
|
|
0xd100, 0xd118,
|
|
0xd200, 0xd214,
|
|
0xd220, 0xd234,
|
|
0xd240, 0xd254,
|
|
0xd260, 0xd274,
|
|
0xd280, 0xd294,
|
|
0xd2a0, 0xd2b4,
|
|
0xd2c0, 0xd2d4,
|
|
0xd2e0, 0xd2f4,
|
|
0xd300, 0xd31c,
|
|
0xdfc0, 0xdfe0,
|
|
0xe000, 0xf008,
|
|
0xf010, 0xf018,
|
|
0xf020, 0xf028,
|
|
0x11000, 0x11014,
|
|
0x11048, 0x1106c,
|
|
0x11074, 0x11088,
|
|
0x11098, 0x11120,
|
|
0x1112c, 0x1117c,
|
|
0x11190, 0x112e0,
|
|
0x11300, 0x1130c,
|
|
0x12000, 0x1206c,
|
|
0x19040, 0x1906c,
|
|
0x19078, 0x19080,
|
|
0x1908c, 0x190e8,
|
|
0x190f0, 0x190f8,
|
|
0x19100, 0x19110,
|
|
0x19120, 0x19124,
|
|
0x19150, 0x19194,
|
|
0x1919c, 0x191b0,
|
|
0x191d0, 0x191e8,
|
|
0x19238, 0x19290,
|
|
0x192a4, 0x192b0,
|
|
0x192bc, 0x192bc,
|
|
0x19348, 0x1934c,
|
|
0x193f8, 0x19418,
|
|
0x19420, 0x19428,
|
|
0x19430, 0x19444,
|
|
0x1944c, 0x1946c,
|
|
0x19474, 0x19474,
|
|
0x19490, 0x194cc,
|
|
0x194f0, 0x194f8,
|
|
0x19c00, 0x19c48,
|
|
0x19c50, 0x19c80,
|
|
0x19c94, 0x19c98,
|
|
0x19ca0, 0x19cbc,
|
|
0x19ce4, 0x19ce4,
|
|
0x19cf0, 0x19cf8,
|
|
0x19d00, 0x19d28,
|
|
0x19d50, 0x19d78,
|
|
0x19d94, 0x19d98,
|
|
0x19da0, 0x19dc8,
|
|
0x19df0, 0x19e10,
|
|
0x19e50, 0x19e6c,
|
|
0x19ea0, 0x19ebc,
|
|
0x19ec4, 0x19ef4,
|
|
0x19f04, 0x19f2c,
|
|
0x19f34, 0x19f34,
|
|
0x19f40, 0x19f50,
|
|
0x19f90, 0x19fac,
|
|
0x19fc4, 0x19fc8,
|
|
0x19fd0, 0x19fe4,
|
|
0x1a000, 0x1a004,
|
|
0x1a010, 0x1a06c,
|
|
0x1a0b0, 0x1a0e4,
|
|
0x1a0ec, 0x1a0f8,
|
|
0x1a100, 0x1a108,
|
|
0x1a114, 0x1a120,
|
|
0x1a128, 0x1a130,
|
|
0x1a138, 0x1a138,
|
|
0x1a190, 0x1a1c4,
|
|
0x1a1fc, 0x1a1fc,
|
|
0x1e008, 0x1e00c,
|
|
0x1e040, 0x1e044,
|
|
0x1e04c, 0x1e04c,
|
|
0x1e284, 0x1e290,
|
|
0x1e2c0, 0x1e2c0,
|
|
0x1e2e0, 0x1e2e0,
|
|
0x1e300, 0x1e384,
|
|
0x1e3c0, 0x1e3c8,
|
|
0x1e408, 0x1e40c,
|
|
0x1e440, 0x1e444,
|
|
0x1e44c, 0x1e44c,
|
|
0x1e684, 0x1e690,
|
|
0x1e6c0, 0x1e6c0,
|
|
0x1e6e0, 0x1e6e0,
|
|
0x1e700, 0x1e784,
|
|
0x1e7c0, 0x1e7c8,
|
|
0x1e808, 0x1e80c,
|
|
0x1e840, 0x1e844,
|
|
0x1e84c, 0x1e84c,
|
|
0x1ea84, 0x1ea90,
|
|
0x1eac0, 0x1eac0,
|
|
0x1eae0, 0x1eae0,
|
|
0x1eb00, 0x1eb84,
|
|
0x1ebc0, 0x1ebc8,
|
|
0x1ec08, 0x1ec0c,
|
|
0x1ec40, 0x1ec44,
|
|
0x1ec4c, 0x1ec4c,
|
|
0x1ee84, 0x1ee90,
|
|
0x1eec0, 0x1eec0,
|
|
0x1eee0, 0x1eee0,
|
|
0x1ef00, 0x1ef84,
|
|
0x1efc0, 0x1efc8,
|
|
0x1f008, 0x1f00c,
|
|
0x1f040, 0x1f044,
|
|
0x1f04c, 0x1f04c,
|
|
0x1f284, 0x1f290,
|
|
0x1f2c0, 0x1f2c0,
|
|
0x1f2e0, 0x1f2e0,
|
|
0x1f300, 0x1f384,
|
|
0x1f3c0, 0x1f3c8,
|
|
0x1f408, 0x1f40c,
|
|
0x1f440, 0x1f444,
|
|
0x1f44c, 0x1f44c,
|
|
0x1f684, 0x1f690,
|
|
0x1f6c0, 0x1f6c0,
|
|
0x1f6e0, 0x1f6e0,
|
|
0x1f700, 0x1f784,
|
|
0x1f7c0, 0x1f7c8,
|
|
0x1f808, 0x1f80c,
|
|
0x1f840, 0x1f844,
|
|
0x1f84c, 0x1f84c,
|
|
0x1fa84, 0x1fa90,
|
|
0x1fac0, 0x1fac0,
|
|
0x1fae0, 0x1fae0,
|
|
0x1fb00, 0x1fb84,
|
|
0x1fbc0, 0x1fbc8,
|
|
0x1fc08, 0x1fc0c,
|
|
0x1fc40, 0x1fc44,
|
|
0x1fc4c, 0x1fc4c,
|
|
0x1fe84, 0x1fe90,
|
|
0x1fec0, 0x1fec0,
|
|
0x1fee0, 0x1fee0,
|
|
0x1ff00, 0x1ff84,
|
|
0x1ffc0, 0x1ffc8,
|
|
0x30000, 0x30030,
|
|
0x30100, 0x30168,
|
|
0x30190, 0x301a0,
|
|
0x301a8, 0x301b8,
|
|
0x301c4, 0x301c8,
|
|
0x301d0, 0x301d0,
|
|
0x30200, 0x30320,
|
|
0x30400, 0x304b4,
|
|
0x304c0, 0x3052c,
|
|
0x30540, 0x3061c,
|
|
0x30800, 0x308a0,
|
|
0x308c0, 0x30908,
|
|
0x30910, 0x309b8,
|
|
0x30a00, 0x30a04,
|
|
0x30a0c, 0x30a14,
|
|
0x30a1c, 0x30a2c,
|
|
0x30a44, 0x30a50,
|
|
0x30a74, 0x30a74,
|
|
0x30a7c, 0x30afc,
|
|
0x30b08, 0x30c24,
|
|
0x30d00, 0x30d14,
|
|
0x30d1c, 0x30d3c,
|
|
0x30d44, 0x30d4c,
|
|
0x30d54, 0x30d74,
|
|
0x30d7c, 0x30d7c,
|
|
0x30de0, 0x30de0,
|
|
0x30e00, 0x30ed4,
|
|
0x30f00, 0x30fa4,
|
|
0x30fc0, 0x30fc4,
|
|
0x31000, 0x31004,
|
|
0x31080, 0x310fc,
|
|
0x31208, 0x31220,
|
|
0x3123c, 0x31254,
|
|
0x31300, 0x31300,
|
|
0x31308, 0x3131c,
|
|
0x31338, 0x3133c,
|
|
0x31380, 0x31380,
|
|
0x31388, 0x313a8,
|
|
0x313b4, 0x313b4,
|
|
0x31400, 0x31420,
|
|
0x31438, 0x3143c,
|
|
0x31480, 0x31480,
|
|
0x314a8, 0x314a8,
|
|
0x314b0, 0x314b4,
|
|
0x314c8, 0x314d4,
|
|
0x31a40, 0x31a4c,
|
|
0x31af0, 0x31b20,
|
|
0x31b38, 0x31b3c,
|
|
0x31b80, 0x31b80,
|
|
0x31ba8, 0x31ba8,
|
|
0x31bb0, 0x31bb4,
|
|
0x31bc8, 0x31bd4,
|
|
0x32140, 0x3218c,
|
|
0x321f0, 0x321f4,
|
|
0x32200, 0x32200,
|
|
0x32218, 0x32218,
|
|
0x32400, 0x32400,
|
|
0x32408, 0x3241c,
|
|
0x32618, 0x32620,
|
|
0x32664, 0x32664,
|
|
0x326a8, 0x326a8,
|
|
0x326ec, 0x326ec,
|
|
0x32a00, 0x32abc,
|
|
0x32b00, 0x32b18,
|
|
0x32b20, 0x32b38,
|
|
0x32b40, 0x32b58,
|
|
0x32b60, 0x32b78,
|
|
0x32c00, 0x32c00,
|
|
0x32c08, 0x32c3c,
|
|
0x33000, 0x3302c,
|
|
0x33034, 0x33050,
|
|
0x33058, 0x33058,
|
|
0x33060, 0x3308c,
|
|
0x3309c, 0x330ac,
|
|
0x330c0, 0x330c0,
|
|
0x330c8, 0x330d0,
|
|
0x330d8, 0x330e0,
|
|
0x330ec, 0x3312c,
|
|
0x33134, 0x33150,
|
|
0x33158, 0x33158,
|
|
0x33160, 0x3318c,
|
|
0x3319c, 0x331ac,
|
|
0x331c0, 0x331c0,
|
|
0x331c8, 0x331d0,
|
|
0x331d8, 0x331e0,
|
|
0x331ec, 0x33290,
|
|
0x33298, 0x332c4,
|
|
0x332e4, 0x33390,
|
|
0x33398, 0x333c4,
|
|
0x333e4, 0x3342c,
|
|
0x33434, 0x33450,
|
|
0x33458, 0x33458,
|
|
0x33460, 0x3348c,
|
|
0x3349c, 0x334ac,
|
|
0x334c0, 0x334c0,
|
|
0x334c8, 0x334d0,
|
|
0x334d8, 0x334e0,
|
|
0x334ec, 0x3352c,
|
|
0x33534, 0x33550,
|
|
0x33558, 0x33558,
|
|
0x33560, 0x3358c,
|
|
0x3359c, 0x335ac,
|
|
0x335c0, 0x335c0,
|
|
0x335c8, 0x335d0,
|
|
0x335d8, 0x335e0,
|
|
0x335ec, 0x33690,
|
|
0x33698, 0x336c4,
|
|
0x336e4, 0x33790,
|
|
0x33798, 0x337c4,
|
|
0x337e4, 0x337fc,
|
|
0x33814, 0x33814,
|
|
0x33854, 0x33868,
|
|
0x33880, 0x3388c,
|
|
0x338c0, 0x338d0,
|
|
0x338e8, 0x338ec,
|
|
0x33900, 0x3392c,
|
|
0x33934, 0x33950,
|
|
0x33958, 0x33958,
|
|
0x33960, 0x3398c,
|
|
0x3399c, 0x339ac,
|
|
0x339c0, 0x339c0,
|
|
0x339c8, 0x339d0,
|
|
0x339d8, 0x339e0,
|
|
0x339ec, 0x33a90,
|
|
0x33a98, 0x33ac4,
|
|
0x33ae4, 0x33b10,
|
|
0x33b24, 0x33b28,
|
|
0x33b38, 0x33b50,
|
|
0x33bf0, 0x33c10,
|
|
0x33c24, 0x33c28,
|
|
0x33c38, 0x33c50,
|
|
0x33cf0, 0x33cfc,
|
|
0x34000, 0x34030,
|
|
0x34100, 0x34168,
|
|
0x34190, 0x341a0,
|
|
0x341a8, 0x341b8,
|
|
0x341c4, 0x341c8,
|
|
0x341d0, 0x341d0,
|
|
0x34200, 0x34320,
|
|
0x34400, 0x344b4,
|
|
0x344c0, 0x3452c,
|
|
0x34540, 0x3461c,
|
|
0x34800, 0x348a0,
|
|
0x348c0, 0x34908,
|
|
0x34910, 0x349b8,
|
|
0x34a00, 0x34a04,
|
|
0x34a0c, 0x34a14,
|
|
0x34a1c, 0x34a2c,
|
|
0x34a44, 0x34a50,
|
|
0x34a74, 0x34a74,
|
|
0x34a7c, 0x34afc,
|
|
0x34b08, 0x34c24,
|
|
0x34d00, 0x34d14,
|
|
0x34d1c, 0x34d3c,
|
|
0x34d44, 0x34d4c,
|
|
0x34d54, 0x34d74,
|
|
0x34d7c, 0x34d7c,
|
|
0x34de0, 0x34de0,
|
|
0x34e00, 0x34ed4,
|
|
0x34f00, 0x34fa4,
|
|
0x34fc0, 0x34fc4,
|
|
0x35000, 0x35004,
|
|
0x35080, 0x350fc,
|
|
0x35208, 0x35220,
|
|
0x3523c, 0x35254,
|
|
0x35300, 0x35300,
|
|
0x35308, 0x3531c,
|
|
0x35338, 0x3533c,
|
|
0x35380, 0x35380,
|
|
0x35388, 0x353a8,
|
|
0x353b4, 0x353b4,
|
|
0x35400, 0x35420,
|
|
0x35438, 0x3543c,
|
|
0x35480, 0x35480,
|
|
0x354a8, 0x354a8,
|
|
0x354b0, 0x354b4,
|
|
0x354c8, 0x354d4,
|
|
0x35a40, 0x35a4c,
|
|
0x35af0, 0x35b20,
|
|
0x35b38, 0x35b3c,
|
|
0x35b80, 0x35b80,
|
|
0x35ba8, 0x35ba8,
|
|
0x35bb0, 0x35bb4,
|
|
0x35bc8, 0x35bd4,
|
|
0x36140, 0x3618c,
|
|
0x361f0, 0x361f4,
|
|
0x36200, 0x36200,
|
|
0x36218, 0x36218,
|
|
0x36400, 0x36400,
|
|
0x36408, 0x3641c,
|
|
0x36618, 0x36620,
|
|
0x36664, 0x36664,
|
|
0x366a8, 0x366a8,
|
|
0x366ec, 0x366ec,
|
|
0x36a00, 0x36abc,
|
|
0x36b00, 0x36b18,
|
|
0x36b20, 0x36b38,
|
|
0x36b40, 0x36b58,
|
|
0x36b60, 0x36b78,
|
|
0x36c00, 0x36c00,
|
|
0x36c08, 0x36c3c,
|
|
0x37000, 0x3702c,
|
|
0x37034, 0x37050,
|
|
0x37058, 0x37058,
|
|
0x37060, 0x3708c,
|
|
0x3709c, 0x370ac,
|
|
0x370c0, 0x370c0,
|
|
0x370c8, 0x370d0,
|
|
0x370d8, 0x370e0,
|
|
0x370ec, 0x3712c,
|
|
0x37134, 0x37150,
|
|
0x37158, 0x37158,
|
|
0x37160, 0x3718c,
|
|
0x3719c, 0x371ac,
|
|
0x371c0, 0x371c0,
|
|
0x371c8, 0x371d0,
|
|
0x371d8, 0x371e0,
|
|
0x371ec, 0x37290,
|
|
0x37298, 0x372c4,
|
|
0x372e4, 0x37390,
|
|
0x37398, 0x373c4,
|
|
0x373e4, 0x3742c,
|
|
0x37434, 0x37450,
|
|
0x37458, 0x37458,
|
|
0x37460, 0x3748c,
|
|
0x3749c, 0x374ac,
|
|
0x374c0, 0x374c0,
|
|
0x374c8, 0x374d0,
|
|
0x374d8, 0x374e0,
|
|
0x374ec, 0x3752c,
|
|
0x37534, 0x37550,
|
|
0x37558, 0x37558,
|
|
0x37560, 0x3758c,
|
|
0x3759c, 0x375ac,
|
|
0x375c0, 0x375c0,
|
|
0x375c8, 0x375d0,
|
|
0x375d8, 0x375e0,
|
|
0x375ec, 0x37690,
|
|
0x37698, 0x376c4,
|
|
0x376e4, 0x37790,
|
|
0x37798, 0x377c4,
|
|
0x377e4, 0x377fc,
|
|
0x37814, 0x37814,
|
|
0x37854, 0x37868,
|
|
0x37880, 0x3788c,
|
|
0x378c0, 0x378d0,
|
|
0x378e8, 0x378ec,
|
|
0x37900, 0x3792c,
|
|
0x37934, 0x37950,
|
|
0x37958, 0x37958,
|
|
0x37960, 0x3798c,
|
|
0x3799c, 0x379ac,
|
|
0x379c0, 0x379c0,
|
|
0x379c8, 0x379d0,
|
|
0x379d8, 0x379e0,
|
|
0x379ec, 0x37a90,
|
|
0x37a98, 0x37ac4,
|
|
0x37ae4, 0x37b10,
|
|
0x37b24, 0x37b28,
|
|
0x37b38, 0x37b50,
|
|
0x37bf0, 0x37c10,
|
|
0x37c24, 0x37c28,
|
|
0x37c38, 0x37c50,
|
|
0x37cf0, 0x37cfc,
|
|
0x40040, 0x40040,
|
|
0x40080, 0x40084,
|
|
0x40100, 0x40100,
|
|
0x40140, 0x401bc,
|
|
0x40200, 0x40214,
|
|
0x40228, 0x40228,
|
|
0x40240, 0x40258,
|
|
0x40280, 0x40280,
|
|
0x40304, 0x40304,
|
|
0x40330, 0x4033c,
|
|
0x41304, 0x413c8,
|
|
0x413d0, 0x413dc,
|
|
0x413f0, 0x413f0,
|
|
0x41400, 0x4140c,
|
|
0x41414, 0x4141c,
|
|
0x41480, 0x414d0,
|
|
0x44000, 0x4407c,
|
|
0x440c0, 0x441ac,
|
|
0x441b4, 0x4427c,
|
|
0x442c0, 0x443ac,
|
|
0x443b4, 0x4447c,
|
|
0x444c0, 0x445ac,
|
|
0x445b4, 0x4467c,
|
|
0x446c0, 0x447ac,
|
|
0x447b4, 0x4487c,
|
|
0x448c0, 0x449ac,
|
|
0x449b4, 0x44a7c,
|
|
0x44ac0, 0x44bac,
|
|
0x44bb4, 0x44c7c,
|
|
0x44cc0, 0x44dac,
|
|
0x44db4, 0x44e7c,
|
|
0x44ec0, 0x44fac,
|
|
0x44fb4, 0x4507c,
|
|
0x450c0, 0x451ac,
|
|
0x451b4, 0x451fc,
|
|
0x45800, 0x45804,
|
|
0x45810, 0x45830,
|
|
0x45840, 0x45860,
|
|
0x45868, 0x45868,
|
|
0x45880, 0x45884,
|
|
0x458a0, 0x458b0,
|
|
0x45a00, 0x45a04,
|
|
0x45a10, 0x45a30,
|
|
0x45a40, 0x45a60,
|
|
0x45a68, 0x45a68,
|
|
0x45a80, 0x45a84,
|
|
0x45aa0, 0x45ab0,
|
|
0x460c0, 0x460e4,
|
|
0x47000, 0x4703c,
|
|
0x47044, 0x4708c,
|
|
0x47200, 0x47250,
|
|
0x47400, 0x47408,
|
|
0x47414, 0x47420,
|
|
0x47600, 0x47618,
|
|
0x47800, 0x47814,
|
|
0x47820, 0x4782c,
|
|
0x50000, 0x50084,
|
|
0x50090, 0x500cc,
|
|
0x50300, 0x50384,
|
|
0x50400, 0x50400,
|
|
0x50800, 0x50884,
|
|
0x50890, 0x508cc,
|
|
0x50b00, 0x50b84,
|
|
0x50c00, 0x50c00,
|
|
0x51000, 0x51020,
|
|
0x51028, 0x510b0,
|
|
0x51300, 0x51324,
|
|
};
|
|
|
|
u32 *buf_end = (u32 *)((char *)buf + buf_size);
|
|
const unsigned int *reg_ranges;
|
|
int reg_ranges_size, range;
|
|
unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
|
|
|
|
/* Select the right set of register ranges to dump depending on the
|
|
* adapter chip type.
|
|
*/
|
|
switch (chip_version) {
|
|
case CHELSIO_T4:
|
|
reg_ranges = t4_reg_ranges;
|
|
reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
|
|
break;
|
|
|
|
case CHELSIO_T5:
|
|
reg_ranges = t5_reg_ranges;
|
|
reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
|
|
break;
|
|
|
|
case CHELSIO_T6:
|
|
reg_ranges = t6_reg_ranges;
|
|
reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
|
|
break;
|
|
|
|
default:
|
|
dev_err(adap->pdev_dev,
|
|
"Unsupported chip version %d\n", chip_version);
|
|
return;
|
|
}
|
|
|
|
/* Clear the register buffer and insert the appropriate register
|
|
* values selected by the above register ranges.
|
|
*/
|
|
memset(buf, 0, buf_size);
|
|
for (range = 0; range < reg_ranges_size; range += 2) {
|
|
unsigned int reg = reg_ranges[range];
|
|
unsigned int last_reg = reg_ranges[range + 1];
|
|
u32 *bufp = (u32 *)((char *)buf + reg);
|
|
|
|
/* Iterate across the register range filling in the register
|
|
* buffer but don't write past the end of the register buffer.
|
|
*/
|
|
while (reg <= last_reg && bufp < buf_end) {
|
|
*bufp++ = t4_read_reg(adap, reg);
|
|
reg += sizeof(u32);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define EEPROM_STAT_ADDR 0x7bfc
|
|
#define VPD_BASE 0x400
|
|
#define VPD_BASE_OLD 0
|
|
#define VPD_LEN 1024
|
|
#define CHELSIO_VPD_UNIQUE_ID 0x82
|
|
|
|
/**
|
|
* t4_eeprom_ptov - translate a physical EEPROM address to virtual
|
|
* @phys_addr: the physical EEPROM address
|
|
* @fn: the PCI function number
|
|
* @sz: size of function-specific area
|
|
*
|
|
* Translate a physical EEPROM address to virtual. The first 1K is
|
|
* accessed through virtual addresses starting at 31K, the rest is
|
|
* accessed through virtual addresses starting at 0.
|
|
*
|
|
* The mapping is as follows:
|
|
* [0..1K) -> [31K..32K)
|
|
* [1K..1K+A) -> [31K-A..31K)
|
|
* [1K+A..ES) -> [0..ES-A-1K)
|
|
*
|
|
* where A = @fn * @sz, and ES = EEPROM size.
|
|
*/
|
|
int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
|
|
{
|
|
fn *= sz;
|
|
if (phys_addr < 1024)
|
|
return phys_addr + (31 << 10);
|
|
if (phys_addr < 1024 + fn)
|
|
return 31744 - fn + phys_addr - 1024;
|
|
if (phys_addr < EEPROMSIZE)
|
|
return phys_addr - 1024 - fn;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* t4_seeprom_wp - enable/disable EEPROM write protection
|
|
* @adapter: the adapter
|
|
* @enable: whether to enable or disable write protection
|
|
*
|
|
* Enables or disables write protection on the serial EEPROM.
|
|
*/
|
|
int t4_seeprom_wp(struct adapter *adapter, bool enable)
|
|
{
|
|
unsigned int v = enable ? 0xc : 0;
|
|
int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
/**
|
|
* t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
|
|
* @adapter: adapter to read
|
|
* @p: where to store the parameters
|
|
*
|
|
* Reads card parameters stored in VPD EEPROM.
|
|
*/
|
|
int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
|
|
{
|
|
int i, ret = 0, addr;
|
|
int ec, sn, pn, na;
|
|
u8 *vpd, csum;
|
|
unsigned int vpdr_len, kw_offset, id_len;
|
|
|
|
vpd = vmalloc(VPD_LEN);
|
|
if (!vpd)
|
|
return -ENOMEM;
|
|
|
|
/* Card information normally starts at VPD_BASE but early cards had
|
|
* it at 0.
|
|
*/
|
|
ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* The VPD shall have a unique identifier specified by the PCI SIG.
|
|
* For chelsio adapters, the identifier is 0x82. The first byte of a VPD
|
|
* shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
|
|
* is expected to automatically put this entry at the
|
|
* beginning of the VPD.
|
|
*/
|
|
addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
|
|
|
|
ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
|
|
dev_err(adapter->pdev_dev, "missing VPD ID string\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
id_len = pci_vpd_lrdt_size(vpd);
|
|
if (id_len > ID_LEN)
|
|
id_len = ID_LEN;
|
|
|
|
i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
|
|
if (i < 0) {
|
|
dev_err(adapter->pdev_dev, "missing VPD-R section\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
|
|
kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
|
|
if (vpdr_len + kw_offset > VPD_LEN) {
|
|
dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
#define FIND_VPD_KW(var, name) do { \
|
|
var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
|
|
if (var < 0) { \
|
|
dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
|
|
ret = -EINVAL; \
|
|
goto out; \
|
|
} \
|
|
var += PCI_VPD_INFO_FLD_HDR_SIZE; \
|
|
} while (0)
|
|
|
|
FIND_VPD_KW(i, "RV");
|
|
for (csum = 0; i >= 0; i--)
|
|
csum += vpd[i];
|
|
|
|
if (csum) {
|
|
dev_err(adapter->pdev_dev,
|
|
"corrupted VPD EEPROM, actual csum %u\n", csum);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
FIND_VPD_KW(ec, "EC");
|
|
FIND_VPD_KW(sn, "SN");
|
|
FIND_VPD_KW(pn, "PN");
|
|
FIND_VPD_KW(na, "NA");
|
|
#undef FIND_VPD_KW
|
|
|
|
memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
|
|
strim(p->id);
|
|
memcpy(p->ec, vpd + ec, EC_LEN);
|
|
strim(p->ec);
|
|
i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
|
|
memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
|
|
strim(p->sn);
|
|
i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
|
|
memcpy(p->pn, vpd + pn, min(i, PN_LEN));
|
|
strim(p->pn);
|
|
memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
|
|
strim((char *)p->na);
|
|
|
|
out:
|
|
vfree(vpd);
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
/**
|
|
* t4_get_vpd_params - read VPD parameters & retrieve Core Clock
|
|
* @adapter: adapter to read
|
|
* @p: where to store the parameters
|
|
*
|
|
* Reads card parameters stored in VPD EEPROM and retrieves the Core
|
|
* Clock. This can only be called after a connection to the firmware
|
|
* is established.
|
|
*/
|
|
int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
|
|
{
|
|
u32 cclk_param, cclk_val;
|
|
int ret;
|
|
|
|
/* Grab the raw VPD parameters.
|
|
*/
|
|
ret = t4_get_raw_vpd_params(adapter, p);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Ask firmware for the Core Clock since it knows how to translate the
|
|
* Reference Clock ('V2') VPD field into a Core Clock value ...
|
|
*/
|
|
cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
|
|
ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
|
|
1, &cclk_param, &cclk_val);
|
|
|
|
if (ret)
|
|
return ret;
|
|
p->cclk = cclk_val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_get_pfres - retrieve VF resource limits
|
|
* @adapter: the adapter
|
|
*
|
|
* Retrieves configured resource limits and capabilities for a physical
|
|
* function. The results are stored in @adapter->pfres.
|
|
*/
|
|
int t4_get_pfres(struct adapter *adapter)
|
|
{
|
|
struct pf_resources *pfres = &adapter->params.pfres;
|
|
struct fw_pfvf_cmd cmd, rpl;
|
|
int v;
|
|
u32 word;
|
|
|
|
/* Execute PFVF Read command to get VF resource limits; bail out early
|
|
* with error on command failure.
|
|
*/
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_READ_F |
|
|
FW_PFVF_CMD_PFN_V(adapter->pf) |
|
|
FW_PFVF_CMD_VFN_V(0));
|
|
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
|
|
v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
|
|
if (v != FW_SUCCESS)
|
|
return v;
|
|
|
|
/* Extract PF resource limits and return success.
|
|
*/
|
|
word = be32_to_cpu(rpl.niqflint_niq);
|
|
pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
|
|
pfres->niq = FW_PFVF_CMD_NIQ_G(word);
|
|
|
|
word = be32_to_cpu(rpl.type_to_neq);
|
|
pfres->neq = FW_PFVF_CMD_NEQ_G(word);
|
|
pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
|
|
|
|
word = be32_to_cpu(rpl.tc_to_nexactf);
|
|
pfres->tc = FW_PFVF_CMD_TC_G(word);
|
|
pfres->nvi = FW_PFVF_CMD_NVI_G(word);
|
|
pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
|
|
|
|
word = be32_to_cpu(rpl.r_caps_to_nethctrl);
|
|
pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
|
|
pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
|
|
pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* serial flash and firmware constants */
|
|
enum {
|
|
SF_ATTEMPTS = 10, /* max retries for SF operations */
|
|
|
|
/* flash command opcodes */
|
|
SF_PROG_PAGE = 2, /* program page */
|
|
SF_WR_DISABLE = 4, /* disable writes */
|
|
SF_RD_STATUS = 5, /* read status register */
|
|
SF_WR_ENABLE = 6, /* enable writes */
|
|
SF_RD_DATA_FAST = 0xb, /* read flash */
|
|
SF_RD_ID = 0x9f, /* read ID */
|
|
SF_ERASE_SECTOR = 0xd8, /* erase sector */
|
|
};
|
|
|
|
/**
|
|
* sf1_read - read data from the serial flash
|
|
* @adapter: the adapter
|
|
* @byte_cnt: number of bytes to read
|
|
* @cont: whether another operation will be chained
|
|
* @lock: whether to lock SF for PL access only
|
|
* @valp: where to store the read data
|
|
*
|
|
* Reads up to 4 bytes of data from the serial flash. The location of
|
|
* the read needs to be specified prior to calling this by issuing the
|
|
* appropriate commands to the serial flash.
|
|
*/
|
|
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
|
|
int lock, u32 *valp)
|
|
{
|
|
int ret;
|
|
|
|
if (!byte_cnt || byte_cnt > 4)
|
|
return -EINVAL;
|
|
if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
|
|
return -EBUSY;
|
|
t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
|
|
SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
|
|
ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
|
|
if (!ret)
|
|
*valp = t4_read_reg(adapter, SF_DATA_A);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sf1_write - write data to the serial flash
|
|
* @adapter: the adapter
|
|
* @byte_cnt: number of bytes to write
|
|
* @cont: whether another operation will be chained
|
|
* @lock: whether to lock SF for PL access only
|
|
* @val: value to write
|
|
*
|
|
* Writes up to 4 bytes of data to the serial flash. The location of
|
|
* the write needs to be specified prior to calling this by issuing the
|
|
* appropriate commands to the serial flash.
|
|
*/
|
|
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
|
|
int lock, u32 val)
|
|
{
|
|
if (!byte_cnt || byte_cnt > 4)
|
|
return -EINVAL;
|
|
if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
|
|
return -EBUSY;
|
|
t4_write_reg(adapter, SF_DATA_A, val);
|
|
t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
|
|
SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
|
|
return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
|
|
}
|
|
|
|
/**
|
|
* flash_wait_op - wait for a flash operation to complete
|
|
* @adapter: the adapter
|
|
* @attempts: max number of polls of the status register
|
|
* @delay: delay between polls in ms
|
|
*
|
|
* Wait for a flash operation to complete by polling the status register.
|
|
*/
|
|
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
|
|
{
|
|
int ret;
|
|
u32 status;
|
|
|
|
while (1) {
|
|
if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
|
|
(ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
|
|
return ret;
|
|
if (!(status & 1))
|
|
return 0;
|
|
if (--attempts == 0)
|
|
return -EAGAIN;
|
|
if (delay)
|
|
msleep(delay);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_read_flash - read words from serial flash
|
|
* @adapter: the adapter
|
|
* @addr: the start address for the read
|
|
* @nwords: how many 32-bit words to read
|
|
* @data: where to store the read data
|
|
* @byte_oriented: whether to store data as bytes or as words
|
|
*
|
|
* Read the specified number of 32-bit words from the serial flash.
|
|
* If @byte_oriented is set the read data is stored as a byte array
|
|
* (i.e., big-endian), otherwise as 32-bit words in the platform's
|
|
* natural endianness.
|
|
*/
|
|
int t4_read_flash(struct adapter *adapter, unsigned int addr,
|
|
unsigned int nwords, u32 *data, int byte_oriented)
|
|
{
|
|
int ret;
|
|
|
|
if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
|
|
return -EINVAL;
|
|
|
|
addr = swab32(addr) | SF_RD_DATA_FAST;
|
|
|
|
if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
|
|
(ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
|
|
return ret;
|
|
|
|
for ( ; nwords; nwords--, data++) {
|
|
ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
|
|
if (nwords == 1)
|
|
t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
|
|
if (ret)
|
|
return ret;
|
|
if (byte_oriented)
|
|
*data = (__force __u32)(cpu_to_be32(*data));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_write_flash - write up to a page of data to the serial flash
|
|
* @adapter: the adapter
|
|
* @addr: the start address to write
|
|
* @n: length of data to write in bytes
|
|
* @data: the data to write
|
|
*
|
|
* Writes up to a page of data (256 bytes) to the serial flash starting
|
|
* at the given address. All the data must be written to the same page.
|
|
*/
|
|
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
|
|
unsigned int n, const u8 *data)
|
|
{
|
|
int ret;
|
|
u32 buf[64];
|
|
unsigned int i, c, left, val, offset = addr & 0xff;
|
|
|
|
if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
val = swab32(addr) | SF_PROG_PAGE;
|
|
|
|
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
|
|
(ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
|
|
goto unlock;
|
|
|
|
for (left = n; left; left -= c) {
|
|
c = min(left, 4U);
|
|
for (val = 0, i = 0; i < c; ++i)
|
|
val = (val << 8) + *data++;
|
|
|
|
ret = sf1_write(adapter, c, c != left, 1, val);
|
|
if (ret)
|
|
goto unlock;
|
|
}
|
|
ret = flash_wait_op(adapter, 8, 1);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
|
|
|
|
/* Read the page to verify the write succeeded */
|
|
ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (memcmp(data - n, (u8 *)buf + offset, n)) {
|
|
dev_err(adapter->pdev_dev,
|
|
"failed to correctly write the flash page at %#x\n",
|
|
addr);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
|
|
unlock:
|
|
t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_get_fw_version - read the firmware version
|
|
* @adapter: the adapter
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the FW version from flash.
|
|
*/
|
|
int t4_get_fw_version(struct adapter *adapter, u32 *vers)
|
|
{
|
|
return t4_read_flash(adapter, FLASH_FW_START +
|
|
offsetof(struct fw_hdr, fw_ver), 1,
|
|
vers, 0);
|
|
}
|
|
|
|
/**
|
|
* t4_get_bs_version - read the firmware bootstrap version
|
|
* @adapter: the adapter
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the FW Bootstrap version from flash.
|
|
*/
|
|
int t4_get_bs_version(struct adapter *adapter, u32 *vers)
|
|
{
|
|
return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
|
|
offsetof(struct fw_hdr, fw_ver), 1,
|
|
vers, 0);
|
|
}
|
|
|
|
/**
|
|
* t4_get_tp_version - read the TP microcode version
|
|
* @adapter: the adapter
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the TP microcode version from flash.
|
|
*/
|
|
int t4_get_tp_version(struct adapter *adapter, u32 *vers)
|
|
{
|
|
return t4_read_flash(adapter, FLASH_FW_START +
|
|
offsetof(struct fw_hdr, tp_microcode_ver),
|
|
1, vers, 0);
|
|
}
|
|
|
|
/**
|
|
* t4_get_exprom_version - return the Expansion ROM version (if any)
|
|
* @adapter: the adapter
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the Expansion ROM header from FLASH and returns the version
|
|
* number (if present) through the @vers return value pointer. We return
|
|
* this in the Firmware Version Format since it's convenient. Return
|
|
* 0 on success, -ENOENT if no Expansion ROM is present.
|
|
*/
|
|
int t4_get_exprom_version(struct adapter *adap, u32 *vers)
|
|
{
|
|
struct exprom_header {
|
|
unsigned char hdr_arr[16]; /* must start with 0x55aa */
|
|
unsigned char hdr_ver[4]; /* Expansion ROM version */
|
|
} *hdr;
|
|
u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
|
|
sizeof(u32))];
|
|
int ret;
|
|
|
|
ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
|
|
ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
|
|
0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
hdr = (struct exprom_header *)exprom_header_buf;
|
|
if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
|
|
return -ENOENT;
|
|
|
|
*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
|
|
FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
|
|
FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
|
|
FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_get_vpd_version - return the VPD version
|
|
* @adapter: the adapter
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the VPD via the Firmware interface (thus this can only be called
|
|
* once we're ready to issue Firmware commands). The format of the
|
|
* VPD version is adapter specific. Returns 0 on success, an error on
|
|
* failure.
|
|
*
|
|
* Note that early versions of the Firmware didn't include the ability
|
|
* to retrieve the VPD version, so we zero-out the return-value parameter
|
|
* in that case to avoid leaving it with garbage in it.
|
|
*
|
|
* Also note that the Firmware will return its cached copy of the VPD
|
|
* Revision ID, not the actual Revision ID as written in the Serial
|
|
* EEPROM. This is only an issue if a new VPD has been written and the
|
|
* Firmware/Chip haven't yet gone through a RESET sequence. So it's best
|
|
* to defer calling this routine till after a FW_RESET_CMD has been issued
|
|
* if the Host Driver will be performing a full adapter initialization.
|
|
*/
|
|
int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
|
|
{
|
|
u32 vpdrev_param;
|
|
int ret;
|
|
|
|
vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
|
|
ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
|
|
1, &vpdrev_param, vers);
|
|
if (ret)
|
|
*vers = 0;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_get_scfg_version - return the Serial Configuration version
|
|
* @adapter: the adapter
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the Serial Configuration Version via the Firmware interface
|
|
* (thus this can only be called once we're ready to issue Firmware
|
|
* commands). The format of the Serial Configuration version is
|
|
* adapter specific. Returns 0 on success, an error on failure.
|
|
*
|
|
* Note that early versions of the Firmware didn't include the ability
|
|
* to retrieve the Serial Configuration version, so we zero-out the
|
|
* return-value parameter in that case to avoid leaving it with
|
|
* garbage in it.
|
|
*
|
|
* Also note that the Firmware will return its cached copy of the Serial
|
|
* Initialization Revision ID, not the actual Revision ID as written in
|
|
* the Serial EEPROM. This is only an issue if a new VPD has been written
|
|
* and the Firmware/Chip haven't yet gone through a RESET sequence. So
|
|
* it's best to defer calling this routine till after a FW_RESET_CMD has
|
|
* been issued if the Host Driver will be performing a full adapter
|
|
* initialization.
|
|
*/
|
|
int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
|
|
{
|
|
u32 scfgrev_param;
|
|
int ret;
|
|
|
|
scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
|
|
ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
|
|
1, &scfgrev_param, vers);
|
|
if (ret)
|
|
*vers = 0;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_get_version_info - extract various chip/firmware version information
|
|
* @adapter: the adapter
|
|
*
|
|
* Reads various chip/firmware version numbers and stores them into the
|
|
* adapter Adapter Parameters structure. If any of the efforts fails
|
|
* the first failure will be returned, but all of the version numbers
|
|
* will be read.
|
|
*/
|
|
int t4_get_version_info(struct adapter *adapter)
|
|
{
|
|
int ret = 0;
|
|
|
|
#define FIRST_RET(__getvinfo) \
|
|
do { \
|
|
int __ret = __getvinfo; \
|
|
if (__ret && !ret) \
|
|
ret = __ret; \
|
|
} while (0)
|
|
|
|
FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
|
|
FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
|
|
FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
|
|
FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
|
|
FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
|
|
FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
|
|
|
|
#undef FIRST_RET
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_dump_version_info - dump all of the adapter configuration IDs
|
|
* @adapter: the adapter
|
|
*
|
|
* Dumps all of the various bits of adapter configuration version/revision
|
|
* IDs information. This is typically called at some point after
|
|
* t4_get_version_info() has been called.
|
|
*/
|
|
void t4_dump_version_info(struct adapter *adapter)
|
|
{
|
|
/* Device information */
|
|
dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
|
|
adapter->params.vpd.id,
|
|
CHELSIO_CHIP_RELEASE(adapter->params.chip));
|
|
dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
|
|
adapter->params.vpd.sn, adapter->params.vpd.pn);
|
|
|
|
/* Firmware Version */
|
|
if (!adapter->params.fw_vers)
|
|
dev_warn(adapter->pdev_dev, "No firmware loaded\n");
|
|
else
|
|
dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
|
|
FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
|
|
FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
|
|
FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
|
|
FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
|
|
|
|
/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
|
|
* Firmware, so dev_info() is more appropriate here.)
|
|
*/
|
|
if (!adapter->params.bs_vers)
|
|
dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
|
|
else
|
|
dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
|
|
FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
|
|
FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
|
|
FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
|
|
FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
|
|
|
|
/* TP Microcode Version */
|
|
if (!adapter->params.tp_vers)
|
|
dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
|
|
else
|
|
dev_info(adapter->pdev_dev,
|
|
"TP Microcode version: %u.%u.%u.%u\n",
|
|
FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
|
|
FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
|
|
FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
|
|
FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
|
|
|
|
/* Expansion ROM version */
|
|
if (!adapter->params.er_vers)
|
|
dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
|
|
else
|
|
dev_info(adapter->pdev_dev,
|
|
"Expansion ROM version: %u.%u.%u.%u\n",
|
|
FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
|
|
FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
|
|
FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
|
|
FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
|
|
|
|
/* Serial Configuration version */
|
|
dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
|
|
adapter->params.scfg_vers);
|
|
|
|
/* VPD Version */
|
|
dev_info(adapter->pdev_dev, "VPD version: %#x\n",
|
|
adapter->params.vpd_vers);
|
|
}
|
|
|
|
/**
|
|
* t4_check_fw_version - check if the FW is supported with this driver
|
|
* @adap: the adapter
|
|
*
|
|
* Checks if an adapter's FW is compatible with the driver. Returns 0
|
|
* if there's exact match, a negative error if the version could not be
|
|
* read or there's a major version mismatch
|
|
*/
|
|
int t4_check_fw_version(struct adapter *adap)
|
|
{
|
|
int i, ret, major, minor, micro;
|
|
int exp_major, exp_minor, exp_micro;
|
|
unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
|
|
|
|
ret = t4_get_fw_version(adap, &adap->params.fw_vers);
|
|
/* Try multiple times before returning error */
|
|
for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
|
|
ret = t4_get_fw_version(adap, &adap->params.fw_vers);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
|
|
minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
|
|
micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
|
|
|
|
switch (chip_version) {
|
|
case CHELSIO_T4:
|
|
exp_major = T4FW_MIN_VERSION_MAJOR;
|
|
exp_minor = T4FW_MIN_VERSION_MINOR;
|
|
exp_micro = T4FW_MIN_VERSION_MICRO;
|
|
break;
|
|
case CHELSIO_T5:
|
|
exp_major = T5FW_MIN_VERSION_MAJOR;
|
|
exp_minor = T5FW_MIN_VERSION_MINOR;
|
|
exp_micro = T5FW_MIN_VERSION_MICRO;
|
|
break;
|
|
case CHELSIO_T6:
|
|
exp_major = T6FW_MIN_VERSION_MAJOR;
|
|
exp_minor = T6FW_MIN_VERSION_MINOR;
|
|
exp_micro = T6FW_MIN_VERSION_MICRO;
|
|
break;
|
|
default:
|
|
dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
|
|
adap->chip);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (major < exp_major || (major == exp_major && minor < exp_minor) ||
|
|
(major == exp_major && minor == exp_minor && micro < exp_micro)) {
|
|
dev_err(adap->pdev_dev,
|
|
"Card has firmware version %u.%u.%u, minimum "
|
|
"supported firmware is %u.%u.%u.\n", major, minor,
|
|
micro, exp_major, exp_minor, exp_micro);
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Is the given firmware API compatible with the one the driver was compiled
|
|
* with?
|
|
*/
|
|
static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
|
|
{
|
|
|
|
/* short circuit if it's the exact same firmware version */
|
|
if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
|
|
return 1;
|
|
|
|
#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
|
|
if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
|
|
SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
|
|
return 1;
|
|
#undef SAME_INTF
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The firmware in the filesystem is usable, but should it be installed?
|
|
* This routine explains itself in detail if it indicates the filesystem
|
|
* firmware should be installed.
|
|
*/
|
|
static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
|
|
int k, int c)
|
|
{
|
|
const char *reason;
|
|
|
|
if (!card_fw_usable) {
|
|
reason = "incompatible or unusable";
|
|
goto install;
|
|
}
|
|
|
|
if (k > c) {
|
|
reason = "older than the version supported with this driver";
|
|
goto install;
|
|
}
|
|
|
|
return 0;
|
|
|
|
install:
|
|
dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
|
|
"installing firmware %u.%u.%u.%u on card.\n",
|
|
FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
|
|
FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
|
|
FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
|
|
FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
|
|
|
|
return 1;
|
|
}
|
|
|
|
int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
|
|
const u8 *fw_data, unsigned int fw_size,
|
|
struct fw_hdr *card_fw, enum dev_state state,
|
|
int *reset)
|
|
{
|
|
int ret, card_fw_usable, fs_fw_usable;
|
|
const struct fw_hdr *fs_fw;
|
|
const struct fw_hdr *drv_fw;
|
|
|
|
drv_fw = &fw_info->fw_hdr;
|
|
|
|
/* Read the header of the firmware on the card */
|
|
ret = -t4_read_flash(adap, FLASH_FW_START,
|
|
sizeof(*card_fw) / sizeof(uint32_t),
|
|
(uint32_t *)card_fw, 1);
|
|
if (ret == 0) {
|
|
card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
|
|
} else {
|
|
dev_err(adap->pdev_dev,
|
|
"Unable to read card's firmware header: %d\n", ret);
|
|
card_fw_usable = 0;
|
|
}
|
|
|
|
if (fw_data != NULL) {
|
|
fs_fw = (const void *)fw_data;
|
|
fs_fw_usable = fw_compatible(drv_fw, fs_fw);
|
|
} else {
|
|
fs_fw = NULL;
|
|
fs_fw_usable = 0;
|
|
}
|
|
|
|
if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
|
|
(!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
|
|
/* Common case: the firmware on the card is an exact match and
|
|
* the filesystem one is an exact match too, or the filesystem
|
|
* one is absent/incompatible.
|
|
*/
|
|
} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
|
|
should_install_fs_fw(adap, card_fw_usable,
|
|
be32_to_cpu(fs_fw->fw_ver),
|
|
be32_to_cpu(card_fw->fw_ver))) {
|
|
ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
|
|
fw_size, 0);
|
|
if (ret != 0) {
|
|
dev_err(adap->pdev_dev,
|
|
"failed to install firmware: %d\n", ret);
|
|
goto bye;
|
|
}
|
|
|
|
/* Installed successfully, update the cached header too. */
|
|
*card_fw = *fs_fw;
|
|
card_fw_usable = 1;
|
|
*reset = 0; /* already reset as part of load_fw */
|
|
}
|
|
|
|
if (!card_fw_usable) {
|
|
uint32_t d, c, k;
|
|
|
|
d = be32_to_cpu(drv_fw->fw_ver);
|
|
c = be32_to_cpu(card_fw->fw_ver);
|
|
k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
|
|
|
|
dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
|
|
"chip state %d, "
|
|
"driver compiled with %d.%d.%d.%d, "
|
|
"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
|
|
state,
|
|
FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
|
|
FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
|
|
FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
|
|
FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
|
|
FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
|
|
FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
|
|
ret = EINVAL;
|
|
goto bye;
|
|
}
|
|
|
|
/* We're using whatever's on the card and it's known to be good. */
|
|
adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
|
|
adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
|
|
|
|
bye:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_flash_erase_sectors - erase a range of flash sectors
|
|
* @adapter: the adapter
|
|
* @start: the first sector to erase
|
|
* @end: the last sector to erase
|
|
*
|
|
* Erases the sectors in the given inclusive range.
|
|
*/
|
|
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (end >= adapter->params.sf_nsec)
|
|
return -EINVAL;
|
|
|
|
while (start <= end) {
|
|
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
|
|
(ret = sf1_write(adapter, 4, 0, 1,
|
|
SF_ERASE_SECTOR | (start << 8))) != 0 ||
|
|
(ret = flash_wait_op(adapter, 14, 500)) != 0) {
|
|
dev_err(adapter->pdev_dev,
|
|
"erase of flash sector %d failed, error %d\n",
|
|
start, ret);
|
|
break;
|
|
}
|
|
start++;
|
|
}
|
|
t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_flash_cfg_addr - return the address of the flash configuration file
|
|
* @adapter: the adapter
|
|
*
|
|
* Return the address within the flash where the Firmware Configuration
|
|
* File is stored.
|
|
*/
|
|
unsigned int t4_flash_cfg_addr(struct adapter *adapter)
|
|
{
|
|
if (adapter->params.sf_size == 0x100000)
|
|
return FLASH_FPGA_CFG_START;
|
|
else
|
|
return FLASH_CFG_START;
|
|
}
|
|
|
|
/* Return TRUE if the specified firmware matches the adapter. I.e. T4
|
|
* firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
|
|
* and emit an error message for mismatched firmware to save our caller the
|
|
* effort ...
|
|
*/
|
|
static bool t4_fw_matches_chip(const struct adapter *adap,
|
|
const struct fw_hdr *hdr)
|
|
{
|
|
/* The expression below will return FALSE for any unsupported adapter
|
|
* which will keep us "honest" in the future ...
|
|
*/
|
|
if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
|
|
(is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
|
|
(is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
|
|
return true;
|
|
|
|
dev_err(adap->pdev_dev,
|
|
"FW image (%d) is not suitable for this adapter (%d)\n",
|
|
hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* t4_load_fw - download firmware
|
|
* @adap: the adapter
|
|
* @fw_data: the firmware image to write
|
|
* @size: image size
|
|
*
|
|
* Write the supplied firmware image to the card's serial flash.
|
|
*/
|
|
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
|
|
{
|
|
u32 csum;
|
|
int ret, addr;
|
|
unsigned int i;
|
|
u8 first_page[SF_PAGE_SIZE];
|
|
const __be32 *p = (const __be32 *)fw_data;
|
|
const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
|
|
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
|
|
unsigned int fw_start_sec = FLASH_FW_START_SEC;
|
|
unsigned int fw_size = FLASH_FW_MAX_SIZE;
|
|
unsigned int fw_start = FLASH_FW_START;
|
|
|
|
if (!size) {
|
|
dev_err(adap->pdev_dev, "FW image has no data\n");
|
|
return -EINVAL;
|
|
}
|
|
if (size & 511) {
|
|
dev_err(adap->pdev_dev,
|
|
"FW image size not multiple of 512 bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
|
|
dev_err(adap->pdev_dev,
|
|
"FW image size differs from size in FW header\n");
|
|
return -EINVAL;
|
|
}
|
|
if (size > fw_size) {
|
|
dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
|
|
fw_size);
|
|
return -EFBIG;
|
|
}
|
|
if (!t4_fw_matches_chip(adap, hdr))
|
|
return -EINVAL;
|
|
|
|
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
|
|
csum += be32_to_cpu(p[i]);
|
|
|
|
if (csum != 0xffffffff) {
|
|
dev_err(adap->pdev_dev,
|
|
"corrupted firmware image, checksum %#x\n", csum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
|
|
ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* We write the correct version at the end so the driver can see a bad
|
|
* version if the FW write fails. Start by writing a copy of the
|
|
* first page with a bad version.
|
|
*/
|
|
memcpy(first_page, fw_data, SF_PAGE_SIZE);
|
|
((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
|
|
ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
|
|
if (ret)
|
|
goto out;
|
|
|
|
addr = fw_start;
|
|
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
|
|
addr += SF_PAGE_SIZE;
|
|
fw_data += SF_PAGE_SIZE;
|
|
ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = t4_write_flash(adap,
|
|
fw_start + offsetof(struct fw_hdr, fw_ver),
|
|
sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
|
|
out:
|
|
if (ret)
|
|
dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
|
|
ret);
|
|
else
|
|
ret = t4_get_fw_version(adap, &adap->params.fw_vers);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_phy_fw_ver - return current PHY firmware version
|
|
* @adap: the adapter
|
|
* @phy_fw_ver: return value buffer for PHY firmware version
|
|
*
|
|
* Returns the current version of external PHY firmware on the
|
|
* adapter.
|
|
*/
|
|
int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
|
|
{
|
|
u32 param, val;
|
|
int ret;
|
|
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
|
|
FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
|
|
FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
|
|
¶m, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
*phy_fw_ver = val;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_load_phy_fw - download port PHY firmware
|
|
* @adap: the adapter
|
|
* @win: the PCI-E Memory Window index to use for t4_memory_rw()
|
|
* @win_lock: the lock to use to guard the memory copy
|
|
* @phy_fw_version: function to check PHY firmware versions
|
|
* @phy_fw_data: the PHY firmware image to write
|
|
* @phy_fw_size: image size
|
|
*
|
|
* Transfer the specified PHY firmware to the adapter. If a non-NULL
|
|
* @phy_fw_version is supplied, then it will be used to determine if
|
|
* it's necessary to perform the transfer by comparing the version
|
|
* of any existing adapter PHY firmware with that of the passed in
|
|
* PHY firmware image. If @win_lock is non-NULL then it will be used
|
|
* around the call to t4_memory_rw() which transfers the PHY firmware
|
|
* to the adapter.
|
|
*
|
|
* A negative error number will be returned if an error occurs. If
|
|
* version number support is available and there's no need to upgrade
|
|
* the firmware, 0 will be returned. If firmware is successfully
|
|
* transferred to the adapter, 1 will be retured.
|
|
*
|
|
* NOTE: some adapters only have local RAM to store the PHY firmware. As
|
|
* a result, a RESET of the adapter would cause that RAM to lose its
|
|
* contents. Thus, loading PHY firmware on such adapters must happen
|
|
* after any FW_RESET_CMDs ...
|
|
*/
|
|
int t4_load_phy_fw(struct adapter *adap,
|
|
int win, spinlock_t *win_lock,
|
|
int (*phy_fw_version)(const u8 *, size_t),
|
|
const u8 *phy_fw_data, size_t phy_fw_size)
|
|
{
|
|
unsigned long mtype = 0, maddr = 0;
|
|
u32 param, val;
|
|
int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
|
|
int ret;
|
|
|
|
/* If we have version number support, then check to see if the adapter
|
|
* already has up-to-date PHY firmware loaded.
|
|
*/
|
|
if (phy_fw_version) {
|
|
new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
|
|
ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (cur_phy_fw_ver >= new_phy_fw_vers) {
|
|
CH_WARN(adap, "PHY Firmware already up-to-date, "
|
|
"version %#x\n", cur_phy_fw_ver);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Ask the firmware where it wants us to copy the PHY firmware image.
|
|
* The size of the file requires a special version of the READ coommand
|
|
* which will pass the file size via the values field in PARAMS_CMD and
|
|
* retrieve the return value from firmware and place it in the same
|
|
* buffer values
|
|
*/
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
|
|
FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
|
|
FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
|
|
val = phy_fw_size;
|
|
ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
|
|
¶m, &val, 1, true);
|
|
if (ret < 0)
|
|
return ret;
|
|
mtype = val >> 8;
|
|
maddr = (val & 0xff) << 16;
|
|
|
|
/* Copy the supplied PHY Firmware image to the adapter memory location
|
|
* allocated by the adapter firmware.
|
|
*/
|
|
if (win_lock)
|
|
spin_lock_bh(win_lock);
|
|
ret = t4_memory_rw(adap, win, mtype, maddr,
|
|
phy_fw_size, (__be32 *)phy_fw_data,
|
|
T4_MEMORY_WRITE);
|
|
if (win_lock)
|
|
spin_unlock_bh(win_lock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Tell the firmware that the PHY firmware image has been written to
|
|
* RAM and it can now start copying it over to the PHYs. The chip
|
|
* firmware will RESET the affected PHYs as part of this operation
|
|
* leaving them running the new PHY firmware image.
|
|
*/
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
|
|
FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
|
|
FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
|
|
ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
|
|
¶m, &val, 30000);
|
|
|
|
/* If we have version number support, then check to see that the new
|
|
* firmware got loaded properly.
|
|
*/
|
|
if (phy_fw_version) {
|
|
ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (cur_phy_fw_ver != new_phy_fw_vers) {
|
|
CH_WARN(adap, "PHY Firmware did not update: "
|
|
"version on adapter %#x, "
|
|
"version flashed %#x\n",
|
|
cur_phy_fw_ver, new_phy_fw_vers);
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* t4_fwcache - firmware cache operation
|
|
* @adap: the adapter
|
|
* @op : the operation (flush or flush and invalidate)
|
|
*/
|
|
int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
|
|
{
|
|
struct fw_params_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn =
|
|
cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_PARAMS_CMD_PFN_V(adap->pf) |
|
|
FW_PARAMS_CMD_VFN_V(0));
|
|
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
|
|
c.param[0].mnem =
|
|
cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
|
|
c.param[0].val = cpu_to_be32(op);
|
|
|
|
return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
|
|
unsigned int *pif_req_wrptr,
|
|
unsigned int *pif_rsp_wrptr)
|
|
{
|
|
int i, j;
|
|
u32 cfg, val, req, rsp;
|
|
|
|
cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
|
|
if (cfg & LADBGEN_F)
|
|
t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
|
|
|
|
val = t4_read_reg(adap, CIM_DEBUGSTS_A);
|
|
req = POLADBGWRPTR_G(val);
|
|
rsp = PILADBGWRPTR_G(val);
|
|
if (pif_req_wrptr)
|
|
*pif_req_wrptr = req;
|
|
if (pif_rsp_wrptr)
|
|
*pif_rsp_wrptr = rsp;
|
|
|
|
for (i = 0; i < CIM_PIFLA_SIZE; i++) {
|
|
for (j = 0; j < 6; j++) {
|
|
t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
|
|
PILADBGRDPTR_V(rsp));
|
|
*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
|
|
*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
|
|
req++;
|
|
rsp++;
|
|
}
|
|
req = (req + 2) & POLADBGRDPTR_M;
|
|
rsp = (rsp + 2) & PILADBGRDPTR_M;
|
|
}
|
|
t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
|
|
}
|
|
|
|
void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
|
|
{
|
|
u32 cfg;
|
|
int i, j, idx;
|
|
|
|
cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
|
|
if (cfg & LADBGEN_F)
|
|
t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
|
|
|
|
for (i = 0; i < CIM_MALA_SIZE; i++) {
|
|
for (j = 0; j < 5; j++) {
|
|
idx = 8 * i + j;
|
|
t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
|
|
PILADBGRDPTR_V(idx));
|
|
*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
|
|
*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
|
|
}
|
|
}
|
|
t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
|
|
}
|
|
|
|
void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
|
|
{
|
|
unsigned int i, j;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
u32 *p = la_buf + i;
|
|
|
|
t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
|
|
j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
|
|
t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
|
|
for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
|
|
*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
|
|
}
|
|
}
|
|
|
|
/* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
|
|
* Capabilities which we control with separate controls -- see, for instance,
|
|
* Pause Frames and Forward Error Correction. In order to determine what the
|
|
* full set of Advertised Port Capabilities are, the base Advertised Port
|
|
* Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
|
|
* Port Capabilities associated with those other controls. See
|
|
* t4_link_acaps() for how this is done.
|
|
*/
|
|
#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
|
|
FW_PORT_CAP32_ANEG)
|
|
|
|
/**
|
|
* fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
|
|
* @caps16: a 16-bit Port Capabilities value
|
|
*
|
|
* Returns the equivalent 32-bit Port Capabilities value.
|
|
*/
|
|
static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
|
|
{
|
|
fw_port_cap32_t caps32 = 0;
|
|
|
|
#define CAP16_TO_CAP32(__cap) \
|
|
do { \
|
|
if (caps16 & FW_PORT_CAP_##__cap) \
|
|
caps32 |= FW_PORT_CAP32_##__cap; \
|
|
} while (0)
|
|
|
|
CAP16_TO_CAP32(SPEED_100M);
|
|
CAP16_TO_CAP32(SPEED_1G);
|
|
CAP16_TO_CAP32(SPEED_25G);
|
|
CAP16_TO_CAP32(SPEED_10G);
|
|
CAP16_TO_CAP32(SPEED_40G);
|
|
CAP16_TO_CAP32(SPEED_100G);
|
|
CAP16_TO_CAP32(FC_RX);
|
|
CAP16_TO_CAP32(FC_TX);
|
|
CAP16_TO_CAP32(ANEG);
|
|
CAP16_TO_CAP32(FORCE_PAUSE);
|
|
CAP16_TO_CAP32(MDIAUTO);
|
|
CAP16_TO_CAP32(MDISTRAIGHT);
|
|
CAP16_TO_CAP32(FEC_RS);
|
|
CAP16_TO_CAP32(FEC_BASER_RS);
|
|
CAP16_TO_CAP32(802_3_PAUSE);
|
|
CAP16_TO_CAP32(802_3_ASM_DIR);
|
|
|
|
#undef CAP16_TO_CAP32
|
|
|
|
return caps32;
|
|
}
|
|
|
|
/**
|
|
* fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
|
|
* @caps32: a 32-bit Port Capabilities value
|
|
*
|
|
* Returns the equivalent 16-bit Port Capabilities value. Note that
|
|
* not all 32-bit Port Capabilities can be represented in the 16-bit
|
|
* Port Capabilities and some fields/values may not make it.
|
|
*/
|
|
static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
|
|
{
|
|
fw_port_cap16_t caps16 = 0;
|
|
|
|
#define CAP32_TO_CAP16(__cap) \
|
|
do { \
|
|
if (caps32 & FW_PORT_CAP32_##__cap) \
|
|
caps16 |= FW_PORT_CAP_##__cap; \
|
|
} while (0)
|
|
|
|
CAP32_TO_CAP16(SPEED_100M);
|
|
CAP32_TO_CAP16(SPEED_1G);
|
|
CAP32_TO_CAP16(SPEED_10G);
|
|
CAP32_TO_CAP16(SPEED_25G);
|
|
CAP32_TO_CAP16(SPEED_40G);
|
|
CAP32_TO_CAP16(SPEED_100G);
|
|
CAP32_TO_CAP16(FC_RX);
|
|
CAP32_TO_CAP16(FC_TX);
|
|
CAP32_TO_CAP16(802_3_PAUSE);
|
|
CAP32_TO_CAP16(802_3_ASM_DIR);
|
|
CAP32_TO_CAP16(ANEG);
|
|
CAP32_TO_CAP16(FORCE_PAUSE);
|
|
CAP32_TO_CAP16(MDIAUTO);
|
|
CAP32_TO_CAP16(MDISTRAIGHT);
|
|
CAP32_TO_CAP16(FEC_RS);
|
|
CAP32_TO_CAP16(FEC_BASER_RS);
|
|
|
|
#undef CAP32_TO_CAP16
|
|
|
|
return caps16;
|
|
}
|
|
|
|
/* Translate Firmware Port Capabilities Pause specification to Common Code */
|
|
static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
|
|
{
|
|
enum cc_pause cc_pause = 0;
|
|
|
|
if (fw_pause & FW_PORT_CAP32_FC_RX)
|
|
cc_pause |= PAUSE_RX;
|
|
if (fw_pause & FW_PORT_CAP32_FC_TX)
|
|
cc_pause |= PAUSE_TX;
|
|
|
|
return cc_pause;
|
|
}
|
|
|
|
/* Translate Common Code Pause specification into Firmware Port Capabilities */
|
|
static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
|
|
{
|
|
/* Translate orthogonal RX/TX Pause Controls for L1 Configure
|
|
* commands, etc.
|
|
*/
|
|
fw_port_cap32_t fw_pause = 0;
|
|
|
|
if (cc_pause & PAUSE_RX)
|
|
fw_pause |= FW_PORT_CAP32_FC_RX;
|
|
if (cc_pause & PAUSE_TX)
|
|
fw_pause |= FW_PORT_CAP32_FC_TX;
|
|
if (!(cc_pause & PAUSE_AUTONEG))
|
|
fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
|
|
|
|
/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
|
|
* Asymetrical Pause for use in reporting to upper layer OS code, etc.
|
|
* Note that these bits are ignored in L1 Configure commands.
|
|
*/
|
|
if (cc_pause & PAUSE_RX) {
|
|
if (cc_pause & PAUSE_TX)
|
|
fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
|
|
else
|
|
fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
|
|
} else if (cc_pause & PAUSE_TX) {
|
|
fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
|
|
}
|
|
|
|
return fw_pause;
|
|
}
|
|
|
|
/* Translate Firmware Forward Error Correction specification to Common Code */
|
|
static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
|
|
{
|
|
enum cc_fec cc_fec = 0;
|
|
|
|
if (fw_fec & FW_PORT_CAP32_FEC_RS)
|
|
cc_fec |= FEC_RS;
|
|
if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
|
|
cc_fec |= FEC_BASER_RS;
|
|
|
|
return cc_fec;
|
|
}
|
|
|
|
/* Translate Common Code Forward Error Correction specification to Firmware */
|
|
static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
|
|
{
|
|
fw_port_cap32_t fw_fec = 0;
|
|
|
|
if (cc_fec & FEC_RS)
|
|
fw_fec |= FW_PORT_CAP32_FEC_RS;
|
|
if (cc_fec & FEC_BASER_RS)
|
|
fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
|
|
|
|
return fw_fec;
|
|
}
|
|
|
|
/**
|
|
* t4_link_acaps - compute Link Advertised Port Capabilities
|
|
* @adapter: the adapter
|
|
* @port: the Port ID
|
|
* @lc: the Port's Link Configuration
|
|
*
|
|
* Synthesize the Advertised Port Capabilities we'll be using based on
|
|
* the base Advertised Port Capabilities (which have been filtered by
|
|
* ADVERT_MASK) plus the individual controls for things like Pause
|
|
* Frames, Forward Error Correction, MDI, etc.
|
|
*/
|
|
fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
|
|
struct link_config *lc)
|
|
{
|
|
fw_port_cap32_t fw_fc, fw_fec, acaps;
|
|
unsigned int fw_mdi;
|
|
char cc_fec;
|
|
|
|
fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
|
|
|
|
/* Convert driver coding of Pause Frame Flow Control settings into the
|
|
* Firmware's API.
|
|
*/
|
|
fw_fc = cc_to_fwcap_pause(lc->requested_fc);
|
|
|
|
/* Convert Common Code Forward Error Control settings into the
|
|
* Firmware's API. If the current Requested FEC has "Automatic"
|
|
* (IEEE 802.3) specified, then we use whatever the Firmware
|
|
* sent us as part of it's IEEE 802.3-based interpratation of
|
|
* the Transceiver Module EPROM FEC parameters. Otherwise we
|
|
* use whatever is in the current Requested FEC settings.
|
|
*/
|
|
if (lc->requested_fec & FEC_AUTO)
|
|
cc_fec = fwcap_to_cc_fec(lc->def_acaps);
|
|
else
|
|
cc_fec = lc->requested_fec;
|
|
fw_fec = cc_to_fwcap_fec(cc_fec);
|
|
|
|
/* Figure out what our Requested Port Capabilities are going to be.
|
|
* Note parallel structure in t4_handle_get_port_info() and
|
|
* init_link_config().
|
|
*/
|
|
if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
|
|
acaps = lc->acaps | fw_fc | fw_fec;
|
|
lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
|
|
lc->fec = cc_fec;
|
|
} else if (lc->autoneg == AUTONEG_DISABLE) {
|
|
acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
|
|
lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
|
|
lc->fec = cc_fec;
|
|
} else {
|
|
acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
|
|
}
|
|
|
|
/* Some Requested Port Capabilities are trivially wrong if they exceed
|
|
* the Physical Port Capabilities. We can check that here and provide
|
|
* moderately useful feedback in the system log.
|
|
*
|
|
* Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
|
|
* we need to exclude this from this check in order to maintain
|
|
* compatibility ...
|
|
*/
|
|
if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
|
|
dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
|
|
acaps, lc->pcaps);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return acaps;
|
|
}
|
|
|
|
/**
|
|
* t4_link_l1cfg_core - apply link configuration to MAC/PHY
|
|
* @adapter: the adapter
|
|
* @mbox: the Firmware Mailbox to use
|
|
* @port: the Port ID
|
|
* @lc: the Port's Link Configuration
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
* @timeout: time to wait for command to finish before timing out
|
|
* (negative implies @sleep_ok=false)
|
|
*
|
|
* Set up a port's MAC and PHY according to a desired link configuration.
|
|
* - If the PHY can auto-negotiate first decide what to advertise, then
|
|
* enable/disable auto-negotiation as desired, and reset.
|
|
* - If the PHY does not auto-negotiate just reset it.
|
|
* - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
|
|
* otherwise do it later based on the outcome of auto-negotiation.
|
|
*/
|
|
int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
|
|
unsigned int port, struct link_config *lc,
|
|
u8 sleep_ok, int timeout)
|
|
{
|
|
unsigned int fw_caps = adapter->params.fw_caps_support;
|
|
struct fw_port_cmd cmd;
|
|
fw_port_cap32_t rcap;
|
|
int ret;
|
|
|
|
if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
|
|
lc->autoneg == AUTONEG_ENABLE) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Compute our Requested Port Capabilities and send that on to the
|
|
* Firmware.
|
|
*/
|
|
rcap = t4_link_acaps(adapter, port, lc);
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
|
|
FW_PORT_CMD_PORTID_V(port));
|
|
cmd.action_to_len16 =
|
|
cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
|
|
? FW_PORT_ACTION_L1_CFG
|
|
: FW_PORT_ACTION_L1_CFG32) |
|
|
FW_LEN16(cmd));
|
|
if (fw_caps == FW_CAPS16)
|
|
cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
|
|
else
|
|
cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
|
|
|
|
ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
|
|
sleep_ok, timeout);
|
|
|
|
/* Unfortunately, even if the Requested Port Capabilities "fit" within
|
|
* the Physical Port Capabilities, some combinations of features may
|
|
* still not be leagal. For example, 40Gb/s and Reed-Solomon Forward
|
|
* Error Correction. So if the Firmware rejects the L1 Configure
|
|
* request, flag that here.
|
|
*/
|
|
if (ret) {
|
|
dev_err(adapter->pdev_dev,
|
|
"Requested Port Capabilities %#x rejected, error %d\n",
|
|
rcap, -ret);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_restart_aneg - restart autonegotiation
|
|
* @adap: the adapter
|
|
* @mbox: mbox to use for the FW command
|
|
* @port: the port id
|
|
*
|
|
* Restarts autonegotiation for the selected port.
|
|
*/
|
|
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
|
|
{
|
|
unsigned int fw_caps = adap->params.fw_caps_support;
|
|
struct fw_port_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
|
|
FW_PORT_CMD_PORTID_V(port));
|
|
c.action_to_len16 =
|
|
cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
|
|
? FW_PORT_ACTION_L1_CFG
|
|
: FW_PORT_ACTION_L1_CFG32) |
|
|
FW_LEN16(c));
|
|
if (fw_caps == FW_CAPS16)
|
|
c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
|
|
else
|
|
c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
typedef void (*int_handler_t)(struct adapter *adap);
|
|
|
|
struct intr_info {
|
|
unsigned int mask; /* bits to check in interrupt status */
|
|
const char *msg; /* message to print or NULL */
|
|
short stat_idx; /* stat counter to increment or -1 */
|
|
unsigned short fatal; /* whether the condition reported is fatal */
|
|
int_handler_t int_handler; /* platform-specific int handler */
|
|
};
|
|
|
|
/**
|
|
* t4_handle_intr_status - table driven interrupt handler
|
|
* @adapter: the adapter that generated the interrupt
|
|
* @reg: the interrupt status register to process
|
|
* @acts: table of interrupt actions
|
|
*
|
|
* A table driven interrupt handler that applies a set of masks to an
|
|
* interrupt status word and performs the corresponding actions if the
|
|
* interrupts described by the mask have occurred. The actions include
|
|
* optionally emitting a warning or alert message. The table is terminated
|
|
* by an entry specifying mask 0. Returns the number of fatal interrupt
|
|
* conditions.
|
|
*/
|
|
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
|
|
const struct intr_info *acts)
|
|
{
|
|
int fatal = 0;
|
|
unsigned int mask = 0;
|
|
unsigned int status = t4_read_reg(adapter, reg);
|
|
|
|
for ( ; acts->mask; ++acts) {
|
|
if (!(status & acts->mask))
|
|
continue;
|
|
if (acts->fatal) {
|
|
fatal++;
|
|
dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
|
|
status & acts->mask);
|
|
} else if (acts->msg && printk_ratelimit())
|
|
dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
|
|
status & acts->mask);
|
|
if (acts->int_handler)
|
|
acts->int_handler(adapter);
|
|
mask |= acts->mask;
|
|
}
|
|
status &= mask;
|
|
if (status) /* clear processed interrupts */
|
|
t4_write_reg(adapter, reg, status);
|
|
return fatal;
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler for the PCIE module.
|
|
*/
|
|
static void pcie_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info sysbus_intr_info[] = {
|
|
{ RNPP_F, "RXNP array parity error", -1, 1 },
|
|
{ RPCP_F, "RXPC array parity error", -1, 1 },
|
|
{ RCIP_F, "RXCIF array parity error", -1, 1 },
|
|
{ RCCP_F, "Rx completions control array parity error", -1, 1 },
|
|
{ RFTP_F, "RXFT array parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info pcie_port_intr_info[] = {
|
|
{ TPCP_F, "TXPC array parity error", -1, 1 },
|
|
{ TNPP_F, "TXNP array parity error", -1, 1 },
|
|
{ TFTP_F, "TXFT array parity error", -1, 1 },
|
|
{ TCAP_F, "TXCA array parity error", -1, 1 },
|
|
{ TCIP_F, "TXCIF array parity error", -1, 1 },
|
|
{ RCAP_F, "RXCA array parity error", -1, 1 },
|
|
{ OTDD_F, "outbound request TLP discarded", -1, 1 },
|
|
{ RDPE_F, "Rx data parity error", -1, 1 },
|
|
{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info pcie_intr_info[] = {
|
|
{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
|
|
{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
|
|
{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
|
|
{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
|
|
{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
|
|
{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
|
|
{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
|
|
{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
|
|
{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
|
|
{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
|
|
{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
|
|
{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
|
|
{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
|
|
{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
|
|
{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
|
|
{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
|
|
{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
|
|
{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
|
|
{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
|
|
{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
|
|
{ FIDPERR_F, "PCI FID parity error", -1, 1 },
|
|
{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
|
|
{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
|
|
{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
|
|
{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
|
|
{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
|
|
{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
|
|
{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
|
|
{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
|
|
{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
|
|
-1, 0 },
|
|
{ 0 }
|
|
};
|
|
|
|
static struct intr_info t5_pcie_intr_info[] = {
|
|
{ MSTGRPPERR_F, "Master Response Read Queue parity error",
|
|
-1, 1 },
|
|
{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
|
|
{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
|
|
{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
|
|
{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
|
|
{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
|
|
{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
|
|
{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
|
|
-1, 1 },
|
|
{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
|
|
-1, 1 },
|
|
{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
|
|
{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
|
|
{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
|
|
{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
|
|
{ DREQWRPERR_F, "PCI DMA channel write request parity error",
|
|
-1, 1 },
|
|
{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
|
|
{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
|
|
{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
|
|
{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
|
|
{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
|
|
{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
|
|
{ FIDPERR_F, "PCI FID parity error", -1, 1 },
|
|
{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
|
|
{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
|
|
{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
|
|
{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
|
|
-1, 1 },
|
|
{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
|
|
-1, 1 },
|
|
{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
|
|
{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
|
|
{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
|
|
{ READRSPERR_F, "Outbound read error", -1, 0 },
|
|
{ 0 }
|
|
};
|
|
|
|
int fat;
|
|
|
|
if (is_t4(adapter->params.chip))
|
|
fat = t4_handle_intr_status(adapter,
|
|
PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
|
|
sysbus_intr_info) +
|
|
t4_handle_intr_status(adapter,
|
|
PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
|
|
pcie_port_intr_info) +
|
|
t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
|
|
pcie_intr_info);
|
|
else
|
|
fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
|
|
t5_pcie_intr_info);
|
|
|
|
if (fat)
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* TP interrupt handler.
|
|
*/
|
|
static void tp_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info tp_intr_info[] = {
|
|
{ 0x3fffffff, "TP parity error", -1, 1 },
|
|
{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* SGE interrupt handler.
|
|
*/
|
|
static void sge_intr_handler(struct adapter *adapter)
|
|
{
|
|
u64 v;
|
|
u32 err;
|
|
|
|
static const struct intr_info sge_intr_info[] = {
|
|
{ ERR_CPL_EXCEED_IQE_SIZE_F,
|
|
"SGE received CPL exceeding IQE size", -1, 1 },
|
|
{ ERR_INVALID_CIDX_INC_F,
|
|
"SGE GTS CIDX increment too large", -1, 0 },
|
|
{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
|
|
{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
|
|
{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
|
|
"SGE IQID > 1023 received CPL for FL", -1, 0 },
|
|
{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_ING_CTXT_PRIO_F,
|
|
"SGE too many priority ingress contexts", -1, 0 },
|
|
{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
|
|
{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
|
|
{ 0 }
|
|
};
|
|
|
|
static struct intr_info t4t5_sge_intr_info[] = {
|
|
{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
|
|
{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
|
|
{ ERR_EGR_CTXT_PRIO_F,
|
|
"SGE too many priority egress contexts", -1, 0 },
|
|
{ 0 }
|
|
};
|
|
|
|
v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
|
|
((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
|
|
if (v) {
|
|
dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
|
|
(unsigned long long)v);
|
|
t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
|
|
t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
|
|
}
|
|
|
|
v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
|
|
if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
|
|
v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
|
|
t4t5_sge_intr_info);
|
|
|
|
err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
|
|
if (err & ERROR_QID_VALID_F) {
|
|
dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
|
|
ERROR_QID_G(err));
|
|
if (err & UNCAPTURED_ERROR_F)
|
|
dev_err(adapter->pdev_dev,
|
|
"SGE UNCAPTURED_ERROR set (clearing)\n");
|
|
t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
|
|
UNCAPTURED_ERROR_F);
|
|
}
|
|
|
|
if (v != 0)
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
|
|
OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
|
|
#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
|
|
IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
|
|
|
|
/*
|
|
* CIM interrupt handler.
|
|
*/
|
|
static void cim_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info cim_intr_info[] = {
|
|
{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
|
|
{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
|
|
{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
|
|
{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
|
|
{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
|
|
{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
|
|
{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
|
|
{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info cim_upintr_info[] = {
|
|
{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
|
|
{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
|
|
{ ILLWRINT_F, "CIM illegal write", -1, 1 },
|
|
{ ILLRDINT_F, "CIM illegal read", -1, 1 },
|
|
{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
|
|
{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
|
|
{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
|
|
{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
|
|
{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
|
|
{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
|
|
{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
|
|
{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
|
|
{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
|
|
{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
|
|
{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
|
|
{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
|
|
{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
|
|
{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
|
|
{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
|
|
{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
|
|
{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
|
|
{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
|
|
{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
|
|
{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
|
|
{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
|
|
{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
|
|
{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
|
|
{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
u32 val, fw_err;
|
|
int fat;
|
|
|
|
fw_err = t4_read_reg(adapter, PCIE_FW_A);
|
|
if (fw_err & PCIE_FW_ERR_F)
|
|
t4_report_fw_error(adapter);
|
|
|
|
/* When the Firmware detects an internal error which normally
|
|
* wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
|
|
* in order to make sure the Host sees the Firmware Crash. So
|
|
* if we have a Timer0 interrupt and don't see a Firmware Crash,
|
|
* ignore the Timer0 interrupt.
|
|
*/
|
|
|
|
val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
|
|
if (val & TIMER0INT_F)
|
|
if (!(fw_err & PCIE_FW_ERR_F) ||
|
|
(PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
|
|
t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
|
|
TIMER0INT_F);
|
|
|
|
fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
|
|
cim_intr_info) +
|
|
t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
|
|
cim_upintr_info);
|
|
if (fat)
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* ULP RX interrupt handler.
|
|
*/
|
|
static void ulprx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info ulprx_intr_info[] = {
|
|
{ 0x1800000, "ULPRX context error", -1, 1 },
|
|
{ 0x7fffff, "ULPRX parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* ULP TX interrupt handler.
|
|
*/
|
|
static void ulptx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info ulptx_intr_info[] = {
|
|
{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
|
|
0 },
|
|
{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
|
|
0 },
|
|
{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
|
|
0 },
|
|
{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
|
|
0 },
|
|
{ 0xfffffff, "ULPTX parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* PM TX interrupt handler.
|
|
*/
|
|
static void pmtx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info pmtx_intr_info[] = {
|
|
{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
|
|
{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
|
|
{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
|
|
{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
|
|
{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
|
|
{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
|
|
{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
|
|
-1, 1 },
|
|
{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
|
|
{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* PM RX interrupt handler.
|
|
*/
|
|
static void pmrx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info pmrx_intr_info[] = {
|
|
{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
|
|
{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
|
|
{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
|
|
{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
|
|
-1, 1 },
|
|
{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
|
|
{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* CPL switch interrupt handler.
|
|
*/
|
|
static void cplsw_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info cplsw_intr_info[] = {
|
|
{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
|
|
{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
|
|
{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
|
|
{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
|
|
{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
|
|
{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* LE interrupt handler.
|
|
*/
|
|
static void le_intr_handler(struct adapter *adap)
|
|
{
|
|
enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
|
|
static const struct intr_info le_intr_info[] = {
|
|
{ LIPMISS_F, "LE LIP miss", -1, 0 },
|
|
{ LIP0_F, "LE 0 LIP error", -1, 0 },
|
|
{ PARITYERR_F, "LE parity error", -1, 1 },
|
|
{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
|
|
{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
static struct intr_info t6_le_intr_info[] = {
|
|
{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
|
|
{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
|
|
{ TCAMINTPERR_F, "LE parity error", -1, 1 },
|
|
{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
|
|
{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
|
|
(chip <= CHELSIO_T5) ?
|
|
le_intr_info : t6_le_intr_info))
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
/*
|
|
* MPS interrupt handler.
|
|
*/
|
|
static void mps_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info mps_rx_intr_info[] = {
|
|
{ 0xffffff, "MPS Rx parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_tx_intr_info[] = {
|
|
{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
|
|
{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
|
|
{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
|
|
-1, 1 },
|
|
{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
|
|
-1, 1 },
|
|
{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
|
|
{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
|
|
{ FRMERR_F, "MPS Tx framing error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info t6_mps_tx_intr_info[] = {
|
|
{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
|
|
{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
|
|
{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
|
|
-1, 1 },
|
|
{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
|
|
-1, 1 },
|
|
/* MPS Tx Bubble is normal for T6 */
|
|
{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
|
|
{ FRMERR_F, "MPS Tx framing error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_trc_intr_info[] = {
|
|
{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
|
|
{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
|
|
-1, 1 },
|
|
{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_stat_sram_intr_info[] = {
|
|
{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_stat_tx_intr_info[] = {
|
|
{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_stat_rx_intr_info[] = {
|
|
{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_cls_intr_info[] = {
|
|
{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
|
|
{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
|
|
{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
int fat;
|
|
|
|
fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
|
|
mps_rx_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
|
|
is_t6(adapter->params.chip)
|
|
? t6_mps_tx_intr_info
|
|
: mps_tx_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
|
|
mps_trc_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
|
|
mps_stat_sram_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
|
|
mps_stat_tx_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
|
|
mps_stat_rx_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
|
|
mps_cls_intr_info);
|
|
|
|
t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
|
|
t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
|
|
if (fat)
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
|
|
ECC_UE_INT_CAUSE_F)
|
|
|
|
/*
|
|
* EDC/MC interrupt handler.
|
|
*/
|
|
static void mem_intr_handler(struct adapter *adapter, int idx)
|
|
{
|
|
static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
|
|
|
|
unsigned int addr, cnt_addr, v;
|
|
|
|
if (idx <= MEM_EDC1) {
|
|
addr = EDC_REG(EDC_INT_CAUSE_A, idx);
|
|
cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
|
|
} else if (idx == MEM_MC) {
|
|
if (is_t4(adapter->params.chip)) {
|
|
addr = MC_INT_CAUSE_A;
|
|
cnt_addr = MC_ECC_STATUS_A;
|
|
} else {
|
|
addr = MC_P_INT_CAUSE_A;
|
|
cnt_addr = MC_P_ECC_STATUS_A;
|
|
}
|
|
} else {
|
|
addr = MC_REG(MC_P_INT_CAUSE_A, 1);
|
|
cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
|
|
}
|
|
|
|
v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
|
|
if (v & PERR_INT_CAUSE_F)
|
|
dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
|
|
name[idx]);
|
|
if (v & ECC_CE_INT_CAUSE_F) {
|
|
u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
|
|
|
|
t4_edc_err_read(adapter, idx);
|
|
|
|
t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
|
|
if (printk_ratelimit())
|
|
dev_warn(adapter->pdev_dev,
|
|
"%u %s correctable ECC data error%s\n",
|
|
cnt, name[idx], cnt > 1 ? "s" : "");
|
|
}
|
|
if (v & ECC_UE_INT_CAUSE_F)
|
|
dev_alert(adapter->pdev_dev,
|
|
"%s uncorrectable ECC data error\n", name[idx]);
|
|
|
|
t4_write_reg(adapter, addr, v);
|
|
if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* MA interrupt handler.
|
|
*/
|
|
static void ma_intr_handler(struct adapter *adap)
|
|
{
|
|
u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
|
|
|
|
if (status & MEM_PERR_INT_CAUSE_F) {
|
|
dev_alert(adap->pdev_dev,
|
|
"MA parity error, parity status %#x\n",
|
|
t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
|
|
if (is_t5(adap->params.chip))
|
|
dev_alert(adap->pdev_dev,
|
|
"MA parity error, parity status %#x\n",
|
|
t4_read_reg(adap,
|
|
MA_PARITY_ERROR_STATUS2_A));
|
|
}
|
|
if (status & MEM_WRAP_INT_CAUSE_F) {
|
|
v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
|
|
dev_alert(adap->pdev_dev, "MA address wrap-around error by "
|
|
"client %u to address %#x\n",
|
|
MEM_WRAP_CLIENT_NUM_G(v),
|
|
MEM_WRAP_ADDRESS_G(v) << 4);
|
|
}
|
|
t4_write_reg(adap, MA_INT_CAUSE_A, status);
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
/*
|
|
* SMB interrupt handler.
|
|
*/
|
|
static void smb_intr_handler(struct adapter *adap)
|
|
{
|
|
static const struct intr_info smb_intr_info[] = {
|
|
{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
|
|
{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
|
|
{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
/*
|
|
* NC-SI interrupt handler.
|
|
*/
|
|
static void ncsi_intr_handler(struct adapter *adap)
|
|
{
|
|
static const struct intr_info ncsi_intr_info[] = {
|
|
{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
|
|
{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
|
|
{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
|
|
{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
/*
|
|
* XGMAC interrupt handler.
|
|
*/
|
|
static void xgmac_intr_handler(struct adapter *adap, int port)
|
|
{
|
|
u32 v, int_cause_reg;
|
|
|
|
if (is_t4(adap->params.chip))
|
|
int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
|
|
else
|
|
int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
|
|
|
|
v = t4_read_reg(adap, int_cause_reg);
|
|
|
|
v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
|
|
if (!v)
|
|
return;
|
|
|
|
if (v & TXFIFO_PRTY_ERR_F)
|
|
dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
|
|
port);
|
|
if (v & RXFIFO_PRTY_ERR_F)
|
|
dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
|
|
port);
|
|
t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
/*
|
|
* PL interrupt handler.
|
|
*/
|
|
static void pl_intr_handler(struct adapter *adap)
|
|
{
|
|
static const struct intr_info pl_intr_info[] = {
|
|
{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
|
|
{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
#define PF_INTR_MASK (PFSW_F)
|
|
#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
|
|
EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
|
|
CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
|
|
|
|
/**
|
|
* t4_slow_intr_handler - control path interrupt handler
|
|
* @adapter: the adapter
|
|
*
|
|
* T4 interrupt handler for non-data global interrupt events, e.g., errors.
|
|
* The designation 'slow' is because it involves register reads, while
|
|
* data interrupts typically don't involve any MMIOs.
|
|
*/
|
|
int t4_slow_intr_handler(struct adapter *adapter)
|
|
{
|
|
/* There are rare cases where a PL_INT_CAUSE bit may end up getting
|
|
* set when the corresponding PL_INT_ENABLE bit isn't set. It's
|
|
* easiest just to mask that case here.
|
|
*/
|
|
u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
|
|
u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
|
|
u32 cause = raw_cause & enable;
|
|
|
|
if (!(cause & GLBL_INTR_MASK))
|
|
return 0;
|
|
if (cause & CIM_F)
|
|
cim_intr_handler(adapter);
|
|
if (cause & MPS_F)
|
|
mps_intr_handler(adapter);
|
|
if (cause & NCSI_F)
|
|
ncsi_intr_handler(adapter);
|
|
if (cause & PL_F)
|
|
pl_intr_handler(adapter);
|
|
if (cause & SMB_F)
|
|
smb_intr_handler(adapter);
|
|
if (cause & XGMAC0_F)
|
|
xgmac_intr_handler(adapter, 0);
|
|
if (cause & XGMAC1_F)
|
|
xgmac_intr_handler(adapter, 1);
|
|
if (cause & XGMAC_KR0_F)
|
|
xgmac_intr_handler(adapter, 2);
|
|
if (cause & XGMAC_KR1_F)
|
|
xgmac_intr_handler(adapter, 3);
|
|
if (cause & PCIE_F)
|
|
pcie_intr_handler(adapter);
|
|
if (cause & MC_F)
|
|
mem_intr_handler(adapter, MEM_MC);
|
|
if (is_t5(adapter->params.chip) && (cause & MC1_F))
|
|
mem_intr_handler(adapter, MEM_MC1);
|
|
if (cause & EDC0_F)
|
|
mem_intr_handler(adapter, MEM_EDC0);
|
|
if (cause & EDC1_F)
|
|
mem_intr_handler(adapter, MEM_EDC1);
|
|
if (cause & LE_F)
|
|
le_intr_handler(adapter);
|
|
if (cause & TP_F)
|
|
tp_intr_handler(adapter);
|
|
if (cause & MA_F)
|
|
ma_intr_handler(adapter);
|
|
if (cause & PM_TX_F)
|
|
pmtx_intr_handler(adapter);
|
|
if (cause & PM_RX_F)
|
|
pmrx_intr_handler(adapter);
|
|
if (cause & ULP_RX_F)
|
|
ulprx_intr_handler(adapter);
|
|
if (cause & CPL_SWITCH_F)
|
|
cplsw_intr_handler(adapter);
|
|
if (cause & SGE_F)
|
|
sge_intr_handler(adapter);
|
|
if (cause & ULP_TX_F)
|
|
ulptx_intr_handler(adapter);
|
|
|
|
/* Clear the interrupts just processed for which we are the master. */
|
|
t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
|
|
(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* t4_intr_enable - enable interrupts
|
|
* @adapter: the adapter whose interrupts should be enabled
|
|
*
|
|
* Enable PF-specific interrupts for the calling function and the top-level
|
|
* interrupt concentrator for global interrupts. Interrupts are already
|
|
* enabled at each module, here we just enable the roots of the interrupt
|
|
* hierarchies.
|
|
*
|
|
* Note: this function should be called only when the driver manages
|
|
* non PF-specific interrupts from the various HW modules. Only one PCI
|
|
* function at a time should be doing this.
|
|
*/
|
|
void t4_intr_enable(struct adapter *adapter)
|
|
{
|
|
u32 val = 0;
|
|
u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
|
|
u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
|
|
SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
|
|
|
|
if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
|
|
val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
|
|
t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
|
|
ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
|
|
ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
|
|
ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
|
|
ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
|
|
ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
|
|
DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
|
|
t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
|
|
t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
|
|
}
|
|
|
|
/**
|
|
* t4_intr_disable - disable interrupts
|
|
* @adapter: the adapter whose interrupts should be disabled
|
|
*
|
|
* Disable interrupts. We only disable the top-level interrupt
|
|
* concentrators. The caller must be a PCI function managing global
|
|
* interrupts.
|
|
*/
|
|
void t4_intr_disable(struct adapter *adapter)
|
|
{
|
|
u32 whoami, pf;
|
|
|
|
if (pci_channel_offline(adapter->pdev))
|
|
return;
|
|
|
|
whoami = t4_read_reg(adapter, PL_WHOAMI_A);
|
|
pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
|
|
SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
|
|
|
|
t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
|
|
t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
|
|
}
|
|
|
|
unsigned int t4_chip_rss_size(struct adapter *adap)
|
|
{
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
|
|
return RSS_NENTRIES;
|
|
else
|
|
return T6_RSS_NENTRIES;
|
|
}
|
|
|
|
/**
|
|
* t4_config_rss_range - configure a portion of the RSS mapping table
|
|
* @adapter: the adapter
|
|
* @mbox: mbox to use for the FW command
|
|
* @viid: virtual interface whose RSS subtable is to be written
|
|
* @start: start entry in the table to write
|
|
* @n: how many table entries to write
|
|
* @rspq: values for the response queue lookup table
|
|
* @nrspq: number of values in @rspq
|
|
*
|
|
* Programs the selected part of the VI's RSS mapping table with the
|
|
* provided values. If @nrspq < @n the supplied values are used repeatedly
|
|
* until the full table range is populated.
|
|
*
|
|
* The caller must ensure the values in @rspq are in the range allowed for
|
|
* @viid.
|
|
*/
|
|
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
|
|
int start, int n, const u16 *rspq, unsigned int nrspq)
|
|
{
|
|
int ret;
|
|
const u16 *rsp = rspq;
|
|
const u16 *rsp_end = rspq + nrspq;
|
|
struct fw_rss_ind_tbl_cmd cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_RSS_IND_TBL_CMD_VIID_V(viid));
|
|
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
|
|
|
|
/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
|
|
while (n > 0) {
|
|
int nq = min(n, 32);
|
|
__be32 *qp = &cmd.iq0_to_iq2;
|
|
|
|
cmd.niqid = cpu_to_be16(nq);
|
|
cmd.startidx = cpu_to_be16(start);
|
|
|
|
start += nq;
|
|
n -= nq;
|
|
|
|
while (nq > 0) {
|
|
unsigned int v;
|
|
|
|
v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
|
|
if (++rsp >= rsp_end)
|
|
rsp = rspq;
|
|
v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
|
|
if (++rsp >= rsp_end)
|
|
rsp = rspq;
|
|
v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
|
|
if (++rsp >= rsp_end)
|
|
rsp = rspq;
|
|
|
|
*qp++ = cpu_to_be32(v);
|
|
nq -= 3;
|
|
}
|
|
|
|
ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_config_glbl_rss - configure the global RSS mode
|
|
* @adapter: the adapter
|
|
* @mbox: mbox to use for the FW command
|
|
* @mode: global RSS mode
|
|
* @flags: mode-specific flags
|
|
*
|
|
* Sets the global RSS mode.
|
|
*/
|
|
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
|
|
unsigned int flags)
|
|
{
|
|
struct fw_rss_glb_config_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
|
|
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
|
|
if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
|
|
c.u.manual.mode_pkd =
|
|
cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
|
|
} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
|
|
c.u.basicvirtual.mode_pkd =
|
|
cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
|
|
c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
|
|
} else
|
|
return -EINVAL;
|
|
return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_config_vi_rss - configure per VI RSS settings
|
|
* @adapter: the adapter
|
|
* @mbox: mbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @flags: RSS flags
|
|
* @defq: id of the default RSS queue for the VI.
|
|
*
|
|
* Configures VI-specific RSS properties.
|
|
*/
|
|
int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
|
|
unsigned int flags, unsigned int defq)
|
|
{
|
|
struct fw_rss_vi_config_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
|
|
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
|
|
c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
|
|
FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
|
|
return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/* Read an RSS table row */
|
|
static int rd_rss_row(struct adapter *adap, int row, u32 *val)
|
|
{
|
|
t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
|
|
return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
|
|
5, 0, val);
|
|
}
|
|
|
|
/**
|
|
* t4_read_rss - read the contents of the RSS mapping table
|
|
* @adapter: the adapter
|
|
* @map: holds the contents of the RSS mapping table
|
|
*
|
|
* Reads the contents of the RSS hash->queue mapping table.
|
|
*/
|
|
int t4_read_rss(struct adapter *adapter, u16 *map)
|
|
{
|
|
int i, ret, nentries;
|
|
u32 val;
|
|
|
|
nentries = t4_chip_rss_size(adapter);
|
|
for (i = 0; i < nentries / 2; ++i) {
|
|
ret = rd_rss_row(adapter, i, &val);
|
|
if (ret)
|
|
return ret;
|
|
*map++ = LKPTBLQUEUE0_G(val);
|
|
*map++ = LKPTBLQUEUE1_G(val);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int t4_use_ldst(struct adapter *adap)
|
|
{
|
|
return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
|
|
}
|
|
|
|
/**
|
|
* t4_tp_fw_ldst_rw - Access TP indirect register through LDST
|
|
* @adap: the adapter
|
|
* @cmd: TP fw ldst address space type
|
|
* @vals: where the indirect register values are stored/written
|
|
* @nregs: how many indirect registers to read/write
|
|
* @start_idx: index of first indirect register to read/write
|
|
* @rw: Read (1) or Write (0)
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Access TP indirect registers through LDST
|
|
*/
|
|
static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
|
|
unsigned int nregs, unsigned int start_index,
|
|
unsigned int rw, bool sleep_ok)
|
|
{
|
|
int ret = 0;
|
|
unsigned int i;
|
|
struct fw_ldst_cmd c;
|
|
|
|
for (i = 0; i < nregs; i++) {
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
(rw ? FW_CMD_READ_F :
|
|
FW_CMD_WRITE_F) |
|
|
FW_LDST_CMD_ADDRSPACE_V(cmd));
|
|
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
|
|
|
|
c.u.addrval.addr = cpu_to_be32(start_index + i);
|
|
c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
|
|
ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
|
|
sleep_ok);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (rw)
|
|
vals[i] = be32_to_cpu(c.u.addrval.val);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
|
|
* @adap: the adapter
|
|
* @reg_addr: Address Register
|
|
* @reg_data: Data register
|
|
* @buff: where the indirect register values are stored/written
|
|
* @nregs: how many indirect registers to read/write
|
|
* @start_index: index of first indirect register to read/write
|
|
* @rw: READ(1) or WRITE(0)
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Read/Write TP indirect registers through LDST if possible.
|
|
* Else, use backdoor access
|
|
**/
|
|
static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
|
|
u32 *buff, u32 nregs, u32 start_index, int rw,
|
|
bool sleep_ok)
|
|
{
|
|
int rc = -EINVAL;
|
|
int cmd;
|
|
|
|
switch (reg_addr) {
|
|
case TP_PIO_ADDR_A:
|
|
cmd = FW_LDST_ADDRSPC_TP_PIO;
|
|
break;
|
|
case TP_TM_PIO_ADDR_A:
|
|
cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
|
|
break;
|
|
case TP_MIB_INDEX_A:
|
|
cmd = FW_LDST_ADDRSPC_TP_MIB;
|
|
break;
|
|
default:
|
|
goto indirect_access;
|
|
}
|
|
|
|
if (t4_use_ldst(adap))
|
|
rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
|
|
sleep_ok);
|
|
|
|
indirect_access:
|
|
|
|
if (rc) {
|
|
if (rw)
|
|
t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
|
|
start_index);
|
|
else
|
|
t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
|
|
start_index);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_tp_pio_read - Read TP PIO registers
|
|
* @adap: the adapter
|
|
* @buff: where the indirect register values are written
|
|
* @nregs: how many indirect registers to read
|
|
* @start_index: index of first indirect register to read
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Read TP PIO Registers
|
|
**/
|
|
void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
|
|
u32 start_index, bool sleep_ok)
|
|
{
|
|
t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
|
|
start_index, 1, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_tp_pio_write - Write TP PIO registers
|
|
* @adap: the adapter
|
|
* @buff: where the indirect register values are stored
|
|
* @nregs: how many indirect registers to write
|
|
* @start_index: index of first indirect register to write
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Write TP PIO Registers
|
|
**/
|
|
static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
|
|
u32 start_index, bool sleep_ok)
|
|
{
|
|
t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
|
|
start_index, 0, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_tp_tm_pio_read - Read TP TM PIO registers
|
|
* @adap: the adapter
|
|
* @buff: where the indirect register values are written
|
|
* @nregs: how many indirect registers to read
|
|
* @start_index: index of first indirect register to read
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Read TP TM PIO Registers
|
|
**/
|
|
void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
|
|
u32 start_index, bool sleep_ok)
|
|
{
|
|
t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
|
|
nregs, start_index, 1, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_tp_mib_read - Read TP MIB registers
|
|
* @adap: the adapter
|
|
* @buff: where the indirect register values are written
|
|
* @nregs: how many indirect registers to read
|
|
* @start_index: index of first indirect register to read
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Read TP MIB Registers
|
|
**/
|
|
void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
|
|
bool sleep_ok)
|
|
{
|
|
t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
|
|
start_index, 1, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_read_rss_key - read the global RSS key
|
|
* @adap: the adapter
|
|
* @key: 10-entry array holding the 320-bit RSS key
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Reads the global 320-bit RSS key.
|
|
*/
|
|
void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
|
|
{
|
|
t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_write_rss_key - program one of the RSS keys
|
|
* @adap: the adapter
|
|
* @key: 10-entry array holding the 320-bit RSS key
|
|
* @idx: which RSS key to write
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Writes one of the RSS keys with the given 320-bit value. If @idx is
|
|
* 0..15 the corresponding entry in the RSS key table is written,
|
|
* otherwise the global RSS key is written.
|
|
*/
|
|
void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
|
|
bool sleep_ok)
|
|
{
|
|
u8 rss_key_addr_cnt = 16;
|
|
u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
|
|
|
|
/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
|
|
* allows access to key addresses 16-63 by using KeyWrAddrX
|
|
* as index[5:4](upper 2) into key table
|
|
*/
|
|
if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
|
|
(vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
|
|
rss_key_addr_cnt = 32;
|
|
|
|
t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
|
|
|
|
if (idx >= 0 && idx < rss_key_addr_cnt) {
|
|
if (rss_key_addr_cnt > 16)
|
|
t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
|
|
KEYWRADDRX_V(idx >> 4) |
|
|
T6_VFWRADDR_V(idx) | KEYWREN_F);
|
|
else
|
|
t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
|
|
KEYWRADDR_V(idx) | KEYWREN_F);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_read_rss_pf_config - read PF RSS Configuration Table
|
|
* @adapter: the adapter
|
|
* @index: the entry in the PF RSS table to read
|
|
* @valp: where to store the returned value
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Reads the PF RSS Configuration Table at the specified index and returns
|
|
* the value found there.
|
|
*/
|
|
void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
|
|
u32 *valp, bool sleep_ok)
|
|
{
|
|
t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_read_rss_vf_config - read VF RSS Configuration Table
|
|
* @adapter: the adapter
|
|
* @index: the entry in the VF RSS table to read
|
|
* @vfl: where to store the returned VFL
|
|
* @vfh: where to store the returned VFH
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Reads the VF RSS Configuration Table at the specified index and returns
|
|
* the (VFL, VFH) values found there.
|
|
*/
|
|
void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
|
|
u32 *vfl, u32 *vfh, bool sleep_ok)
|
|
{
|
|
u32 vrt, mask, data;
|
|
|
|
if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
|
|
mask = VFWRADDR_V(VFWRADDR_M);
|
|
data = VFWRADDR_V(index);
|
|
} else {
|
|
mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
|
|
data = T6_VFWRADDR_V(index);
|
|
}
|
|
|
|
/* Request that the index'th VF Table values be read into VFL/VFH.
|
|
*/
|
|
vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
|
|
vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
|
|
vrt |= data | VFRDEN_F;
|
|
t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
|
|
|
|
/* Grab the VFL/VFH values ...
|
|
*/
|
|
t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
|
|
t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_read_rss_pf_map - read PF RSS Map
|
|
* @adapter: the adapter
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Reads the PF RSS Map register and returns its value.
|
|
*/
|
|
u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
|
|
{
|
|
u32 pfmap;
|
|
|
|
t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
|
|
return pfmap;
|
|
}
|
|
|
|
/**
|
|
* t4_read_rss_pf_mask - read PF RSS Mask
|
|
* @adapter: the adapter
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Reads the PF RSS Mask register and returns its value.
|
|
*/
|
|
u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
|
|
{
|
|
u32 pfmask;
|
|
|
|
t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
|
|
return pfmask;
|
|
}
|
|
|
|
/**
|
|
* t4_tp_get_tcp_stats - read TP's TCP MIB counters
|
|
* @adap: the adapter
|
|
* @v4: holds the TCP/IP counter values
|
|
* @v6: holds the TCP/IPv6 counter values
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
|
|
* Either @v4 or @v6 may be %NULL to skip the corresponding stats.
|
|
*/
|
|
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
|
|
struct tp_tcp_stats *v6, bool sleep_ok)
|
|
{
|
|
u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
|
|
|
|
#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
|
|
#define STAT(x) val[STAT_IDX(x)]
|
|
#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
|
|
|
|
if (v4) {
|
|
t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
|
|
TP_MIB_TCP_OUT_RST_A, sleep_ok);
|
|
v4->tcp_out_rsts = STAT(OUT_RST);
|
|
v4->tcp_in_segs = STAT64(IN_SEG);
|
|
v4->tcp_out_segs = STAT64(OUT_SEG);
|
|
v4->tcp_retrans_segs = STAT64(RXT_SEG);
|
|
}
|
|
if (v6) {
|
|
t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
|
|
TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
|
|
v6->tcp_out_rsts = STAT(OUT_RST);
|
|
v6->tcp_in_segs = STAT64(IN_SEG);
|
|
v6->tcp_out_segs = STAT64(OUT_SEG);
|
|
v6->tcp_retrans_segs = STAT64(RXT_SEG);
|
|
}
|
|
#undef STAT64
|
|
#undef STAT
|
|
#undef STAT_IDX
|
|
}
|
|
|
|
/**
|
|
* t4_tp_get_err_stats - read TP's error MIB counters
|
|
* @adap: the adapter
|
|
* @st: holds the counter values
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Returns the values of TP's error counters.
|
|
*/
|
|
void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
|
|
bool sleep_ok)
|
|
{
|
|
int nchan = adap->params.arch.nchan;
|
|
|
|
t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
|
|
sleep_ok);
|
|
t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
|
|
sleep_ok);
|
|
t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
|
|
sleep_ok);
|
|
t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
|
|
TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
|
|
t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
|
|
TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
|
|
t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
|
|
sleep_ok);
|
|
t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
|
|
TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
|
|
t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
|
|
TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
|
|
t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
|
|
sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_tp_get_cpl_stats - read TP's CPL MIB counters
|
|
* @adap: the adapter
|
|
* @st: holds the counter values
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Returns the values of TP's CPL counters.
|
|
*/
|
|
void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
|
|
bool sleep_ok)
|
|
{
|
|
int nchan = adap->params.arch.nchan;
|
|
|
|
t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
|
|
|
|
t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_tp_get_rdma_stats - read TP's RDMA MIB counters
|
|
* @adap: the adapter
|
|
* @st: holds the counter values
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Returns the values of TP's RDMA counters.
|
|
*/
|
|
void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
|
|
bool sleep_ok)
|
|
{
|
|
t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
|
|
sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
|
|
* @adap: the adapter
|
|
* @idx: the port index
|
|
* @st: holds the counter values
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Returns the values of TP's FCoE counters for the selected port.
|
|
*/
|
|
void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
|
|
struct tp_fcoe_stats *st, bool sleep_ok)
|
|
{
|
|
u32 val[2];
|
|
|
|
t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
|
|
sleep_ok);
|
|
|
|
t4_tp_mib_read(adap, &st->frames_drop, 1,
|
|
TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
|
|
|
|
t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
|
|
sleep_ok);
|
|
|
|
st->octets_ddp = ((u64)val[0] << 32) | val[1];
|
|
}
|
|
|
|
/**
|
|
* t4_get_usm_stats - read TP's non-TCP DDP MIB counters
|
|
* @adap: the adapter
|
|
* @st: holds the counter values
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Returns the values of TP's counters for non-TCP directly-placed packets.
|
|
*/
|
|
void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
|
|
bool sleep_ok)
|
|
{
|
|
u32 val[4];
|
|
|
|
t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
|
|
st->frames = val[0];
|
|
st->drops = val[1];
|
|
st->octets = ((u64)val[2] << 32) | val[3];
|
|
}
|
|
|
|
/**
|
|
* t4_read_mtu_tbl - returns the values in the HW path MTU table
|
|
* @adap: the adapter
|
|
* @mtus: where to store the MTU values
|
|
* @mtu_log: where to store the MTU base-2 log (may be %NULL)
|
|
*
|
|
* Reads the HW path MTU table.
|
|
*/
|
|
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
|
|
{
|
|
u32 v;
|
|
int i;
|
|
|
|
for (i = 0; i < NMTUS; ++i) {
|
|
t4_write_reg(adap, TP_MTU_TABLE_A,
|
|
MTUINDEX_V(0xff) | MTUVALUE_V(i));
|
|
v = t4_read_reg(adap, TP_MTU_TABLE_A);
|
|
mtus[i] = MTUVALUE_G(v);
|
|
if (mtu_log)
|
|
mtu_log[i] = MTUWIDTH_G(v);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_read_cong_tbl - reads the congestion control table
|
|
* @adap: the adapter
|
|
* @incr: where to store the alpha values
|
|
*
|
|
* Reads the additive increments programmed into the HW congestion
|
|
* control table.
|
|
*/
|
|
void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
|
|
{
|
|
unsigned int mtu, w;
|
|
|
|
for (mtu = 0; mtu < NMTUS; ++mtu)
|
|
for (w = 0; w < NCCTRL_WIN; ++w) {
|
|
t4_write_reg(adap, TP_CCTRL_TABLE_A,
|
|
ROWINDEX_V(0xffff) | (mtu << 5) | w);
|
|
incr[mtu][w] = (u16)t4_read_reg(adap,
|
|
TP_CCTRL_TABLE_A) & 0x1fff;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
|
|
* @adap: the adapter
|
|
* @addr: the indirect TP register address
|
|
* @mask: specifies the field within the register to modify
|
|
* @val: new value for the field
|
|
*
|
|
* Sets a field of an indirect TP register to the given value.
|
|
*/
|
|
void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
|
|
unsigned int mask, unsigned int val)
|
|
{
|
|
t4_write_reg(adap, TP_PIO_ADDR_A, addr);
|
|
val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
|
|
t4_write_reg(adap, TP_PIO_DATA_A, val);
|
|
}
|
|
|
|
/**
|
|
* init_cong_ctrl - initialize congestion control parameters
|
|
* @a: the alpha values for congestion control
|
|
* @b: the beta values for congestion control
|
|
*
|
|
* Initialize the congestion control parameters.
|
|
*/
|
|
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
|
|
{
|
|
a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
|
|
a[9] = 2;
|
|
a[10] = 3;
|
|
a[11] = 4;
|
|
a[12] = 5;
|
|
a[13] = 6;
|
|
a[14] = 7;
|
|
a[15] = 8;
|
|
a[16] = 9;
|
|
a[17] = 10;
|
|
a[18] = 14;
|
|
a[19] = 17;
|
|
a[20] = 21;
|
|
a[21] = 25;
|
|
a[22] = 30;
|
|
a[23] = 35;
|
|
a[24] = 45;
|
|
a[25] = 60;
|
|
a[26] = 80;
|
|
a[27] = 100;
|
|
a[28] = 200;
|
|
a[29] = 300;
|
|
a[30] = 400;
|
|
a[31] = 500;
|
|
|
|
b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
|
|
b[9] = b[10] = 1;
|
|
b[11] = b[12] = 2;
|
|
b[13] = b[14] = b[15] = b[16] = 3;
|
|
b[17] = b[18] = b[19] = b[20] = b[21] = 4;
|
|
b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
|
|
b[28] = b[29] = 6;
|
|
b[30] = b[31] = 7;
|
|
}
|
|
|
|
/* The minimum additive increment value for the congestion control table */
|
|
#define CC_MIN_INCR 2U
|
|
|
|
/**
|
|
* t4_load_mtus - write the MTU and congestion control HW tables
|
|
* @adap: the adapter
|
|
* @mtus: the values for the MTU table
|
|
* @alpha: the values for the congestion control alpha parameter
|
|
* @beta: the values for the congestion control beta parameter
|
|
*
|
|
* Write the HW MTU table with the supplied MTUs and the high-speed
|
|
* congestion control table with the supplied alpha, beta, and MTUs.
|
|
* We write the two tables together because the additive increments
|
|
* depend on the MTUs.
|
|
*/
|
|
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
|
|
const unsigned short *alpha, const unsigned short *beta)
|
|
{
|
|
static const unsigned int avg_pkts[NCCTRL_WIN] = {
|
|
2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
|
|
896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
|
|
28672, 40960, 57344, 81920, 114688, 163840, 229376
|
|
};
|
|
|
|
unsigned int i, w;
|
|
|
|
for (i = 0; i < NMTUS; ++i) {
|
|
unsigned int mtu = mtus[i];
|
|
unsigned int log2 = fls(mtu);
|
|
|
|
if (!(mtu & ((1 << log2) >> 2))) /* round */
|
|
log2--;
|
|
t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
|
|
MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
|
|
|
|
for (w = 0; w < NCCTRL_WIN; ++w) {
|
|
unsigned int inc;
|
|
|
|
inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
|
|
CC_MIN_INCR);
|
|
|
|
t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
|
|
(w << 16) | (beta[w] << 13) | inc);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
|
|
* clocks. The formula is
|
|
*
|
|
* bytes/s = bytes256 * 256 * ClkFreq / 4096
|
|
*
|
|
* which is equivalent to
|
|
*
|
|
* bytes/s = 62.5 * bytes256 * ClkFreq_ms
|
|
*/
|
|
static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
|
|
{
|
|
u64 v = bytes256 * adap->params.vpd.cclk;
|
|
|
|
return v * 62 + v / 2;
|
|
}
|
|
|
|
/**
|
|
* t4_get_chan_txrate - get the current per channel Tx rates
|
|
* @adap: the adapter
|
|
* @nic_rate: rates for NIC traffic
|
|
* @ofld_rate: rates for offloaded traffic
|
|
*
|
|
* Return the current Tx rates in bytes/s for NIC and offloaded traffic
|
|
* for each channel.
|
|
*/
|
|
void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
|
|
{
|
|
u32 v;
|
|
|
|
v = t4_read_reg(adap, TP_TX_TRATE_A);
|
|
nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
|
|
nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
|
|
if (adap->params.arch.nchan == NCHAN) {
|
|
nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
|
|
nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
|
|
}
|
|
|
|
v = t4_read_reg(adap, TP_TX_ORATE_A);
|
|
ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
|
|
ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
|
|
if (adap->params.arch.nchan == NCHAN) {
|
|
ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
|
|
ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_set_trace_filter - configure one of the tracing filters
|
|
* @adap: the adapter
|
|
* @tp: the desired trace filter parameters
|
|
* @idx: which filter to configure
|
|
* @enable: whether to enable or disable the filter
|
|
*
|
|
* Configures one of the tracing filters available in HW. If @enable is
|
|
* %0 @tp is not examined and may be %NULL. The user is responsible to
|
|
* set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
|
|
*/
|
|
int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
|
|
int idx, int enable)
|
|
{
|
|
int i, ofst = idx * 4;
|
|
u32 data_reg, mask_reg, cfg;
|
|
|
|
if (!enable) {
|
|
t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
|
|
return 0;
|
|
}
|
|
|
|
cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
|
|
if (cfg & TRCMULTIFILTER_F) {
|
|
/* If multiple tracers are enabled, then maximum
|
|
* capture size is 2.5KB (FIFO size of a single channel)
|
|
* minus 2 flits for CPL_TRACE_PKT header.
|
|
*/
|
|
if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
|
|
return -EINVAL;
|
|
} else {
|
|
/* If multiple tracers are disabled, to avoid deadlocks
|
|
* maximum packet capture size of 9600 bytes is recommended.
|
|
* Also in this mode, only trace0 can be enabled and running.
|
|
*/
|
|
if (tp->snap_len > 9600 || idx)
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
|
|
tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
|
|
tp->min_len > TFMINPKTSIZE_M)
|
|
return -EINVAL;
|
|
|
|
/* stop the tracer we'll be changing */
|
|
t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
|
|
|
|
idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
|
|
data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
|
|
mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
|
|
|
|
for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
|
|
t4_write_reg(adap, data_reg, tp->data[i]);
|
|
t4_write_reg(adap, mask_reg, ~tp->mask[i]);
|
|
}
|
|
t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
|
|
TFCAPTUREMAX_V(tp->snap_len) |
|
|
TFMINPKTSIZE_V(tp->min_len));
|
|
t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
|
|
TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
|
|
(is_t4(adap->params.chip) ?
|
|
TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
|
|
T5_TFPORT_V(tp->port) | T5_TFEN_F |
|
|
T5_TFINVERTMATCH_V(tp->invert)));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_get_trace_filter - query one of the tracing filters
|
|
* @adap: the adapter
|
|
* @tp: the current trace filter parameters
|
|
* @idx: which trace filter to query
|
|
* @enabled: non-zero if the filter is enabled
|
|
*
|
|
* Returns the current settings of one of the HW tracing filters.
|
|
*/
|
|
void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
|
|
int *enabled)
|
|
{
|
|
u32 ctla, ctlb;
|
|
int i, ofst = idx * 4;
|
|
u32 data_reg, mask_reg;
|
|
|
|
ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
|
|
ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
|
|
|
|
if (is_t4(adap->params.chip)) {
|
|
*enabled = !!(ctla & TFEN_F);
|
|
tp->port = TFPORT_G(ctla);
|
|
tp->invert = !!(ctla & TFINVERTMATCH_F);
|
|
} else {
|
|
*enabled = !!(ctla & T5_TFEN_F);
|
|
tp->port = T5_TFPORT_G(ctla);
|
|
tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
|
|
}
|
|
tp->snap_len = TFCAPTUREMAX_G(ctlb);
|
|
tp->min_len = TFMINPKTSIZE_G(ctlb);
|
|
tp->skip_ofst = TFOFFSET_G(ctla);
|
|
tp->skip_len = TFLENGTH_G(ctla);
|
|
|
|
ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
|
|
data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
|
|
mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
|
|
|
|
for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
|
|
tp->mask[i] = ~t4_read_reg(adap, mask_reg);
|
|
tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_pmtx_get_stats - returns the HW stats from PMTX
|
|
* @adap: the adapter
|
|
* @cnt: where to store the count statistics
|
|
* @cycles: where to store the cycle statistics
|
|
*
|
|
* Returns performance statistics from PMTX.
|
|
*/
|
|
void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
|
|
{
|
|
int i;
|
|
u32 data[2];
|
|
|
|
for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
|
|
t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
|
|
cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
|
|
if (is_t4(adap->params.chip)) {
|
|
cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
|
|
} else {
|
|
t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
|
|
PM_TX_DBG_DATA_A, data, 2,
|
|
PM_TX_DBG_STAT_MSB_A);
|
|
cycles[i] = (((u64)data[0] << 32) | data[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_pmrx_get_stats - returns the HW stats from PMRX
|
|
* @adap: the adapter
|
|
* @cnt: where to store the count statistics
|
|
* @cycles: where to store the cycle statistics
|
|
*
|
|
* Returns performance statistics from PMRX.
|
|
*/
|
|
void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
|
|
{
|
|
int i;
|
|
u32 data[2];
|
|
|
|
for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
|
|
t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
|
|
cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
|
|
if (is_t4(adap->params.chip)) {
|
|
cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
|
|
} else {
|
|
t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
|
|
PM_RX_DBG_DATA_A, data, 2,
|
|
PM_RX_DBG_STAT_MSB_A);
|
|
cycles[i] = (((u64)data[0] << 32) | data[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
|
|
* @adap: the adapter
|
|
* @pidx: the port index
|
|
*
|
|
* Computes and returns a bitmap indicating which MPS buffer groups are
|
|
* associated with the given Port. Bit i is set if buffer group i is
|
|
* used by the Port.
|
|
*/
|
|
static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
|
|
int pidx)
|
|
{
|
|
unsigned int chip_version, nports;
|
|
|
|
chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
|
|
nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
|
|
|
|
switch (chip_version) {
|
|
case CHELSIO_T4:
|
|
case CHELSIO_T5:
|
|
switch (nports) {
|
|
case 1: return 0xf;
|
|
case 2: return 3 << (2 * pidx);
|
|
case 4: return 1 << pidx;
|
|
}
|
|
break;
|
|
|
|
case CHELSIO_T6:
|
|
switch (nports) {
|
|
case 2: return 1 << (2 * pidx);
|
|
}
|
|
break;
|
|
}
|
|
|
|
dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
|
|
chip_version, nports);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_get_mps_bg_map - return the buffer groups associated with a port
|
|
* @adapter: the adapter
|
|
* @pidx: the port index
|
|
*
|
|
* Returns a bitmap indicating which MPS buffer groups are associated
|
|
* with the given Port. Bit i is set if buffer group i is used by the
|
|
* Port.
|
|
*/
|
|
unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
|
|
{
|
|
u8 *mps_bg_map;
|
|
unsigned int nports;
|
|
|
|
nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
|
|
if (pidx >= nports) {
|
|
CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
|
|
pidx, nports);
|
|
return 0;
|
|
}
|
|
|
|
/* If we've already retrieved/computed this, just return the result.
|
|
*/
|
|
mps_bg_map = adapter->params.mps_bg_map;
|
|
if (mps_bg_map[pidx])
|
|
return mps_bg_map[pidx];
|
|
|
|
/* Newer Firmware can tell us what the MPS Buffer Group Map is.
|
|
* If we're talking to such Firmware, let it tell us. If the new
|
|
* API isn't supported, revert back to old hardcoded way. The value
|
|
* obtained from Firmware is encoded in below format:
|
|
*
|
|
* val = (( MPSBGMAP[Port 3] << 24 ) |
|
|
* ( MPSBGMAP[Port 2] << 16 ) |
|
|
* ( MPSBGMAP[Port 1] << 8 ) |
|
|
* ( MPSBGMAP[Port 0] << 0 ))
|
|
*/
|
|
if (adapter->flags & CXGB4_FW_OK) {
|
|
u32 param, val;
|
|
int ret;
|
|
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
|
|
ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
|
|
0, 1, ¶m, &val);
|
|
if (!ret) {
|
|
int p;
|
|
|
|
/* Store the BG Map for all of the Ports in order to
|
|
* avoid more calls to the Firmware in the future.
|
|
*/
|
|
for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
|
|
mps_bg_map[p] = val & 0xff;
|
|
|
|
return mps_bg_map[pidx];
|
|
}
|
|
}
|
|
|
|
/* Either we're not talking to the Firmware or we're dealing with
|
|
* older Firmware which doesn't support the new API to get the MPS
|
|
* Buffer Group Map. Fall back to computing it ourselves.
|
|
*/
|
|
mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
|
|
return mps_bg_map[pidx];
|
|
}
|
|
|
|
/**
|
|
* t4_get_tp_e2c_map - return the E2C channel map associated with a port
|
|
* @adapter: the adapter
|
|
* @pidx: the port index
|
|
*/
|
|
static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
|
|
{
|
|
unsigned int nports;
|
|
u32 param, val = 0;
|
|
int ret;
|
|
|
|
nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
|
|
if (pidx >= nports) {
|
|
CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
|
|
pidx, nports);
|
|
return 0;
|
|
}
|
|
|
|
/* FW version >= 1.16.44.0 can determine E2C channel map using
|
|
* FW_PARAMS_PARAM_DEV_TPCHMAP API.
|
|
*/
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
|
|
ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
|
|
0, 1, ¶m, &val);
|
|
if (!ret)
|
|
return (val >> (8 * pidx)) & 0xff;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_get_tp_ch_map - return TP ingress channels associated with a port
|
|
* @adapter: the adapter
|
|
* @pidx: the port index
|
|
*
|
|
* Returns a bitmap indicating which TP Ingress Channels are associated
|
|
* with a given Port. Bit i is set if TP Ingress Channel i is used by
|
|
* the Port.
|
|
*/
|
|
unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
|
|
{
|
|
unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
|
|
unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
|
|
|
|
if (pidx >= nports) {
|
|
dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
|
|
pidx, nports);
|
|
return 0;
|
|
}
|
|
|
|
switch (chip_version) {
|
|
case CHELSIO_T4:
|
|
case CHELSIO_T5:
|
|
/* Note that this happens to be the same values as the MPS
|
|
* Buffer Group Map for these Chips. But we replicate the code
|
|
* here because they're really separate concepts.
|
|
*/
|
|
switch (nports) {
|
|
case 1: return 0xf;
|
|
case 2: return 3 << (2 * pidx);
|
|
case 4: return 1 << pidx;
|
|
}
|
|
break;
|
|
|
|
case CHELSIO_T6:
|
|
switch (nports) {
|
|
case 1:
|
|
case 2: return 1 << pidx;
|
|
}
|
|
break;
|
|
}
|
|
|
|
dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
|
|
chip_version, nports);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_get_port_type_description - return Port Type string description
|
|
* @port_type: firmware Port Type enumeration
|
|
*/
|
|
const char *t4_get_port_type_description(enum fw_port_type port_type)
|
|
{
|
|
static const char *const port_type_description[] = {
|
|
"Fiber_XFI",
|
|
"Fiber_XAUI",
|
|
"BT_SGMII",
|
|
"BT_XFI",
|
|
"BT_XAUI",
|
|
"KX4",
|
|
"CX4",
|
|
"KX",
|
|
"KR",
|
|
"SFP",
|
|
"BP_AP",
|
|
"BP4_AP",
|
|
"QSFP_10G",
|
|
"QSA",
|
|
"QSFP",
|
|
"BP40_BA",
|
|
"KR4_100G",
|
|
"CR4_QSFP",
|
|
"CR_QSFP",
|
|
"CR2_QSFP",
|
|
"SFP28",
|
|
"KR_SFP28",
|
|
"KR_XLAUI"
|
|
};
|
|
|
|
if (port_type < ARRAY_SIZE(port_type_description))
|
|
return port_type_description[port_type];
|
|
return "UNKNOWN";
|
|
}
|
|
|
|
/**
|
|
* t4_get_port_stats_offset - collect port stats relative to a previous
|
|
* snapshot
|
|
* @adap: The adapter
|
|
* @idx: The port
|
|
* @stats: Current stats to fill
|
|
* @offset: Previous stats snapshot
|
|
*/
|
|
void t4_get_port_stats_offset(struct adapter *adap, int idx,
|
|
struct port_stats *stats,
|
|
struct port_stats *offset)
|
|
{
|
|
u64 *s, *o;
|
|
int i;
|
|
|
|
t4_get_port_stats(adap, idx, stats);
|
|
for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
|
|
i < (sizeof(struct port_stats) / sizeof(u64));
|
|
i++, s++, o++)
|
|
*s -= *o;
|
|
}
|
|
|
|
/**
|
|
* t4_get_port_stats - collect port statistics
|
|
* @adap: the adapter
|
|
* @idx: the port index
|
|
* @p: the stats structure to fill
|
|
*
|
|
* Collect statistics related to the given port from HW.
|
|
*/
|
|
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
|
|
{
|
|
u32 bgmap = t4_get_mps_bg_map(adap, idx);
|
|
u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
|
|
|
|
#define GET_STAT(name) \
|
|
t4_read_reg64(adap, \
|
|
(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
|
|
T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
|
|
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
|
|
|
|
p->tx_octets = GET_STAT(TX_PORT_BYTES);
|
|
p->tx_frames = GET_STAT(TX_PORT_FRAMES);
|
|
p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
|
|
p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
|
|
p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
|
|
p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
|
|
p->tx_frames_64 = GET_STAT(TX_PORT_64B);
|
|
p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
|
|
p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
|
|
p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
|
|
p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
|
|
p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
|
|
p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
|
|
p->tx_drop = GET_STAT(TX_PORT_DROP);
|
|
p->tx_pause = GET_STAT(TX_PORT_PAUSE);
|
|
p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
|
|
p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
|
|
p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
|
|
p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
|
|
p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
|
|
p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
|
|
p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
|
|
p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
|
|
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
|
|
if (stat_ctl & COUNTPAUSESTATTX_F)
|
|
p->tx_frames_64 -= p->tx_pause;
|
|
if (stat_ctl & COUNTPAUSEMCTX_F)
|
|
p->tx_mcast_frames -= p->tx_pause;
|
|
}
|
|
p->rx_octets = GET_STAT(RX_PORT_BYTES);
|
|
p->rx_frames = GET_STAT(RX_PORT_FRAMES);
|
|
p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
|
|
p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
|
|
p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
|
|
p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
|
|
p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
|
|
p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
|
|
p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
|
|
p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
|
|
p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
|
|
p->rx_frames_64 = GET_STAT(RX_PORT_64B);
|
|
p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
|
|
p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
|
|
p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
|
|
p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
|
|
p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
|
|
p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
|
|
p->rx_pause = GET_STAT(RX_PORT_PAUSE);
|
|
p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
|
|
p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
|
|
p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
|
|
p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
|
|
p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
|
|
p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
|
|
p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
|
|
p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
|
|
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
|
|
if (stat_ctl & COUNTPAUSESTATRX_F)
|
|
p->rx_frames_64 -= p->rx_pause;
|
|
if (stat_ctl & COUNTPAUSEMCRX_F)
|
|
p->rx_mcast_frames -= p->rx_pause;
|
|
}
|
|
|
|
p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
|
|
p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
|
|
p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
|
|
p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
|
|
p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
|
|
p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
|
|
p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
|
|
p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
|
|
|
|
#undef GET_STAT
|
|
#undef GET_STAT_COM
|
|
}
|
|
|
|
/**
|
|
* t4_get_lb_stats - collect loopback port statistics
|
|
* @adap: the adapter
|
|
* @idx: the loopback port index
|
|
* @p: the stats structure to fill
|
|
*
|
|
* Return HW statistics for the given loopback port.
|
|
*/
|
|
void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
|
|
{
|
|
u32 bgmap = t4_get_mps_bg_map(adap, idx);
|
|
|
|
#define GET_STAT(name) \
|
|
t4_read_reg64(adap, \
|
|
(is_t4(adap->params.chip) ? \
|
|
PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
|
|
T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
|
|
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
|
|
|
|
p->octets = GET_STAT(BYTES);
|
|
p->frames = GET_STAT(FRAMES);
|
|
p->bcast_frames = GET_STAT(BCAST);
|
|
p->mcast_frames = GET_STAT(MCAST);
|
|
p->ucast_frames = GET_STAT(UCAST);
|
|
p->error_frames = GET_STAT(ERROR);
|
|
|
|
p->frames_64 = GET_STAT(64B);
|
|
p->frames_65_127 = GET_STAT(65B_127B);
|
|
p->frames_128_255 = GET_STAT(128B_255B);
|
|
p->frames_256_511 = GET_STAT(256B_511B);
|
|
p->frames_512_1023 = GET_STAT(512B_1023B);
|
|
p->frames_1024_1518 = GET_STAT(1024B_1518B);
|
|
p->frames_1519_max = GET_STAT(1519B_MAX);
|
|
p->drop = GET_STAT(DROP_FRAMES);
|
|
|
|
p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
|
|
p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
|
|
p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
|
|
p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
|
|
p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
|
|
p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
|
|
p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
|
|
p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
|
|
|
|
#undef GET_STAT
|
|
#undef GET_STAT_COM
|
|
}
|
|
|
|
/* t4_mk_filtdelwr - create a delete filter WR
|
|
* @ftid: the filter ID
|
|
* @wr: the filter work request to populate
|
|
* @qid: ingress queue to receive the delete notification
|
|
*
|
|
* Creates a filter work request to delete the supplied filter. If @qid is
|
|
* negative the delete notification is suppressed.
|
|
*/
|
|
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
|
|
{
|
|
memset(wr, 0, sizeof(*wr));
|
|
wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
|
|
wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
|
|
wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
|
|
FW_FILTER_WR_NOREPLY_V(qid < 0));
|
|
wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
|
|
if (qid >= 0)
|
|
wr->rx_chan_rx_rpl_iq =
|
|
cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
|
|
}
|
|
|
|
#define INIT_CMD(var, cmd, rd_wr) do { \
|
|
(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
|
|
FW_CMD_REQUEST_F | \
|
|
FW_CMD_##rd_wr##_F); \
|
|
(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
|
|
} while (0)
|
|
|
|
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
|
|
u32 addr, u32 val)
|
|
{
|
|
u32 ldst_addrspace;
|
|
struct fw_ldst_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
|
|
c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F |
|
|
ldst_addrspace);
|
|
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
|
|
c.u.addrval.addr = cpu_to_be32(addr);
|
|
c.u.addrval.val = cpu_to_be32(val);
|
|
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_mdio_rd - read a PHY register through MDIO
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @phy_addr: the PHY address
|
|
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
|
|
* @reg: the register to read
|
|
* @valp: where to store the value
|
|
*
|
|
* Issues a FW command through the given mailbox to read a PHY register.
|
|
*/
|
|
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
|
|
unsigned int mmd, unsigned int reg, u16 *valp)
|
|
{
|
|
int ret;
|
|
u32 ldst_addrspace;
|
|
struct fw_ldst_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
|
|
c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F |
|
|
ldst_addrspace);
|
|
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
|
|
c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
|
|
FW_LDST_CMD_MMD_V(mmd));
|
|
c.u.mdio.raddr = cpu_to_be16(reg);
|
|
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret == 0)
|
|
*valp = be16_to_cpu(c.u.mdio.rval);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_mdio_wr - write a PHY register through MDIO
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @phy_addr: the PHY address
|
|
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
|
|
* @reg: the register to write
|
|
* @valp: value to write
|
|
*
|
|
* Issues a FW command through the given mailbox to write a PHY register.
|
|
*/
|
|
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
|
|
unsigned int mmd, unsigned int reg, u16 val)
|
|
{
|
|
u32 ldst_addrspace;
|
|
struct fw_ldst_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
|
|
c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
ldst_addrspace);
|
|
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
|
|
c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
|
|
FW_LDST_CMD_MMD_V(mmd));
|
|
c.u.mdio.raddr = cpu_to_be16(reg);
|
|
c.u.mdio.rval = cpu_to_be16(val);
|
|
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_sge_decode_idma_state - decode the idma state
|
|
* @adap: the adapter
|
|
* @state: the state idma is stuck in
|
|
*/
|
|
void t4_sge_decode_idma_state(struct adapter *adapter, int state)
|
|
{
|
|
static const char * const t4_decode[] = {
|
|
"IDMA_IDLE",
|
|
"IDMA_PUSH_MORE_CPL_FIFO",
|
|
"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
|
|
"Not used",
|
|
"IDMA_PHYSADDR_SEND_PCIEHDR",
|
|
"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
|
|
"IDMA_PHYSADDR_SEND_PAYLOAD",
|
|
"IDMA_SEND_FIFO_TO_IMSG",
|
|
"IDMA_FL_REQ_DATA_FL_PREP",
|
|
"IDMA_FL_REQ_DATA_FL",
|
|
"IDMA_FL_DROP",
|
|
"IDMA_FL_H_REQ_HEADER_FL",
|
|
"IDMA_FL_H_SEND_PCIEHDR",
|
|
"IDMA_FL_H_PUSH_CPL_FIFO",
|
|
"IDMA_FL_H_SEND_CPL",
|
|
"IDMA_FL_H_SEND_IP_HDR_FIRST",
|
|
"IDMA_FL_H_SEND_IP_HDR",
|
|
"IDMA_FL_H_REQ_NEXT_HEADER_FL",
|
|
"IDMA_FL_H_SEND_NEXT_PCIEHDR",
|
|
"IDMA_FL_H_SEND_IP_HDR_PADDING",
|
|
"IDMA_FL_D_SEND_PCIEHDR",
|
|
"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
|
|
"IDMA_FL_D_REQ_NEXT_DATA_FL",
|
|
"IDMA_FL_SEND_PCIEHDR",
|
|
"IDMA_FL_PUSH_CPL_FIFO",
|
|
"IDMA_FL_SEND_CPL",
|
|
"IDMA_FL_SEND_PAYLOAD_FIRST",
|
|
"IDMA_FL_SEND_PAYLOAD",
|
|
"IDMA_FL_REQ_NEXT_DATA_FL",
|
|
"IDMA_FL_SEND_NEXT_PCIEHDR",
|
|
"IDMA_FL_SEND_PADDING",
|
|
"IDMA_FL_SEND_COMPLETION_TO_IMSG",
|
|
"IDMA_FL_SEND_FIFO_TO_IMSG",
|
|
"IDMA_FL_REQ_DATAFL_DONE",
|
|
"IDMA_FL_REQ_HEADERFL_DONE",
|
|
};
|
|
static const char * const t5_decode[] = {
|
|
"IDMA_IDLE",
|
|
"IDMA_ALMOST_IDLE",
|
|
"IDMA_PUSH_MORE_CPL_FIFO",
|
|
"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
|
|
"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
|
|
"IDMA_PHYSADDR_SEND_PCIEHDR",
|
|
"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
|
|
"IDMA_PHYSADDR_SEND_PAYLOAD",
|
|
"IDMA_SEND_FIFO_TO_IMSG",
|
|
"IDMA_FL_REQ_DATA_FL",
|
|
"IDMA_FL_DROP",
|
|
"IDMA_FL_DROP_SEND_INC",
|
|
"IDMA_FL_H_REQ_HEADER_FL",
|
|
"IDMA_FL_H_SEND_PCIEHDR",
|
|
"IDMA_FL_H_PUSH_CPL_FIFO",
|
|
"IDMA_FL_H_SEND_CPL",
|
|
"IDMA_FL_H_SEND_IP_HDR_FIRST",
|
|
"IDMA_FL_H_SEND_IP_HDR",
|
|
"IDMA_FL_H_REQ_NEXT_HEADER_FL",
|
|
"IDMA_FL_H_SEND_NEXT_PCIEHDR",
|
|
"IDMA_FL_H_SEND_IP_HDR_PADDING",
|
|
"IDMA_FL_D_SEND_PCIEHDR",
|
|
"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
|
|
"IDMA_FL_D_REQ_NEXT_DATA_FL",
|
|
"IDMA_FL_SEND_PCIEHDR",
|
|
"IDMA_FL_PUSH_CPL_FIFO",
|
|
"IDMA_FL_SEND_CPL",
|
|
"IDMA_FL_SEND_PAYLOAD_FIRST",
|
|
"IDMA_FL_SEND_PAYLOAD",
|
|
"IDMA_FL_REQ_NEXT_DATA_FL",
|
|
"IDMA_FL_SEND_NEXT_PCIEHDR",
|
|
"IDMA_FL_SEND_PADDING",
|
|
"IDMA_FL_SEND_COMPLETION_TO_IMSG",
|
|
};
|
|
static const char * const t6_decode[] = {
|
|
"IDMA_IDLE",
|
|
"IDMA_PUSH_MORE_CPL_FIFO",
|
|
"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
|
|
"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
|
|
"IDMA_PHYSADDR_SEND_PCIEHDR",
|
|
"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
|
|
"IDMA_PHYSADDR_SEND_PAYLOAD",
|
|
"IDMA_FL_REQ_DATA_FL",
|
|
"IDMA_FL_DROP",
|
|
"IDMA_FL_DROP_SEND_INC",
|
|
"IDMA_FL_H_REQ_HEADER_FL",
|
|
"IDMA_FL_H_SEND_PCIEHDR",
|
|
"IDMA_FL_H_PUSH_CPL_FIFO",
|
|
"IDMA_FL_H_SEND_CPL",
|
|
"IDMA_FL_H_SEND_IP_HDR_FIRST",
|
|
"IDMA_FL_H_SEND_IP_HDR",
|
|
"IDMA_FL_H_REQ_NEXT_HEADER_FL",
|
|
"IDMA_FL_H_SEND_NEXT_PCIEHDR",
|
|
"IDMA_FL_H_SEND_IP_HDR_PADDING",
|
|
"IDMA_FL_D_SEND_PCIEHDR",
|
|
"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
|
|
"IDMA_FL_D_REQ_NEXT_DATA_FL",
|
|
"IDMA_FL_SEND_PCIEHDR",
|
|
"IDMA_FL_PUSH_CPL_FIFO",
|
|
"IDMA_FL_SEND_CPL",
|
|
"IDMA_FL_SEND_PAYLOAD_FIRST",
|
|
"IDMA_FL_SEND_PAYLOAD",
|
|
"IDMA_FL_REQ_NEXT_DATA_FL",
|
|
"IDMA_FL_SEND_NEXT_PCIEHDR",
|
|
"IDMA_FL_SEND_PADDING",
|
|
"IDMA_FL_SEND_COMPLETION_TO_IMSG",
|
|
};
|
|
static const u32 sge_regs[] = {
|
|
SGE_DEBUG_DATA_LOW_INDEX_2_A,
|
|
SGE_DEBUG_DATA_LOW_INDEX_3_A,
|
|
SGE_DEBUG_DATA_HIGH_INDEX_10_A,
|
|
};
|
|
const char **sge_idma_decode;
|
|
int sge_idma_decode_nstates;
|
|
int i;
|
|
unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
|
|
|
|
/* Select the right set of decode strings to dump depending on the
|
|
* adapter chip type.
|
|
*/
|
|
switch (chip_version) {
|
|
case CHELSIO_T4:
|
|
sge_idma_decode = (const char **)t4_decode;
|
|
sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
|
|
break;
|
|
|
|
case CHELSIO_T5:
|
|
sge_idma_decode = (const char **)t5_decode;
|
|
sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
|
|
break;
|
|
|
|
case CHELSIO_T6:
|
|
sge_idma_decode = (const char **)t6_decode;
|
|
sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
|
|
break;
|
|
|
|
default:
|
|
dev_err(adapter->pdev_dev,
|
|
"Unsupported chip version %d\n", chip_version);
|
|
return;
|
|
}
|
|
|
|
if (is_t4(adapter->params.chip)) {
|
|
sge_idma_decode = (const char **)t4_decode;
|
|
sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
|
|
} else {
|
|
sge_idma_decode = (const char **)t5_decode;
|
|
sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
|
|
}
|
|
|
|
if (state < sge_idma_decode_nstates)
|
|
CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
|
|
else
|
|
CH_WARN(adapter, "idma state %d unknown\n", state);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
|
|
CH_WARN(adapter, "SGE register %#x value %#x\n",
|
|
sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
|
|
}
|
|
|
|
/**
|
|
* t4_sge_ctxt_flush - flush the SGE context cache
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @ctx_type: Egress or Ingress
|
|
*
|
|
* Issues a FW command through the given mailbox to flush the
|
|
* SGE context cache.
|
|
*/
|
|
int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
|
|
{
|
|
int ret;
|
|
u32 ldst_addrspace;
|
|
struct fw_ldst_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
|
|
FW_LDST_ADDRSPC_SGE_EGRC :
|
|
FW_LDST_ADDRSPC_SGE_INGC);
|
|
c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F |
|
|
ldst_addrspace);
|
|
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
|
|
c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
|
|
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_read_sge_dbqtimers - reag SGE Doorbell Queue Timer values
|
|
* @adap - the adapter
|
|
* @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
|
|
* @dbqtimers: SGE Doorbell Queue Timer table
|
|
*
|
|
* Reads the SGE Doorbell Queue Timer values into the provided table.
|
|
* Returns 0 on success (Firmware and Hardware support this feature),
|
|
* an error on failure.
|
|
*/
|
|
int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
|
|
u16 *dbqtimers)
|
|
{
|
|
int ret, dbqtimerix;
|
|
|
|
ret = 0;
|
|
dbqtimerix = 0;
|
|
while (dbqtimerix < ndbqtimers) {
|
|
int nparams, param;
|
|
u32 params[7], vals[7];
|
|
|
|
nparams = ndbqtimers - dbqtimerix;
|
|
if (nparams > ARRAY_SIZE(params))
|
|
nparams = ARRAY_SIZE(params);
|
|
|
|
for (param = 0; param < nparams; param++)
|
|
params[param] =
|
|
(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
|
|
FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
|
|
nparams, params, vals);
|
|
if (ret)
|
|
break;
|
|
|
|
for (param = 0; param < nparams; param++)
|
|
dbqtimers[dbqtimerix++] = vals[param];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_fw_hello - establish communication with FW
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @evt_mbox: mailbox to receive async FW events
|
|
* @master: specifies the caller's willingness to be the device master
|
|
* @state: returns the current device state (if non-NULL)
|
|
*
|
|
* Issues a command to establish communication with FW. Returns either
|
|
* an error (negative integer) or the mailbox of the Master PF.
|
|
*/
|
|
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
|
|
enum dev_master master, enum dev_state *state)
|
|
{
|
|
int ret;
|
|
struct fw_hello_cmd c;
|
|
u32 v;
|
|
unsigned int master_mbox;
|
|
int retries = FW_CMD_HELLO_RETRIES;
|
|
|
|
retry:
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, HELLO, WRITE);
|
|
c.err_to_clearinit = cpu_to_be32(
|
|
FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
|
|
FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
|
|
FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
|
|
mbox : FW_HELLO_CMD_MBMASTER_M) |
|
|
FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
|
|
FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
|
|
FW_HELLO_CMD_CLEARINIT_F);
|
|
|
|
/*
|
|
* Issue the HELLO command to the firmware. If it's not successful
|
|
* but indicates that we got a "busy" or "timeout" condition, retry
|
|
* the HELLO until we exhaust our retry limit. If we do exceed our
|
|
* retry limit, check to see if the firmware left us any error
|
|
* information and report that if so.
|
|
*/
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret < 0) {
|
|
if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
|
|
goto retry;
|
|
if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
|
|
t4_report_fw_error(adap);
|
|
return ret;
|
|
}
|
|
|
|
v = be32_to_cpu(c.err_to_clearinit);
|
|
master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
|
|
if (state) {
|
|
if (v & FW_HELLO_CMD_ERR_F)
|
|
*state = DEV_STATE_ERR;
|
|
else if (v & FW_HELLO_CMD_INIT_F)
|
|
*state = DEV_STATE_INIT;
|
|
else
|
|
*state = DEV_STATE_UNINIT;
|
|
}
|
|
|
|
/*
|
|
* If we're not the Master PF then we need to wait around for the
|
|
* Master PF Driver to finish setting up the adapter.
|
|
*
|
|
* Note that we also do this wait if we're a non-Master-capable PF and
|
|
* there is no current Master PF; a Master PF may show up momentarily
|
|
* and we wouldn't want to fail pointlessly. (This can happen when an
|
|
* OS loads lots of different drivers rapidly at the same time). In
|
|
* this case, the Master PF returned by the firmware will be
|
|
* PCIE_FW_MASTER_M so the test below will work ...
|
|
*/
|
|
if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
|
|
master_mbox != mbox) {
|
|
int waiting = FW_CMD_HELLO_TIMEOUT;
|
|
|
|
/*
|
|
* Wait for the firmware to either indicate an error or
|
|
* initialized state. If we see either of these we bail out
|
|
* and report the issue to the caller. If we exhaust the
|
|
* "hello timeout" and we haven't exhausted our retries, try
|
|
* again. Otherwise bail with a timeout error.
|
|
*/
|
|
for (;;) {
|
|
u32 pcie_fw;
|
|
|
|
msleep(50);
|
|
waiting -= 50;
|
|
|
|
/*
|
|
* If neither Error nor Initialialized are indicated
|
|
* by the firmware keep waiting till we exaust our
|
|
* timeout ... and then retry if we haven't exhausted
|
|
* our retries ...
|
|
*/
|
|
pcie_fw = t4_read_reg(adap, PCIE_FW_A);
|
|
if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
|
|
if (waiting <= 0) {
|
|
if (retries-- > 0)
|
|
goto retry;
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We either have an Error or Initialized condition
|
|
* report errors preferentially.
|
|
*/
|
|
if (state) {
|
|
if (pcie_fw & PCIE_FW_ERR_F)
|
|
*state = DEV_STATE_ERR;
|
|
else if (pcie_fw & PCIE_FW_INIT_F)
|
|
*state = DEV_STATE_INIT;
|
|
}
|
|
|
|
/*
|
|
* If we arrived before a Master PF was selected and
|
|
* there's not a valid Master PF, grab its identity
|
|
* for our caller.
|
|
*/
|
|
if (master_mbox == PCIE_FW_MASTER_M &&
|
|
(pcie_fw & PCIE_FW_MASTER_VLD_F))
|
|
master_mbox = PCIE_FW_MASTER_G(pcie_fw);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return master_mbox;
|
|
}
|
|
|
|
/**
|
|
* t4_fw_bye - end communication with FW
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
*
|
|
* Issues a command to terminate communication with FW.
|
|
*/
|
|
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
|
|
{
|
|
struct fw_bye_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, BYE, WRITE);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_init_cmd - ask FW to initialize the device
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
*
|
|
* Issues a command to FW to partially initialize the device. This
|
|
* performs initialization that generally doesn't depend on user input.
|
|
*/
|
|
int t4_early_init(struct adapter *adap, unsigned int mbox)
|
|
{
|
|
struct fw_initialize_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, INITIALIZE, WRITE);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_fw_reset - issue a reset to FW
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @reset: specifies the type of reset to perform
|
|
*
|
|
* Issues a reset command of the specified type to FW.
|
|
*/
|
|
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
|
|
{
|
|
struct fw_reset_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, RESET, WRITE);
|
|
c.val = cpu_to_be32(reset);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_fw_halt - issue a reset/halt to FW and put uP into RESET
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW RESET command (if desired)
|
|
* @force: force uP into RESET even if FW RESET command fails
|
|
*
|
|
* Issues a RESET command to firmware (if desired) with a HALT indication
|
|
* and then puts the microprocessor into RESET state. The RESET command
|
|
* will only be issued if a legitimate mailbox is provided (mbox <=
|
|
* PCIE_FW_MASTER_M).
|
|
*
|
|
* This is generally used in order for the host to safely manipulate the
|
|
* adapter without fear of conflicting with whatever the firmware might
|
|
* be doing. The only way out of this state is to RESTART the firmware
|
|
* ...
|
|
*/
|
|
static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If a legitimate mailbox is provided, issue a RESET command
|
|
* with a HALT indication.
|
|
*/
|
|
if (mbox <= PCIE_FW_MASTER_M) {
|
|
struct fw_reset_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, RESET, WRITE);
|
|
c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
|
|
c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/*
|
|
* Normally we won't complete the operation if the firmware RESET
|
|
* command fails but if our caller insists we'll go ahead and put the
|
|
* uP into RESET. This can be useful if the firmware is hung or even
|
|
* missing ... We'll have to take the risk of putting the uP into
|
|
* RESET without the cooperation of firmware in that case.
|
|
*
|
|
* We also force the firmware's HALT flag to be on in case we bypassed
|
|
* the firmware RESET command above or we're dealing with old firmware
|
|
* which doesn't have the HALT capability. This will serve as a flag
|
|
* for the incoming firmware to know that it's coming out of a HALT
|
|
* rather than a RESET ... if it's new enough to understand that ...
|
|
*/
|
|
if (ret == 0 || force) {
|
|
t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
|
|
t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
|
|
PCIE_FW_HALT_F);
|
|
}
|
|
|
|
/*
|
|
* And we always return the result of the firmware RESET command
|
|
* even when we force the uP into RESET ...
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_fw_restart - restart the firmware by taking the uP out of RESET
|
|
* @adap: the adapter
|
|
* @reset: if we want to do a RESET to restart things
|
|
*
|
|
* Restart firmware previously halted by t4_fw_halt(). On successful
|
|
* return the previous PF Master remains as the new PF Master and there
|
|
* is no need to issue a new HELLO command, etc.
|
|
*
|
|
* We do this in two ways:
|
|
*
|
|
* 1. If we're dealing with newer firmware we'll simply want to take
|
|
* the chip's microprocessor out of RESET. This will cause the
|
|
* firmware to start up from its start vector. And then we'll loop
|
|
* until the firmware indicates it's started again (PCIE_FW.HALT
|
|
* reset to 0) or we timeout.
|
|
*
|
|
* 2. If we're dealing with older firmware then we'll need to RESET
|
|
* the chip since older firmware won't recognize the PCIE_FW.HALT
|
|
* flag and automatically RESET itself on startup.
|
|
*/
|
|
static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
|
|
{
|
|
if (reset) {
|
|
/*
|
|
* Since we're directing the RESET instead of the firmware
|
|
* doing it automatically, we need to clear the PCIE_FW.HALT
|
|
* bit.
|
|
*/
|
|
t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
|
|
|
|
/*
|
|
* If we've been given a valid mailbox, first try to get the
|
|
* firmware to do the RESET. If that works, great and we can
|
|
* return success. Otherwise, if we haven't been given a
|
|
* valid mailbox or the RESET command failed, fall back to
|
|
* hitting the chip with a hammer.
|
|
*/
|
|
if (mbox <= PCIE_FW_MASTER_M) {
|
|
t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
|
|
msleep(100);
|
|
if (t4_fw_reset(adap, mbox,
|
|
PIORST_F | PIORSTMODE_F) == 0)
|
|
return 0;
|
|
}
|
|
|
|
t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
|
|
msleep(2000);
|
|
} else {
|
|
int ms;
|
|
|
|
t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
|
|
for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
|
|
if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
|
|
return 0;
|
|
msleep(100);
|
|
ms += 100;
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_fw_upgrade - perform all of the steps necessary to upgrade FW
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW RESET command (if desired)
|
|
* @fw_data: the firmware image to write
|
|
* @size: image size
|
|
* @force: force upgrade even if firmware doesn't cooperate
|
|
*
|
|
* Perform all of the steps necessary for upgrading an adapter's
|
|
* firmware image. Normally this requires the cooperation of the
|
|
* existing firmware in order to halt all existing activities
|
|
* but if an invalid mailbox token is passed in we skip that step
|
|
* (though we'll still put the adapter microprocessor into RESET in
|
|
* that case).
|
|
*
|
|
* On successful return the new firmware will have been loaded and
|
|
* the adapter will have been fully RESET losing all previous setup
|
|
* state. On unsuccessful return the adapter may be completely hosed ...
|
|
* positive errno indicates that the adapter is ~probably~ intact, a
|
|
* negative errno indicates that things are looking bad ...
|
|
*/
|
|
int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
|
|
const u8 *fw_data, unsigned int size, int force)
|
|
{
|
|
const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
|
|
int reset, ret;
|
|
|
|
if (!t4_fw_matches_chip(adap, fw_hdr))
|
|
return -EINVAL;
|
|
|
|
/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
|
|
* set wont be sent when we are flashing FW.
|
|
*/
|
|
adap->flags &= ~CXGB4_FW_OK;
|
|
|
|
ret = t4_fw_halt(adap, mbox, force);
|
|
if (ret < 0 && !force)
|
|
goto out;
|
|
|
|
ret = t4_load_fw(adap, fw_data, size);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* If there was a Firmware Configuration File stored in FLASH,
|
|
* there's a good chance that it won't be compatible with the new
|
|
* Firmware. In order to prevent difficult to diagnose adapter
|
|
* initialization issues, we clear out the Firmware Configuration File
|
|
* portion of the FLASH . The user will need to re-FLASH a new
|
|
* Firmware Configuration File which is compatible with the new
|
|
* Firmware if that's desired.
|
|
*/
|
|
(void)t4_load_cfg(adap, NULL, 0);
|
|
|
|
/*
|
|
* Older versions of the firmware don't understand the new
|
|
* PCIE_FW.HALT flag and so won't know to perform a RESET when they
|
|
* restart. So for newly loaded older firmware we'll have to do the
|
|
* RESET for it so it starts up on a clean slate. We can tell if
|
|
* the newly loaded firmware will handle this right by checking
|
|
* its header flags to see if it advertises the capability.
|
|
*/
|
|
reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
|
|
ret = t4_fw_restart(adap, mbox, reset);
|
|
|
|
/* Grab potentially new Firmware Device Log parameters so we can see
|
|
* how healthy the new Firmware is. It's okay to contact the new
|
|
* Firmware for these parameters even though, as far as it's
|
|
* concerned, we've never said "HELLO" to it ...
|
|
*/
|
|
(void)t4_init_devlog_params(adap);
|
|
out:
|
|
adap->flags |= CXGB4_FW_OK;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_fl_pkt_align - return the fl packet alignment
|
|
* @adap: the adapter
|
|
*
|
|
* T4 has a single field to specify the packing and padding boundary.
|
|
* T5 onwards has separate fields for this and hence the alignment for
|
|
* next packet offset is maximum of these two.
|
|
*
|
|
*/
|
|
int t4_fl_pkt_align(struct adapter *adap)
|
|
{
|
|
u32 sge_control, sge_control2;
|
|
unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
|
|
|
|
sge_control = t4_read_reg(adap, SGE_CONTROL_A);
|
|
|
|
/* T4 uses a single control field to specify both the PCIe Padding and
|
|
* Packing Boundary. T5 introduced the ability to specify these
|
|
* separately. The actual Ingress Packet Data alignment boundary
|
|
* within Packed Buffer Mode is the maximum of these two
|
|
* specifications. (Note that it makes no real practical sense to
|
|
* have the Pading Boudary be larger than the Packing Boundary but you
|
|
* could set the chip up that way and, in fact, legacy T4 code would
|
|
* end doing this because it would initialize the Padding Boundary and
|
|
* leave the Packing Boundary initialized to 0 (16 bytes).)
|
|
* Padding Boundary values in T6 starts from 8B,
|
|
* where as it is 32B for T4 and T5.
|
|
*/
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
|
|
ingpad_shift = INGPADBOUNDARY_SHIFT_X;
|
|
else
|
|
ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
|
|
|
|
ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
|
|
|
|
fl_align = ingpadboundary;
|
|
if (!is_t4(adap->params.chip)) {
|
|
/* T5 has a weird interpretation of one of the PCIe Packing
|
|
* Boundary values. No idea why ...
|
|
*/
|
|
sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
|
|
ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
|
|
if (ingpackboundary == INGPACKBOUNDARY_16B_X)
|
|
ingpackboundary = 16;
|
|
else
|
|
ingpackboundary = 1 << (ingpackboundary +
|
|
INGPACKBOUNDARY_SHIFT_X);
|
|
|
|
fl_align = max(ingpadboundary, ingpackboundary);
|
|
}
|
|
return fl_align;
|
|
}
|
|
|
|
/**
|
|
* t4_fixup_host_params - fix up host-dependent parameters
|
|
* @adap: the adapter
|
|
* @page_size: the host's Base Page Size
|
|
* @cache_line_size: the host's Cache Line Size
|
|
*
|
|
* Various registers in T4 contain values which are dependent on the
|
|
* host's Base Page and Cache Line Sizes. This function will fix all of
|
|
* those registers with the appropriate values as passed in ...
|
|
*/
|
|
int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
|
|
unsigned int cache_line_size)
|
|
{
|
|
unsigned int page_shift = fls(page_size) - 1;
|
|
unsigned int sge_hps = page_shift - 10;
|
|
unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
|
|
unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
|
|
unsigned int fl_align_log = fls(fl_align) - 1;
|
|
|
|
t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
|
|
HOSTPAGESIZEPF0_V(sge_hps) |
|
|
HOSTPAGESIZEPF1_V(sge_hps) |
|
|
HOSTPAGESIZEPF2_V(sge_hps) |
|
|
HOSTPAGESIZEPF3_V(sge_hps) |
|
|
HOSTPAGESIZEPF4_V(sge_hps) |
|
|
HOSTPAGESIZEPF5_V(sge_hps) |
|
|
HOSTPAGESIZEPF6_V(sge_hps) |
|
|
HOSTPAGESIZEPF7_V(sge_hps));
|
|
|
|
if (is_t4(adap->params.chip)) {
|
|
t4_set_reg_field(adap, SGE_CONTROL_A,
|
|
INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
|
|
EGRSTATUSPAGESIZE_F,
|
|
INGPADBOUNDARY_V(fl_align_log -
|
|
INGPADBOUNDARY_SHIFT_X) |
|
|
EGRSTATUSPAGESIZE_V(stat_len != 64));
|
|
} else {
|
|
unsigned int pack_align;
|
|
unsigned int ingpad, ingpack;
|
|
unsigned int pcie_cap;
|
|
|
|
/* T5 introduced the separation of the Free List Padding and
|
|
* Packing Boundaries. Thus, we can select a smaller Padding
|
|
* Boundary to avoid uselessly chewing up PCIe Link and Memory
|
|
* Bandwidth, and use a Packing Boundary which is large enough
|
|
* to avoid false sharing between CPUs, etc.
|
|
*
|
|
* For the PCI Link, the smaller the Padding Boundary the
|
|
* better. For the Memory Controller, a smaller Padding
|
|
* Boundary is better until we cross under the Memory Line
|
|
* Size (the minimum unit of transfer to/from Memory). If we
|
|
* have a Padding Boundary which is smaller than the Memory
|
|
* Line Size, that'll involve a Read-Modify-Write cycle on the
|
|
* Memory Controller which is never good.
|
|
*/
|
|
|
|
/* We want the Packing Boundary to be based on the Cache Line
|
|
* Size in order to help avoid False Sharing performance
|
|
* issues between CPUs, etc. We also want the Packing
|
|
* Boundary to incorporate the PCI-E Maximum Payload Size. We
|
|
* get best performance when the Packing Boundary is a
|
|
* multiple of the Maximum Payload Size.
|
|
*/
|
|
pack_align = fl_align;
|
|
pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
|
|
if (pcie_cap) {
|
|
unsigned int mps, mps_log;
|
|
u16 devctl;
|
|
|
|
/* The PCIe Device Control Maximum Payload Size field
|
|
* [bits 7:5] encodes sizes as powers of 2 starting at
|
|
* 128 bytes.
|
|
*/
|
|
pci_read_config_word(adap->pdev,
|
|
pcie_cap + PCI_EXP_DEVCTL,
|
|
&devctl);
|
|
mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
|
|
mps = 1 << mps_log;
|
|
if (mps > pack_align)
|
|
pack_align = mps;
|
|
}
|
|
|
|
/* N.B. T5/T6 have a crazy special interpretation of the "0"
|
|
* value for the Packing Boundary. This corresponds to 16
|
|
* bytes instead of the expected 32 bytes. So if we want 32
|
|
* bytes, the best we can really do is 64 bytes ...
|
|
*/
|
|
if (pack_align <= 16) {
|
|
ingpack = INGPACKBOUNDARY_16B_X;
|
|
fl_align = 16;
|
|
} else if (pack_align == 32) {
|
|
ingpack = INGPACKBOUNDARY_64B_X;
|
|
fl_align = 64;
|
|
} else {
|
|
unsigned int pack_align_log = fls(pack_align) - 1;
|
|
|
|
ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
|
|
fl_align = pack_align;
|
|
}
|
|
|
|
/* Use the smallest Ingress Padding which isn't smaller than
|
|
* the Memory Controller Read/Write Size. We'll take that as
|
|
* being 8 bytes since we don't know of any system with a
|
|
* wider Memory Controller Bus Width.
|
|
*/
|
|
if (is_t5(adap->params.chip))
|
|
ingpad = INGPADBOUNDARY_32B_X;
|
|
else
|
|
ingpad = T6_INGPADBOUNDARY_8B_X;
|
|
|
|
t4_set_reg_field(adap, SGE_CONTROL_A,
|
|
INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
|
|
EGRSTATUSPAGESIZE_F,
|
|
INGPADBOUNDARY_V(ingpad) |
|
|
EGRSTATUSPAGESIZE_V(stat_len != 64));
|
|
t4_set_reg_field(adap, SGE_CONTROL2_A,
|
|
INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
|
|
INGPACKBOUNDARY_V(ingpack));
|
|
}
|
|
/*
|
|
* Adjust various SGE Free List Host Buffer Sizes.
|
|
*
|
|
* This is something of a crock since we're using fixed indices into
|
|
* the array which are also known by the sge.c code and the T4
|
|
* Firmware Configuration File. We need to come up with a much better
|
|
* approach to managing this array. For now, the first four entries
|
|
* are:
|
|
*
|
|
* 0: Host Page Size
|
|
* 1: 64KB
|
|
* 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
|
|
* 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
|
|
*
|
|
* For the single-MTU buffers in unpacked mode we need to include
|
|
* space for the SGE Control Packet Shift, 14 byte Ethernet header,
|
|
* possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
|
|
* Padding boundary. All of these are accommodated in the Factory
|
|
* Default Firmware Configuration File but we need to adjust it for
|
|
* this host's cache line size.
|
|
*/
|
|
t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
|
|
t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
|
|
(t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
|
|
& ~(fl_align-1));
|
|
t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
|
|
(t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
|
|
& ~(fl_align-1));
|
|
|
|
t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_fw_initialize - ask FW to initialize the device
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
*
|
|
* Issues a command to FW to partially initialize the device. This
|
|
* performs initialization that generally doesn't depend on user input.
|
|
*/
|
|
int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
|
|
{
|
|
struct fw_initialize_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, INITIALIZE, WRITE);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_query_params_rw - query FW or device parameters
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF
|
|
* @vf: the VF
|
|
* @nparams: the number of parameters
|
|
* @params: the parameter names
|
|
* @val: the parameter values
|
|
* @rw: Write and read flag
|
|
* @sleep_ok: if true, we may sleep awaiting mbox cmd completion
|
|
*
|
|
* Reads the value of FW or device parameters. Up to 7 parameters can be
|
|
* queried at once.
|
|
*/
|
|
int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int nparams, const u32 *params,
|
|
u32 *val, int rw, bool sleep_ok)
|
|
{
|
|
int i, ret;
|
|
struct fw_params_cmd c;
|
|
__be32 *p = &c.param[0].mnem;
|
|
|
|
if (nparams > 7)
|
|
return -EINVAL;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F |
|
|
FW_PARAMS_CMD_PFN_V(pf) |
|
|
FW_PARAMS_CMD_VFN_V(vf));
|
|
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
|
|
|
|
for (i = 0; i < nparams; i++) {
|
|
*p++ = cpu_to_be32(*params++);
|
|
if (rw)
|
|
*p = cpu_to_be32(*(val + i));
|
|
p++;
|
|
}
|
|
|
|
ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
|
|
if (ret == 0)
|
|
for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
|
|
*val++ = be32_to_cpu(*p);
|
|
return ret;
|
|
}
|
|
|
|
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int nparams, const u32 *params,
|
|
u32 *val)
|
|
{
|
|
return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
|
|
true);
|
|
}
|
|
|
|
int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int nparams, const u32 *params,
|
|
u32 *val)
|
|
{
|
|
return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
|
|
false);
|
|
}
|
|
|
|
/**
|
|
* t4_set_params_timeout - sets FW or device parameters
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF
|
|
* @vf: the VF
|
|
* @nparams: the number of parameters
|
|
* @params: the parameter names
|
|
* @val: the parameter values
|
|
* @timeout: the timeout time
|
|
*
|
|
* Sets the value of FW or device parameters. Up to 7 parameters can be
|
|
* specified at once.
|
|
*/
|
|
int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
|
|
unsigned int pf, unsigned int vf,
|
|
unsigned int nparams, const u32 *params,
|
|
const u32 *val, int timeout)
|
|
{
|
|
struct fw_params_cmd c;
|
|
__be32 *p = &c.param[0].mnem;
|
|
|
|
if (nparams > 7)
|
|
return -EINVAL;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_PARAMS_CMD_PFN_V(pf) |
|
|
FW_PARAMS_CMD_VFN_V(vf));
|
|
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
|
|
|
|
while (nparams--) {
|
|
*p++ = cpu_to_be32(*params++);
|
|
*p++ = cpu_to_be32(*val++);
|
|
}
|
|
|
|
return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
|
|
}
|
|
|
|
/**
|
|
* t4_set_params - sets FW or device parameters
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF
|
|
* @vf: the VF
|
|
* @nparams: the number of parameters
|
|
* @params: the parameter names
|
|
* @val: the parameter values
|
|
*
|
|
* Sets the value of FW or device parameters. Up to 7 parameters can be
|
|
* specified at once.
|
|
*/
|
|
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int nparams, const u32 *params,
|
|
const u32 *val)
|
|
{
|
|
return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
|
|
FW_CMD_MAX_TIMEOUT);
|
|
}
|
|
|
|
/**
|
|
* t4_cfg_pfvf - configure PF/VF resource limits
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF being configured
|
|
* @vf: the VF being configured
|
|
* @txq: the max number of egress queues
|
|
* @txq_eth_ctrl: the max number of egress Ethernet or control queues
|
|
* @rxqi: the max number of interrupt-capable ingress queues
|
|
* @rxq: the max number of interruptless ingress queues
|
|
* @tc: the PCI traffic class
|
|
* @vi: the max number of virtual interfaces
|
|
* @cmask: the channel access rights mask for the PF/VF
|
|
* @pmask: the port access rights mask for the PF/VF
|
|
* @nexact: the maximum number of exact MPS filters
|
|
* @rcaps: read capabilities
|
|
* @wxcaps: write/execute capabilities
|
|
*
|
|
* Configures resource limits and capabilities for a physical or virtual
|
|
* function.
|
|
*/
|
|
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
|
|
unsigned int rxqi, unsigned int rxq, unsigned int tc,
|
|
unsigned int vi, unsigned int cmask, unsigned int pmask,
|
|
unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
|
|
{
|
|
struct fw_pfvf_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
|
|
FW_PFVF_CMD_VFN_V(vf));
|
|
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
|
|
c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
|
|
FW_PFVF_CMD_NIQ_V(rxq));
|
|
c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
|
|
FW_PFVF_CMD_PMASK_V(pmask) |
|
|
FW_PFVF_CMD_NEQ_V(txq));
|
|
c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
|
|
FW_PFVF_CMD_NVI_V(vi) |
|
|
FW_PFVF_CMD_NEXACTF_V(nexact));
|
|
c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
|
|
FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
|
|
FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_alloc_vi - allocate a virtual interface
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @port: physical port associated with the VI
|
|
* @pf: the PF owning the VI
|
|
* @vf: the VF owning the VI
|
|
* @nmac: number of MAC addresses needed (1 to 5)
|
|
* @mac: the MAC addresses of the VI
|
|
* @rss_size: size of RSS table slice associated with this VI
|
|
*
|
|
* Allocates a virtual interface for the given physical port. If @mac is
|
|
* not %NULL it contains the MAC addresses of the VI as assigned by FW.
|
|
* @mac should be large enough to hold @nmac Ethernet addresses, they are
|
|
* stored consecutively so the space needed is @nmac * 6 bytes.
|
|
* Returns a negative error number or the non-negative VI id.
|
|
*/
|
|
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
|
|
unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
|
|
unsigned int *rss_size, u8 *vivld, u8 *vin)
|
|
{
|
|
int ret;
|
|
struct fw_vi_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
|
FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
|
|
c.portid_pkd = FW_VI_CMD_PORTID_V(port);
|
|
c.nmac = nmac - 1;
|
|
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mac) {
|
|
memcpy(mac, c.mac, sizeof(c.mac));
|
|
switch (nmac) {
|
|
case 5:
|
|
memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
|
|
/* Fall through */
|
|
case 4:
|
|
memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
|
|
/* Fall through */
|
|
case 3:
|
|
memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
|
|
/* Fall through */
|
|
case 2:
|
|
memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
|
|
}
|
|
}
|
|
if (rss_size)
|
|
*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
|
|
|
|
if (vivld)
|
|
*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
|
|
|
|
if (vin)
|
|
*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
|
|
|
|
return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
|
|
}
|
|
|
|
/**
|
|
* t4_free_vi - free a virtual interface
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF owning the VI
|
|
* @vf: the VF owning the VI
|
|
* @viid: virtual interface identifiler
|
|
*
|
|
* Free a previously allocated virtual interface.
|
|
*/
|
|
int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int viid)
|
|
{
|
|
struct fw_vi_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F |
|
|
FW_VI_CMD_PFN_V(pf) |
|
|
FW_VI_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
|
|
c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
|
|
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
}
|
|
|
|
/**
|
|
* t4_set_rxmode - set Rx properties of a virtual interface
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @mtu: the new MTU or -1
|
|
* @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
|
|
* @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
|
|
* @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
|
|
* @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Sets Rx properties of a virtual interface.
|
|
*/
|
|
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
|
|
int mtu, int promisc, int all_multi, int bcast, int vlanex,
|
|
bool sleep_ok)
|
|
{
|
|
struct fw_vi_rxmode_cmd c;
|
|
|
|
/* convert to FW values */
|
|
if (mtu < 0)
|
|
mtu = FW_RXMODE_MTU_NO_CHG;
|
|
if (promisc < 0)
|
|
promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
|
|
if (all_multi < 0)
|
|
all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
|
|
if (bcast < 0)
|
|
bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
|
|
if (vlanex < 0)
|
|
vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_VI_RXMODE_CMD_VIID_V(viid));
|
|
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
|
|
c.mtu_to_vlanexen =
|
|
cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
|
|
FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
|
|
FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
|
|
FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
|
|
FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
|
|
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_free_encap_mac_filt - frees MPS entry at given index
|
|
* @adap: the adapter
|
|
* @viid: the VI id
|
|
* @idx: index of MPS entry to be freed
|
|
* @sleep_ok: call is allowed to sleep
|
|
*
|
|
* Frees the MPS entry at supplied index
|
|
*
|
|
* Returns a negative error number or zero on success
|
|
*/
|
|
int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
|
|
int idx, bool sleep_ok)
|
|
{
|
|
struct fw_vi_mac_exact *p;
|
|
u8 addr[] = {0, 0, 0, 0, 0, 0};
|
|
struct fw_vi_mac_cmd c;
|
|
int ret = 0;
|
|
u32 exact;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_CMD_EXEC_V(0) |
|
|
FW_VI_MAC_CMD_VIID_V(viid));
|
|
exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
|
|
c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
|
|
exact |
|
|
FW_CMD_LEN16_V(1));
|
|
p = c.u.exact;
|
|
p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
|
|
FW_VI_MAC_CMD_IDX_V(idx));
|
|
memcpy(p->macaddr, addr, sizeof(p->macaddr));
|
|
ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
|
|
* @adap: the adapter
|
|
* @viid: the VI id
|
|
* @addr: the MAC address
|
|
* @mask: the mask
|
|
* @idx: index of the entry in mps tcam
|
|
* @lookup_type: MAC address for inner (1) or outer (0) header
|
|
* @port_id: the port index
|
|
* @sleep_ok: call is allowed to sleep
|
|
*
|
|
* Removes the mac entry at the specified index using raw mac interface.
|
|
*
|
|
* Returns a negative error number on failure.
|
|
*/
|
|
int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
|
|
const u8 *addr, const u8 *mask, unsigned int idx,
|
|
u8 lookup_type, u8 port_id, bool sleep_ok)
|
|
{
|
|
struct fw_vi_mac_cmd c;
|
|
struct fw_vi_mac_raw *p = &c.u.raw;
|
|
u32 val;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_CMD_EXEC_V(0) |
|
|
FW_VI_MAC_CMD_VIID_V(viid));
|
|
val = FW_CMD_LEN16_V(1) |
|
|
FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
|
|
c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
|
|
FW_CMD_LEN16_V(val));
|
|
|
|
p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
|
|
FW_VI_MAC_ID_BASED_FREE);
|
|
|
|
/* Lookup Type. Outer header: 0, Inner header: 1 */
|
|
p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
|
|
DATAPORTNUM_V(port_id));
|
|
/* Lookup mask and port mask */
|
|
p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
|
|
DATAPORTNUM_V(DATAPORTNUM_M));
|
|
|
|
/* Copy the address and the mask */
|
|
memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
|
|
memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
|
|
|
|
return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
|
|
* @adap: the adapter
|
|
* @viid: the VI id
|
|
* @mac: the MAC address
|
|
* @mask: the mask
|
|
* @vni: the VNI id for the tunnel protocol
|
|
* @vni_mask: mask for the VNI id
|
|
* @dip_hit: to enable DIP match for the MPS entry
|
|
* @lookup_type: MAC address for inner (1) or outer (0) header
|
|
* @sleep_ok: call is allowed to sleep
|
|
*
|
|
* Allocates an MPS entry with specified MAC address and VNI value.
|
|
*
|
|
* Returns a negative error number or the allocated index for this mac.
|
|
*/
|
|
int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
|
|
const u8 *addr, const u8 *mask, unsigned int vni,
|
|
unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
|
|
bool sleep_ok)
|
|
{
|
|
struct fw_vi_mac_cmd c;
|
|
struct fw_vi_mac_vni *p = c.u.exact_vni;
|
|
int ret = 0;
|
|
u32 val;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_VI_MAC_CMD_VIID_V(viid));
|
|
val = FW_CMD_LEN16_V(1) |
|
|
FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
|
|
c.freemacs_to_len16 = cpu_to_be32(val);
|
|
p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
|
|
FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
|
|
memcpy(p->macaddr, addr, sizeof(p->macaddr));
|
|
memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
|
|
|
|
p->lookup_type_to_vni =
|
|
cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
|
|
FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
|
|
FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
|
|
p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
|
|
ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
|
|
if (ret == 0)
|
|
ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
|
|
* @adap: the adapter
|
|
* @viid: the VI id
|
|
* @mac: the MAC address
|
|
* @mask: the mask
|
|
* @idx: index at which to add this entry
|
|
* @port_id: the port index
|
|
* @lookup_type: MAC address for inner (1) or outer (0) header
|
|
* @sleep_ok: call is allowed to sleep
|
|
*
|
|
* Adds the mac entry at the specified index using raw mac interface.
|
|
*
|
|
* Returns a negative error number or the allocated index for this mac.
|
|
*/
|
|
int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
|
|
const u8 *addr, const u8 *mask, unsigned int idx,
|
|
u8 lookup_type, u8 port_id, bool sleep_ok)
|
|
{
|
|
int ret = 0;
|
|
struct fw_vi_mac_cmd c;
|
|
struct fw_vi_mac_raw *p = &c.u.raw;
|
|
u32 val;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_VI_MAC_CMD_VIID_V(viid));
|
|
val = FW_CMD_LEN16_V(1) |
|
|
FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
|
|
c.freemacs_to_len16 = cpu_to_be32(val);
|
|
|
|
/* Specify that this is an inner mac address */
|
|
p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
|
|
|
|
/* Lookup Type. Outer header: 0, Inner header: 1 */
|
|
p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
|
|
DATAPORTNUM_V(port_id));
|
|
/* Lookup mask and port mask */
|
|
p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
|
|
DATAPORTNUM_V(DATAPORTNUM_M));
|
|
|
|
/* Copy the address and the mask */
|
|
memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
|
|
memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
|
|
|
|
ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
|
|
if (ret == 0) {
|
|
ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
|
|
if (ret != idx)
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @free: if true any existing filters for this VI id are first removed
|
|
* @naddr: the number of MAC addresses to allocate filters for (up to 7)
|
|
* @addr: the MAC address(es)
|
|
* @idx: where to store the index of each allocated filter
|
|
* @hash: pointer to hash address filter bitmap
|
|
* @sleep_ok: call is allowed to sleep
|
|
*
|
|
* Allocates an exact-match filter for each of the supplied addresses and
|
|
* sets it to the corresponding address. If @idx is not %NULL it should
|
|
* have at least @naddr entries, each of which will be set to the index of
|
|
* the filter allocated for the corresponding MAC address. If a filter
|
|
* could not be allocated for an address its index is set to 0xffff.
|
|
* If @hash is not %NULL addresses that fail to allocate an exact filter
|
|
* are hashed and update the hash filter bitmap pointed at by @hash.
|
|
*
|
|
* Returns a negative error number or the number of filters allocated.
|
|
*/
|
|
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
|
|
unsigned int viid, bool free, unsigned int naddr,
|
|
const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
|
|
{
|
|
int offset, ret = 0;
|
|
struct fw_vi_mac_cmd c;
|
|
unsigned int nfilters = 0;
|
|
unsigned int max_naddr = adap->params.arch.mps_tcam_size;
|
|
unsigned int rem = naddr;
|
|
|
|
if (naddr > max_naddr)
|
|
return -EINVAL;
|
|
|
|
for (offset = 0; offset < naddr ; /**/) {
|
|
unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
|
|
rem : ARRAY_SIZE(c.u.exact));
|
|
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
|
|
u.exact[fw_naddr]), 16);
|
|
struct fw_vi_mac_exact *p;
|
|
int i;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F |
|
|
FW_CMD_EXEC_V(free) |
|
|
FW_VI_MAC_CMD_VIID_V(viid));
|
|
c.freemacs_to_len16 =
|
|
cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
|
|
FW_CMD_LEN16_V(len16));
|
|
|
|
for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
|
|
p->valid_to_idx =
|
|
cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
|
|
FW_VI_MAC_CMD_IDX_V(
|
|
FW_VI_MAC_ADD_MAC));
|
|
memcpy(p->macaddr, addr[offset + i],
|
|
sizeof(p->macaddr));
|
|
}
|
|
|
|
/* It's okay if we run out of space in our MAC address arena.
|
|
* Some of the addresses we submit may get stored so we need
|
|
* to run through the reply to see what the results were ...
|
|
*/
|
|
ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
|
|
if (ret && ret != -FW_ENOMEM)
|
|
break;
|
|
|
|
for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
|
|
u16 index = FW_VI_MAC_CMD_IDX_G(
|
|
be16_to_cpu(p->valid_to_idx));
|
|
|
|
if (idx)
|
|
idx[offset + i] = (index >= max_naddr ?
|
|
0xffff : index);
|
|
if (index < max_naddr)
|
|
nfilters++;
|
|
else if (hash)
|
|
*hash |= (1ULL <<
|
|
hash_mac_addr(addr[offset + i]));
|
|
}
|
|
|
|
free = false;
|
|
offset += fw_naddr;
|
|
rem -= fw_naddr;
|
|
}
|
|
|
|
if (ret == 0 || ret == -FW_ENOMEM)
|
|
ret = nfilters;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_free_mac_filt - frees exact-match filters of given MAC addresses
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @naddr: the number of MAC addresses to allocate filters for (up to 7)
|
|
* @addr: the MAC address(es)
|
|
* @sleep_ok: call is allowed to sleep
|
|
*
|
|
* Frees the exact-match filter for each of the supplied addresses
|
|
*
|
|
* Returns a negative error number or the number of filters freed.
|
|
*/
|
|
int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
|
|
unsigned int viid, unsigned int naddr,
|
|
const u8 **addr, bool sleep_ok)
|
|
{
|
|
int offset, ret = 0;
|
|
struct fw_vi_mac_cmd c;
|
|
unsigned int nfilters = 0;
|
|
unsigned int max_naddr = is_t4(adap->params.chip) ?
|
|
NUM_MPS_CLS_SRAM_L_INSTANCES :
|
|
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
|
|
unsigned int rem = naddr;
|
|
|
|
if (naddr > max_naddr)
|
|
return -EINVAL;
|
|
|
|
for (offset = 0; offset < (int)naddr ; /**/) {
|
|
unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
|
|
? rem
|
|
: ARRAY_SIZE(c.u.exact));
|
|
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
|
|
u.exact[fw_naddr]), 16);
|
|
struct fw_vi_mac_exact *p;
|
|
int i;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F |
|
|
FW_CMD_EXEC_V(0) |
|
|
FW_VI_MAC_CMD_VIID_V(viid));
|
|
c.freemacs_to_len16 =
|
|
cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
|
|
FW_CMD_LEN16_V(len16));
|
|
|
|
for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
|
|
p->valid_to_idx = cpu_to_be16(
|
|
FW_VI_MAC_CMD_VALID_F |
|
|
FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
|
|
memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
|
|
}
|
|
|
|
ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
|
|
if (ret)
|
|
break;
|
|
|
|
for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
|
|
u16 index = FW_VI_MAC_CMD_IDX_G(
|
|
be16_to_cpu(p->valid_to_idx));
|
|
|
|
if (index < max_naddr)
|
|
nfilters++;
|
|
}
|
|
|
|
offset += fw_naddr;
|
|
rem -= fw_naddr;
|
|
}
|
|
|
|
if (ret == 0)
|
|
ret = nfilters;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_change_mac - modifies the exact-match filter for a MAC address
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @idx: index of existing filter for old value of MAC address, or -1
|
|
* @addr: the new MAC address value
|
|
* @persist: whether a new MAC allocation should be persistent
|
|
* @add_smt: if true also add the address to the HW SMT
|
|
*
|
|
* Modifies an exact-match filter and sets it to the new MAC address.
|
|
* Note that in general it is not possible to modify the value of a given
|
|
* filter so the generic way to modify an address filter is to free the one
|
|
* being used by the old address value and allocate a new filter for the
|
|
* new address value. @idx can be -1 if the address is a new addition.
|
|
*
|
|
* Returns a negative error number or the index of the filter with the new
|
|
* MAC value.
|
|
*/
|
|
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
|
|
int idx, const u8 *addr, bool persist, u8 *smt_idx)
|
|
{
|
|
int ret, mode;
|
|
struct fw_vi_mac_cmd c;
|
|
struct fw_vi_mac_exact *p = c.u.exact;
|
|
unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
|
|
|
|
if (idx < 0) /* new allocation */
|
|
idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
|
|
mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_VI_MAC_CMD_VIID_V(viid));
|
|
c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
|
|
p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
|
|
FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
|
|
FW_VI_MAC_CMD_IDX_V(idx));
|
|
memcpy(p->macaddr, addr, sizeof(p->macaddr));
|
|
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret == 0) {
|
|
ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
|
|
if (ret >= max_mac_addr)
|
|
ret = -ENOMEM;
|
|
if (smt_idx) {
|
|
if (adap->params.viid_smt_extn_support) {
|
|
*smt_idx = FW_VI_MAC_CMD_SMTID_G
|
|
(be32_to_cpu(c.op_to_viid));
|
|
} else {
|
|
/* In T4/T5, SMT contains 256 SMAC entries
|
|
* organized in 128 rows of 2 entries each.
|
|
* In T6, SMT contains 256 SMAC entries in
|
|
* 256 rows.
|
|
*/
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
|
|
CHELSIO_T5)
|
|
*smt_idx = (viid & FW_VIID_VIN_M) << 1;
|
|
else
|
|
*smt_idx = (viid & FW_VIID_VIN_M);
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_set_addr_hash - program the MAC inexact-match hash filter
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @ucast: whether the hash filter should also match unicast addresses
|
|
* @vec: the value to be written to the hash filter
|
|
* @sleep_ok: call is allowed to sleep
|
|
*
|
|
* Sets the 64-bit inexact-match hash filter for a virtual interface.
|
|
*/
|
|
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
|
|
bool ucast, u64 vec, bool sleep_ok)
|
|
{
|
|
struct fw_vi_mac_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_VI_ENABLE_CMD_VIID_V(viid));
|
|
c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
|
|
FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
|
|
FW_CMD_LEN16_V(1));
|
|
c.u.hash.hashvec = cpu_to_be64(vec);
|
|
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_enable_vi_params - enable/disable a virtual interface
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @rx_en: 1=enable Rx, 0=disable Rx
|
|
* @tx_en: 1=enable Tx, 0=disable Tx
|
|
* @dcb_en: 1=enable delivery of Data Center Bridging messages.
|
|
*
|
|
* Enables/disables a virtual interface. Note that setting DCB Enable
|
|
* only makes sense when enabling a Virtual Interface ...
|
|
*/
|
|
int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
|
|
unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
|
|
{
|
|
struct fw_vi_enable_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
|
|
FW_VI_ENABLE_CMD_VIID_V(viid));
|
|
c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
|
|
FW_VI_ENABLE_CMD_EEN_V(tx_en) |
|
|
FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
|
|
FW_LEN16(c));
|
|
return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_enable_vi - enable/disable a virtual interface
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @rx_en: 1=enable Rx, 0=disable Rx
|
|
* @tx_en: 1=enable Tx, 0=disable Tx
|
|
*
|
|
* Enables/disables a virtual interface.
|
|
*/
|
|
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
|
|
bool rx_en, bool tx_en)
|
|
{
|
|
return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
|
|
}
|
|
|
|
/**
|
|
* t4_enable_pi_params - enable/disable a Port's Virtual Interface
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pi: the Port Information structure
|
|
* @rx_en: 1=enable Rx, 0=disable Rx
|
|
* @tx_en: 1=enable Tx, 0=disable Tx
|
|
* @dcb_en: 1=enable delivery of Data Center Bridging messages.
|
|
*
|
|
* Enables/disables a Port's Virtual Interface. Note that setting DCB
|
|
* Enable only makes sense when enabling a Virtual Interface ...
|
|
* If the Virtual Interface enable/disable operation is successful,
|
|
* we notify the OS-specific code of a potential Link Status change
|
|
* via the OS Contract API t4_os_link_changed().
|
|
*/
|
|
int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
|
|
struct port_info *pi,
|
|
bool rx_en, bool tx_en, bool dcb_en)
|
|
{
|
|
int ret = t4_enable_vi_params(adap, mbox, pi->viid,
|
|
rx_en, tx_en, dcb_en);
|
|
if (ret)
|
|
return ret;
|
|
t4_os_link_changed(adap, pi->port_id,
|
|
rx_en && tx_en && pi->link_cfg.link_ok);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_identify_port - identify a VI's port by blinking its LED
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @nblinks: how many times to blink LED at 2.5 Hz
|
|
*
|
|
* Identifies a VI's port by blinking its LED.
|
|
*/
|
|
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
|
|
unsigned int nblinks)
|
|
{
|
|
struct fw_vi_enable_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
|
|
FW_VI_ENABLE_CMD_VIID_V(viid));
|
|
c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
|
|
c.blinkdur = cpu_to_be16(nblinks);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_iq_stop - stop an ingress queue and its FLs
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF owning the queues
|
|
* @vf: the VF owning the queues
|
|
* @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
|
|
* @iqid: ingress queue id
|
|
* @fl0id: FL0 queue id or 0xffff if no attached FL0
|
|
* @fl1id: FL1 queue id or 0xffff if no attached FL1
|
|
*
|
|
* Stops an ingress queue and its associated FLs, if any. This causes
|
|
* any current or future data/messages destined for these queues to be
|
|
* tossed.
|
|
*/
|
|
int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int iqtype, unsigned int iqid,
|
|
unsigned int fl0id, unsigned int fl1id)
|
|
{
|
|
struct fw_iq_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
|
|
FW_IQ_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
|
|
c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
|
|
c.iqid = cpu_to_be16(iqid);
|
|
c.fl0id = cpu_to_be16(fl0id);
|
|
c.fl1id = cpu_to_be16(fl1id);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_iq_free - free an ingress queue and its FLs
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF owning the queues
|
|
* @vf: the VF owning the queues
|
|
* @iqtype: the ingress queue type
|
|
* @iqid: ingress queue id
|
|
* @fl0id: FL0 queue id or 0xffff if no attached FL0
|
|
* @fl1id: FL1 queue id or 0xffff if no attached FL1
|
|
*
|
|
* Frees an ingress queue and its associated FLs, if any.
|
|
*/
|
|
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int iqtype, unsigned int iqid,
|
|
unsigned int fl0id, unsigned int fl1id)
|
|
{
|
|
struct fw_iq_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
|
|
FW_IQ_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
|
|
c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
|
|
c.iqid = cpu_to_be16(iqid);
|
|
c.fl0id = cpu_to_be16(fl0id);
|
|
c.fl1id = cpu_to_be16(fl1id);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_eth_eq_free - free an Ethernet egress queue
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF owning the queue
|
|
* @vf: the VF owning the queue
|
|
* @eqid: egress queue id
|
|
*
|
|
* Frees an Ethernet egress queue.
|
|
*/
|
|
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int eqid)
|
|
{
|
|
struct fw_eq_eth_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
|
|
FW_EQ_ETH_CMD_PFN_V(pf) |
|
|
FW_EQ_ETH_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
|
|
c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_ctrl_eq_free - free a control egress queue
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF owning the queue
|
|
* @vf: the VF owning the queue
|
|
* @eqid: egress queue id
|
|
*
|
|
* Frees a control egress queue.
|
|
*/
|
|
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int eqid)
|
|
{
|
|
struct fw_eq_ctrl_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
|
|
FW_EQ_CTRL_CMD_PFN_V(pf) |
|
|
FW_EQ_CTRL_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
|
|
c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_ofld_eq_free - free an offload egress queue
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF owning the queue
|
|
* @vf: the VF owning the queue
|
|
* @eqid: egress queue id
|
|
*
|
|
* Frees a control egress queue.
|
|
*/
|
|
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int eqid)
|
|
{
|
|
struct fw_eq_ofld_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
|
|
FW_EQ_OFLD_CMD_PFN_V(pf) |
|
|
FW_EQ_OFLD_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
|
|
c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_link_down_rc_str - return a string for a Link Down Reason Code
|
|
* @adap: the adapter
|
|
* @link_down_rc: Link Down Reason Code
|
|
*
|
|
* Returns a string representation of the Link Down Reason Code.
|
|
*/
|
|
static const char *t4_link_down_rc_str(unsigned char link_down_rc)
|
|
{
|
|
static const char * const reason[] = {
|
|
"Link Down",
|
|
"Remote Fault",
|
|
"Auto-negotiation Failure",
|
|
"Reserved",
|
|
"Insufficient Airflow",
|
|
"Unable To Determine Reason",
|
|
"No RX Signal Detected",
|
|
"Reserved",
|
|
};
|
|
|
|
if (link_down_rc >= ARRAY_SIZE(reason))
|
|
return "Bad Reason Code";
|
|
|
|
return reason[link_down_rc];
|
|
}
|
|
|
|
/**
|
|
* Return the highest speed set in the port capabilities, in Mb/s.
|
|
*/
|
|
static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
|
|
{
|
|
#define TEST_SPEED_RETURN(__caps_speed, __speed) \
|
|
do { \
|
|
if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
|
|
return __speed; \
|
|
} while (0)
|
|
|
|
TEST_SPEED_RETURN(400G, 400000);
|
|
TEST_SPEED_RETURN(200G, 200000);
|
|
TEST_SPEED_RETURN(100G, 100000);
|
|
TEST_SPEED_RETURN(50G, 50000);
|
|
TEST_SPEED_RETURN(40G, 40000);
|
|
TEST_SPEED_RETURN(25G, 25000);
|
|
TEST_SPEED_RETURN(10G, 10000);
|
|
TEST_SPEED_RETURN(1G, 1000);
|
|
TEST_SPEED_RETURN(100M, 100);
|
|
|
|
#undef TEST_SPEED_RETURN
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fwcap_to_fwspeed - return highest speed in Port Capabilities
|
|
* @acaps: advertised Port Capabilities
|
|
*
|
|
* Get the highest speed for the port from the advertised Port
|
|
* Capabilities. It will be either the highest speed from the list of
|
|
* speeds or whatever user has set using ethtool.
|
|
*/
|
|
static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
|
|
{
|
|
#define TEST_SPEED_RETURN(__caps_speed) \
|
|
do { \
|
|
if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
|
|
return FW_PORT_CAP32_SPEED_##__caps_speed; \
|
|
} while (0)
|
|
|
|
TEST_SPEED_RETURN(400G);
|
|
TEST_SPEED_RETURN(200G);
|
|
TEST_SPEED_RETURN(100G);
|
|
TEST_SPEED_RETURN(50G);
|
|
TEST_SPEED_RETURN(40G);
|
|
TEST_SPEED_RETURN(25G);
|
|
TEST_SPEED_RETURN(10G);
|
|
TEST_SPEED_RETURN(1G);
|
|
TEST_SPEED_RETURN(100M);
|
|
|
|
#undef TEST_SPEED_RETURN
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
|
|
* @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
|
|
*
|
|
* Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
|
|
* 32-bit Port Capabilities value.
|
|
*/
|
|
static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
|
|
{
|
|
fw_port_cap32_t linkattr = 0;
|
|
|
|
/* Unfortunately the format of the Link Status in the old
|
|
* 16-bit Port Information message isn't the same as the
|
|
* 16-bit Port Capabilities bitfield used everywhere else ...
|
|
*/
|
|
if (lstatus & FW_PORT_CMD_RXPAUSE_F)
|
|
linkattr |= FW_PORT_CAP32_FC_RX;
|
|
if (lstatus & FW_PORT_CMD_TXPAUSE_F)
|
|
linkattr |= FW_PORT_CAP32_FC_TX;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
|
|
linkattr |= FW_PORT_CAP32_SPEED_100M;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
|
|
linkattr |= FW_PORT_CAP32_SPEED_1G;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
|
|
linkattr |= FW_PORT_CAP32_SPEED_10G;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
|
|
linkattr |= FW_PORT_CAP32_SPEED_25G;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
|
|
linkattr |= FW_PORT_CAP32_SPEED_40G;
|
|
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
|
|
linkattr |= FW_PORT_CAP32_SPEED_100G;
|
|
|
|
return linkattr;
|
|
}
|
|
|
|
/**
|
|
* t4_handle_get_port_info - process a FW reply message
|
|
* @pi: the port info
|
|
* @rpl: start of the FW message
|
|
*
|
|
* Processes a GET_PORT_INFO FW reply message.
|
|
*/
|
|
void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
|
|
{
|
|
const struct fw_port_cmd *cmd = (const void *)rpl;
|
|
int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
|
|
struct adapter *adapter = pi->adapter;
|
|
struct link_config *lc = &pi->link_cfg;
|
|
int link_ok, linkdnrc;
|
|
enum fw_port_type port_type;
|
|
enum fw_port_module_type mod_type;
|
|
unsigned int speed, fc, fec;
|
|
fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
|
|
|
|
/* Extract the various fields from the Port Information message.
|
|
*/
|
|
switch (action) {
|
|
case FW_PORT_ACTION_GET_PORT_INFO: {
|
|
u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
|
|
|
|
link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
|
|
linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
|
|
port_type = FW_PORT_CMD_PTYPE_G(lstatus);
|
|
mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
|
|
pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
|
|
acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
|
|
lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
|
|
linkattr = lstatus_to_fwcap(lstatus);
|
|
break;
|
|
}
|
|
|
|
case FW_PORT_ACTION_GET_PORT_INFO32: {
|
|
u32 lstatus32;
|
|
|
|
lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
|
|
link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
|
|
linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
|
|
port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
|
|
mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
|
|
pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
|
|
acaps = be32_to_cpu(cmd->u.info32.acaps32);
|
|
lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
|
|
linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
|
|
be32_to_cpu(cmd->action_to_len16));
|
|
return;
|
|
}
|
|
|
|
fec = fwcap_to_cc_fec(acaps);
|
|
fc = fwcap_to_cc_pause(linkattr);
|
|
speed = fwcap_to_speed(linkattr);
|
|
|
|
/* Reset state for communicating new Transceiver Module status and
|
|
* whether the OS-dependent layer wants us to redo the current
|
|
* "sticky" L1 Configure Link Parameters.
|
|
*/
|
|
lc->new_module = false;
|
|
lc->redo_l1cfg = false;
|
|
|
|
if (mod_type != pi->mod_type) {
|
|
/* With the newer SFP28 and QSFP28 Transceiver Module Types,
|
|
* various fundamental Port Capabilities which used to be
|
|
* immutable can now change radically. We can now have
|
|
* Speeds, Auto-Negotiation, Forward Error Correction, etc.
|
|
* all change based on what Transceiver Module is inserted.
|
|
* So we need to record the Physical "Port" Capabilities on
|
|
* every Transceiver Module change.
|
|
*/
|
|
lc->pcaps = pcaps;
|
|
|
|
/* When a new Transceiver Module is inserted, the Firmware
|
|
* will examine its i2c EPROM to determine its type and
|
|
* general operating parameters including things like Forward
|
|
* Error Control, etc. Various IEEE 802.3 standards dictate
|
|
* how to interpret these i2c values to determine default
|
|
* "sutomatic" settings. We record these for future use when
|
|
* the user explicitly requests these standards-based values.
|
|
*/
|
|
lc->def_acaps = acaps;
|
|
|
|
/* Some versions of the early T6 Firmware "cheated" when
|
|
* handling different Transceiver Modules by changing the
|
|
* underlaying Port Type reported to the Host Drivers. As
|
|
* such we need to capture whatever Port Type the Firmware
|
|
* sends us and record it in case it's different from what we
|
|
* were told earlier. Unfortunately, since Firmware is
|
|
* forever, we'll need to keep this code here forever, but in
|
|
* later T6 Firmware it should just be an assignment of the
|
|
* same value already recorded.
|
|
*/
|
|
pi->port_type = port_type;
|
|
|
|
/* Record new Module Type information.
|
|
*/
|
|
pi->mod_type = mod_type;
|
|
|
|
/* Let the OS-dependent layer know if we have a new
|
|
* Transceiver Module inserted.
|
|
*/
|
|
lc->new_module = t4_is_inserted_mod_type(mod_type);
|
|
|
|
t4_os_portmod_changed(adapter, pi->port_id);
|
|
}
|
|
|
|
if (link_ok != lc->link_ok || speed != lc->speed ||
|
|
fc != lc->fc || fec != lc->fec) { /* something changed */
|
|
if (!link_ok && lc->link_ok) {
|
|
lc->link_down_rc = linkdnrc;
|
|
dev_warn_ratelimited(adapter->pdev_dev,
|
|
"Port %d link down, reason: %s\n",
|
|
pi->tx_chan,
|
|
t4_link_down_rc_str(linkdnrc));
|
|
}
|
|
lc->link_ok = link_ok;
|
|
lc->speed = speed;
|
|
lc->fc = fc;
|
|
lc->fec = fec;
|
|
|
|
lc->lpacaps = lpacaps;
|
|
lc->acaps = acaps & ADVERT_MASK;
|
|
|
|
/* If we're not physically capable of Auto-Negotiation, note
|
|
* this as Auto-Negotiation disabled. Otherwise, we track
|
|
* what Auto-Negotiation settings we have. Note parallel
|
|
* structure in t4_link_l1cfg_core() and init_link_config().
|
|
*/
|
|
if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
|
|
lc->autoneg = AUTONEG_DISABLE;
|
|
} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
|
|
lc->autoneg = AUTONEG_ENABLE;
|
|
} else {
|
|
/* When Autoneg is disabled, user needs to set
|
|
* single speed.
|
|
* Similar to cxgb4_ethtool.c: set_link_ksettings
|
|
*/
|
|
lc->acaps = 0;
|
|
lc->speed_caps = fwcap_to_fwspeed(acaps);
|
|
lc->autoneg = AUTONEG_DISABLE;
|
|
}
|
|
|
|
t4_os_link_changed(adapter, pi->port_id, link_ok);
|
|
}
|
|
|
|
/* If we have a new Transceiver Module and the OS-dependent code has
|
|
* told us that it wants us to redo whatever "sticky" L1 Configuration
|
|
* Link Parameters are set, do that now.
|
|
*/
|
|
if (lc->new_module && lc->redo_l1cfg) {
|
|
struct link_config old_lc;
|
|
int ret;
|
|
|
|
/* Save the current L1 Configuration and restore it if an
|
|
* error occurs. We probably should fix the l1_cfg*()
|
|
* routines not to change the link_config when an error
|
|
* occurs ...
|
|
*/
|
|
old_lc = *lc;
|
|
ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
|
|
if (ret) {
|
|
*lc = old_lc;
|
|
dev_warn(adapter->pdev_dev,
|
|
"Attempt to update new Transceiver Module settings failed\n");
|
|
}
|
|
}
|
|
lc->new_module = false;
|
|
lc->redo_l1cfg = false;
|
|
}
|
|
|
|
/**
|
|
* t4_update_port_info - retrieve and update port information if changed
|
|
* @pi: the port_info
|
|
*
|
|
* We issue a Get Port Information Command to the Firmware and, if
|
|
* successful, we check to see if anything is different from what we
|
|
* last recorded and update things accordingly.
|
|
*/
|
|
int t4_update_port_info(struct port_info *pi)
|
|
{
|
|
unsigned int fw_caps = pi->adapter->params.fw_caps_support;
|
|
struct fw_port_cmd port_cmd;
|
|
int ret;
|
|
|
|
memset(&port_cmd, 0, sizeof(port_cmd));
|
|
port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F |
|
|
FW_PORT_CMD_PORTID_V(pi->tx_chan));
|
|
port_cmd.action_to_len16 = cpu_to_be32(
|
|
FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
|
|
? FW_PORT_ACTION_GET_PORT_INFO
|
|
: FW_PORT_ACTION_GET_PORT_INFO32) |
|
|
FW_LEN16(port_cmd));
|
|
ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
|
|
&port_cmd, sizeof(port_cmd), &port_cmd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_get_link_params - retrieve basic link parameters for given port
|
|
* @pi: the port
|
|
* @link_okp: value return pointer for link up/down
|
|
* @speedp: value return pointer for speed (Mb/s)
|
|
* @mtup: value return pointer for mtu
|
|
*
|
|
* Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
|
|
* and MTU for a specified port. A negative error is returned on
|
|
* failure; 0 on success.
|
|
*/
|
|
int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
|
|
unsigned int *speedp, unsigned int *mtup)
|
|
{
|
|
unsigned int fw_caps = pi->adapter->params.fw_caps_support;
|
|
struct fw_port_cmd port_cmd;
|
|
unsigned int action, link_ok, mtu;
|
|
fw_port_cap32_t linkattr;
|
|
int ret;
|
|
|
|
memset(&port_cmd, 0, sizeof(port_cmd));
|
|
port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F |
|
|
FW_PORT_CMD_PORTID_V(pi->tx_chan));
|
|
action = (fw_caps == FW_CAPS16
|
|
? FW_PORT_ACTION_GET_PORT_INFO
|
|
: FW_PORT_ACTION_GET_PORT_INFO32);
|
|
port_cmd.action_to_len16 = cpu_to_be32(
|
|
FW_PORT_CMD_ACTION_V(action) |
|
|
FW_LEN16(port_cmd));
|
|
ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
|
|
&port_cmd, sizeof(port_cmd), &port_cmd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (action == FW_PORT_ACTION_GET_PORT_INFO) {
|
|
u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
|
|
|
|
link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
|
|
linkattr = lstatus_to_fwcap(lstatus);
|
|
mtu = be16_to_cpu(port_cmd.u.info.mtu);
|
|
} else {
|
|
u32 lstatus32 =
|
|
be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
|
|
|
|
link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
|
|
linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
|
|
mtu = FW_PORT_CMD_MTU32_G(
|
|
be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
|
|
}
|
|
|
|
*link_okp = link_ok;
|
|
*speedp = fwcap_to_speed(linkattr);
|
|
*mtup = mtu;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_handle_fw_rpl - process a FW reply message
|
|
* @adap: the adapter
|
|
* @rpl: start of the FW message
|
|
*
|
|
* Processes a FW message, such as link state change messages.
|
|
*/
|
|
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
|
|
{
|
|
u8 opcode = *(const u8 *)rpl;
|
|
|
|
/* This might be a port command ... this simplifies the following
|
|
* conditionals ... We can get away with pre-dereferencing
|
|
* action_to_len16 because it's in the first 16 bytes and all messages
|
|
* will be at least that long.
|
|
*/
|
|
const struct fw_port_cmd *p = (const void *)rpl;
|
|
unsigned int action =
|
|
FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
|
|
|
|
if (opcode == FW_PORT_CMD &&
|
|
(action == FW_PORT_ACTION_GET_PORT_INFO ||
|
|
action == FW_PORT_ACTION_GET_PORT_INFO32)) {
|
|
int i;
|
|
int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
|
|
struct port_info *pi = NULL;
|
|
|
|
for_each_port(adap, i) {
|
|
pi = adap2pinfo(adap, i);
|
|
if (pi->tx_chan == chan)
|
|
break;
|
|
}
|
|
|
|
t4_handle_get_port_info(pi, rpl);
|
|
} else {
|
|
dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
|
|
opcode);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
|
|
{
|
|
u16 val;
|
|
|
|
if (pci_is_pcie(adapter->pdev)) {
|
|
pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
|
|
p->speed = val & PCI_EXP_LNKSTA_CLS;
|
|
p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* init_link_config - initialize a link's SW state
|
|
* @lc: pointer to structure holding the link state
|
|
* @pcaps: link Port Capabilities
|
|
* @acaps: link current Advertised Port Capabilities
|
|
*
|
|
* Initializes the SW state maintained for each link, including the link's
|
|
* capabilities and default speed/flow-control/autonegotiation settings.
|
|
*/
|
|
static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
|
|
fw_port_cap32_t acaps)
|
|
{
|
|
lc->pcaps = pcaps;
|
|
lc->def_acaps = acaps;
|
|
lc->lpacaps = 0;
|
|
lc->speed_caps = 0;
|
|
lc->speed = 0;
|
|
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
|
|
|
|
/* For Forward Error Control, we default to whatever the Firmware
|
|
* tells us the Link is currently advertising.
|
|
*/
|
|
lc->requested_fec = FEC_AUTO;
|
|
lc->fec = fwcap_to_cc_fec(lc->def_acaps);
|
|
|
|
/* If the Port is capable of Auto-Negtotiation, initialize it as
|
|
* "enabled" and copy over all of the Physical Port Capabilities
|
|
* to the Advertised Port Capabilities. Otherwise mark it as
|
|
* Auto-Negotiate disabled and select the highest supported speed
|
|
* for the link. Note parallel structure in t4_link_l1cfg_core()
|
|
* and t4_handle_get_port_info().
|
|
*/
|
|
if (lc->pcaps & FW_PORT_CAP32_ANEG) {
|
|
lc->acaps = lc->pcaps & ADVERT_MASK;
|
|
lc->autoneg = AUTONEG_ENABLE;
|
|
lc->requested_fc |= PAUSE_AUTONEG;
|
|
} else {
|
|
lc->acaps = 0;
|
|
lc->autoneg = AUTONEG_DISABLE;
|
|
lc->speed_caps = fwcap_to_fwspeed(acaps);
|
|
}
|
|
}
|
|
|
|
#define CIM_PF_NOACCESS 0xeeeeeeee
|
|
|
|
int t4_wait_dev_ready(void __iomem *regs)
|
|
{
|
|
u32 whoami;
|
|
|
|
whoami = readl(regs + PL_WHOAMI_A);
|
|
if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
|
|
return 0;
|
|
|
|
msleep(500);
|
|
whoami = readl(regs + PL_WHOAMI_A);
|
|
return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
|
|
}
|
|
|
|
struct flash_desc {
|
|
u32 vendor_and_model_id;
|
|
u32 size_mb;
|
|
};
|
|
|
|
static int t4_get_flash_params(struct adapter *adap)
|
|
{
|
|
/* Table for non-Numonix supported flash parts. Numonix parts are left
|
|
* to the preexisting code. All flash parts have 64KB sectors.
|
|
*/
|
|
static struct flash_desc supported_flash[] = {
|
|
{ 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
|
|
};
|
|
|
|
unsigned int part, manufacturer;
|
|
unsigned int density, size = 0;
|
|
u32 flashid = 0;
|
|
int ret;
|
|
|
|
/* Issue a Read ID Command to the Flash part. We decode supported
|
|
* Flash parts and their sizes from this. There's a newer Query
|
|
* Command which can retrieve detailed geometry information but many
|
|
* Flash parts don't support it.
|
|
*/
|
|
|
|
ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
|
|
if (!ret)
|
|
ret = sf1_read(adap, 3, 0, 1, &flashid);
|
|
t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Check to see if it's one of our non-standard supported Flash parts.
|
|
*/
|
|
for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
|
|
if (supported_flash[part].vendor_and_model_id == flashid) {
|
|
adap->params.sf_size = supported_flash[part].size_mb;
|
|
adap->params.sf_nsec =
|
|
adap->params.sf_size / SF_SEC_SIZE;
|
|
goto found;
|
|
}
|
|
|
|
/* Decode Flash part size. The code below looks repetative with
|
|
* common encodings, but that's not guaranteed in the JEDEC
|
|
* specification for the Read JADEC ID command. The only thing that
|
|
* we're guaranteed by the JADEC specification is where the
|
|
* Manufacturer ID is in the returned result. After that each
|
|
* Manufacturer ~could~ encode things completely differently.
|
|
* Note, all Flash parts must have 64KB sectors.
|
|
*/
|
|
manufacturer = flashid & 0xff;
|
|
switch (manufacturer) {
|
|
case 0x20: { /* Micron/Numonix */
|
|
/* This Density -> Size decoding table is taken from Micron
|
|
* Data Sheets.
|
|
*/
|
|
density = (flashid >> 16) & 0xff;
|
|
switch (density) {
|
|
case 0x14: /* 1MB */
|
|
size = 1 << 20;
|
|
break;
|
|
case 0x15: /* 2MB */
|
|
size = 1 << 21;
|
|
break;
|
|
case 0x16: /* 4MB */
|
|
size = 1 << 22;
|
|
break;
|
|
case 0x17: /* 8MB */
|
|
size = 1 << 23;
|
|
break;
|
|
case 0x18: /* 16MB */
|
|
size = 1 << 24;
|
|
break;
|
|
case 0x19: /* 32MB */
|
|
size = 1 << 25;
|
|
break;
|
|
case 0x20: /* 64MB */
|
|
size = 1 << 26;
|
|
break;
|
|
case 0x21: /* 128MB */
|
|
size = 1 << 27;
|
|
break;
|
|
case 0x22: /* 256MB */
|
|
size = 1 << 28;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
|
|
/* This Density -> Size decoding table is taken from ISSI
|
|
* Data Sheets.
|
|
*/
|
|
density = (flashid >> 16) & 0xff;
|
|
switch (density) {
|
|
case 0x16: /* 32 MB */
|
|
size = 1 << 25;
|
|
break;
|
|
case 0x17: /* 64MB */
|
|
size = 1 << 26;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case 0xc2: { /* Macronix */
|
|
/* This Density -> Size decoding table is taken from Macronix
|
|
* Data Sheets.
|
|
*/
|
|
density = (flashid >> 16) & 0xff;
|
|
switch (density) {
|
|
case 0x17: /* 8MB */
|
|
size = 1 << 23;
|
|
break;
|
|
case 0x18: /* 16MB */
|
|
size = 1 << 24;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case 0xef: { /* Winbond */
|
|
/* This Density -> Size decoding table is taken from Winbond
|
|
* Data Sheets.
|
|
*/
|
|
density = (flashid >> 16) & 0xff;
|
|
switch (density) {
|
|
case 0x17: /* 8MB */
|
|
size = 1 << 23;
|
|
break;
|
|
case 0x18: /* 16MB */
|
|
size = 1 << 24;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If we didn't recognize the FLASH part, that's no real issue: the
|
|
* Hardware/Software contract says that Hardware will _*ALWAYS*_
|
|
* use a FLASH part which is at least 4MB in size and has 64KB
|
|
* sectors. The unrecognized FLASH part is likely to be much larger
|
|
* than 4MB, but that's all we really need.
|
|
*/
|
|
if (size == 0) {
|
|
dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
|
|
flashid);
|
|
size = 1 << 22;
|
|
}
|
|
|
|
/* Store decoded Flash size and fall through into vetting code. */
|
|
adap->params.sf_size = size;
|
|
adap->params.sf_nsec = size / SF_SEC_SIZE;
|
|
|
|
found:
|
|
if (adap->params.sf_size < FLASH_MIN_SIZE)
|
|
dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
|
|
flashid, adap->params.sf_size, FLASH_MIN_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_prep_adapter - prepare SW and HW for operation
|
|
* @adapter: the adapter
|
|
* @reset: if true perform a HW reset
|
|
*
|
|
* Initialize adapter SW state for the various HW modules, set initial
|
|
* values for some adapter tunables, take PHYs out of reset, and
|
|
* initialize the MDIO interface.
|
|
*/
|
|
int t4_prep_adapter(struct adapter *adapter)
|
|
{
|
|
int ret, ver;
|
|
uint16_t device_id;
|
|
u32 pl_rev;
|
|
|
|
get_pci_mode(adapter, &adapter->params.pci);
|
|
pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
|
|
|
|
ret = t4_get_flash_params(adapter);
|
|
if (ret < 0) {
|
|
dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Retrieve adapter's device ID
|
|
*/
|
|
pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
|
|
ver = device_id >> 12;
|
|
adapter->params.chip = 0;
|
|
switch (ver) {
|
|
case CHELSIO_T4:
|
|
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
|
|
adapter->params.arch.sge_fl_db = DBPRIO_F;
|
|
adapter->params.arch.mps_tcam_size =
|
|
NUM_MPS_CLS_SRAM_L_INSTANCES;
|
|
adapter->params.arch.mps_rplc_size = 128;
|
|
adapter->params.arch.nchan = NCHAN;
|
|
adapter->params.arch.pm_stats_cnt = PM_NSTATS;
|
|
adapter->params.arch.vfcount = 128;
|
|
/* Congestion map is for 4 channels so that
|
|
* MPS can have 4 priority per port.
|
|
*/
|
|
adapter->params.arch.cng_ch_bits_log = 2;
|
|
break;
|
|
case CHELSIO_T5:
|
|
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
|
|
adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
|
|
adapter->params.arch.mps_tcam_size =
|
|
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
|
|
adapter->params.arch.mps_rplc_size = 128;
|
|
adapter->params.arch.nchan = NCHAN;
|
|
adapter->params.arch.pm_stats_cnt = PM_NSTATS;
|
|
adapter->params.arch.vfcount = 128;
|
|
adapter->params.arch.cng_ch_bits_log = 2;
|
|
break;
|
|
case CHELSIO_T6:
|
|
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
|
|
adapter->params.arch.sge_fl_db = 0;
|
|
adapter->params.arch.mps_tcam_size =
|
|
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
|
|
adapter->params.arch.mps_rplc_size = 256;
|
|
adapter->params.arch.nchan = 2;
|
|
adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
|
|
adapter->params.arch.vfcount = 256;
|
|
/* Congestion map will be for 2 channels so that
|
|
* MPS can have 8 priority per port.
|
|
*/
|
|
adapter->params.arch.cng_ch_bits_log = 3;
|
|
break;
|
|
default:
|
|
dev_err(adapter->pdev_dev, "Device %d is not supported\n",
|
|
device_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
adapter->params.cim_la_size = CIMLA_SIZE;
|
|
init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
|
|
|
|
/*
|
|
* Default port for debugging in case we can't reach FW.
|
|
*/
|
|
adapter->params.nports = 1;
|
|
adapter->params.portvec = 1;
|
|
adapter->params.vpd.cclk = 50000;
|
|
|
|
/* Set PCIe completion timeout to 4 seconds. */
|
|
pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
|
|
PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_shutdown_adapter - shut down adapter, host & wire
|
|
* @adapter: the adapter
|
|
*
|
|
* Perform an emergency shutdown of the adapter and stop it from
|
|
* continuing any further communication on the ports or DMA to the
|
|
* host. This is typically used when the adapter and/or firmware
|
|
* have crashed and we want to prevent any further accidental
|
|
* communication with the rest of the world. This will also force
|
|
* the port Link Status to go down -- if register writes work --
|
|
* which should help our peers figure out that we're down.
|
|
*/
|
|
int t4_shutdown_adapter(struct adapter *adapter)
|
|
{
|
|
int port;
|
|
|
|
t4_intr_disable(adapter);
|
|
t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
|
|
for_each_port(adapter, port) {
|
|
u32 a_port_cfg = is_t4(adapter->params.chip) ?
|
|
PORT_REG(port, XGMAC_PORT_CFG_A) :
|
|
T5_PORT_REG(port, MAC_PORT_CFG_A);
|
|
|
|
t4_write_reg(adapter, a_port_cfg,
|
|
t4_read_reg(adapter, a_port_cfg)
|
|
& ~SIGNAL_DET_V(1));
|
|
}
|
|
t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_bar2_sge_qregs - return BAR2 SGE Queue register information
|
|
* @adapter: the adapter
|
|
* @qid: the Queue ID
|
|
* @qtype: the Ingress or Egress type for @qid
|
|
* @user: true if this request is for a user mode queue
|
|
* @pbar2_qoffset: BAR2 Queue Offset
|
|
* @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
|
|
*
|
|
* Returns the BAR2 SGE Queue Registers information associated with the
|
|
* indicated Absolute Queue ID. These are passed back in return value
|
|
* pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
|
|
* and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
|
|
*
|
|
* This may return an error which indicates that BAR2 SGE Queue
|
|
* registers aren't available. If an error is not returned, then the
|
|
* following values are returned:
|
|
*
|
|
* *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
|
|
* *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
|
|
*
|
|
* If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
|
|
* require the "Inferred Queue ID" ability may be used. E.g. the
|
|
* Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
|
|
* then these "Inferred Queue ID" register may not be used.
|
|
*/
|
|
int t4_bar2_sge_qregs(struct adapter *adapter,
|
|
unsigned int qid,
|
|
enum t4_bar2_qtype qtype,
|
|
int user,
|
|
u64 *pbar2_qoffset,
|
|
unsigned int *pbar2_qid)
|
|
{
|
|
unsigned int page_shift, page_size, qpp_shift, qpp_mask;
|
|
u64 bar2_page_offset, bar2_qoffset;
|
|
unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
|
|
|
|
/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
|
|
if (!user && is_t4(adapter->params.chip))
|
|
return -EINVAL;
|
|
|
|
/* Get our SGE Page Size parameters.
|
|
*/
|
|
page_shift = adapter->params.sge.hps + 10;
|
|
page_size = 1 << page_shift;
|
|
|
|
/* Get the right Queues per Page parameters for our Queue.
|
|
*/
|
|
qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
|
|
? adapter->params.sge.eq_qpp
|
|
: adapter->params.sge.iq_qpp);
|
|
qpp_mask = (1 << qpp_shift) - 1;
|
|
|
|
/* Calculate the basics of the BAR2 SGE Queue register area:
|
|
* o The BAR2 page the Queue registers will be in.
|
|
* o The BAR2 Queue ID.
|
|
* o The BAR2 Queue ID Offset into the BAR2 page.
|
|
*/
|
|
bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
|
|
bar2_qid = qid & qpp_mask;
|
|
bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
|
|
|
|
/* If the BAR2 Queue ID Offset is less than the Page Size, then the
|
|
* hardware will infer the Absolute Queue ID simply from the writes to
|
|
* the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
|
|
* BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
|
|
* write to the first BAR2 SGE Queue Area within the BAR2 Page with
|
|
* the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
|
|
* from the BAR2 Page and BAR2 Queue ID.
|
|
*
|
|
* One important censequence of this is that some BAR2 SGE registers
|
|
* have a "Queue ID" field and we can write the BAR2 SGE Queue ID
|
|
* there. But other registers synthesize the SGE Queue ID purely
|
|
* from the writes to the registers -- the Write Combined Doorbell
|
|
* Buffer is a good example. These BAR2 SGE Registers are only
|
|
* available for those BAR2 SGE Register areas where the SGE Absolute
|
|
* Queue ID can be inferred from simple writes.
|
|
*/
|
|
bar2_qoffset = bar2_page_offset;
|
|
bar2_qinferred = (bar2_qid_offset < page_size);
|
|
if (bar2_qinferred) {
|
|
bar2_qoffset += bar2_qid_offset;
|
|
bar2_qid = 0;
|
|
}
|
|
|
|
*pbar2_qoffset = bar2_qoffset;
|
|
*pbar2_qid = bar2_qid;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_init_devlog_params - initialize adapter->params.devlog
|
|
* @adap: the adapter
|
|
*
|
|
* Initialize various fields of the adapter's Firmware Device Log
|
|
* Parameters structure.
|
|
*/
|
|
int t4_init_devlog_params(struct adapter *adap)
|
|
{
|
|
struct devlog_params *dparams = &adap->params.devlog;
|
|
u32 pf_dparams;
|
|
unsigned int devlog_meminfo;
|
|
struct fw_devlog_cmd devlog_cmd;
|
|
int ret;
|
|
|
|
/* If we're dealing with newer firmware, the Device Log Paramerters
|
|
* are stored in a designated register which allows us to access the
|
|
* Device Log even if we can't talk to the firmware.
|
|
*/
|
|
pf_dparams =
|
|
t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
|
|
if (pf_dparams) {
|
|
unsigned int nentries, nentries128;
|
|
|
|
dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
|
|
dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
|
|
|
|
nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
|
|
nentries = (nentries128 + 1) * 128;
|
|
dparams->size = nentries * sizeof(struct fw_devlog_e);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Otherwise, ask the firmware for it's Device Log Parameters.
|
|
*/
|
|
memset(&devlog_cmd, 0, sizeof(devlog_cmd));
|
|
devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F);
|
|
devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
|
|
ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
|
|
&devlog_cmd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
devlog_meminfo =
|
|
be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
|
|
dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
|
|
dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
|
|
dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_init_sge_params - initialize adap->params.sge
|
|
* @adapter: the adapter
|
|
*
|
|
* Initialize various fields of the adapter's SGE Parameters structure.
|
|
*/
|
|
int t4_init_sge_params(struct adapter *adapter)
|
|
{
|
|
struct sge_params *sge_params = &adapter->params.sge;
|
|
u32 hps, qpp;
|
|
unsigned int s_hps, s_qpp;
|
|
|
|
/* Extract the SGE Page Size for our PF.
|
|
*/
|
|
hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
|
|
s_hps = (HOSTPAGESIZEPF0_S +
|
|
(HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
|
|
sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
|
|
|
|
/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
|
|
*/
|
|
s_qpp = (QUEUESPERPAGEPF0_S +
|
|
(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
|
|
qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
|
|
sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
|
|
qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
|
|
sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_init_tp_params - initialize adap->params.tp
|
|
* @adap: the adapter
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Initialize various fields of the adapter's TP Parameters structure.
|
|
*/
|
|
int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
|
|
{
|
|
u32 param, val, v;
|
|
int chan, ret;
|
|
|
|
|
|
v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
|
|
adap->params.tp.tre = TIMERRESOLUTION_G(v);
|
|
adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
|
|
|
|
/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
|
|
for (chan = 0; chan < NCHAN; chan++)
|
|
adap->params.tp.tx_modq[chan] = chan;
|
|
|
|
/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
|
|
* Configuration.
|
|
*/
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
|
|
FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
|
|
|
|
/* Read current value */
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
|
|
¶m, &val);
|
|
if (ret == 0) {
|
|
dev_info(adap->pdev_dev,
|
|
"Current filter mode/mask 0x%x:0x%x\n",
|
|
FW_PARAMS_PARAM_FILTER_MODE_G(val),
|
|
FW_PARAMS_PARAM_FILTER_MASK_G(val));
|
|
adap->params.tp.vlan_pri_map =
|
|
FW_PARAMS_PARAM_FILTER_MODE_G(val);
|
|
adap->params.tp.filter_mask =
|
|
FW_PARAMS_PARAM_FILTER_MASK_G(val);
|
|
} else {
|
|
dev_info(adap->pdev_dev,
|
|
"Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
|
|
|
|
/* Incase of older-fw (which doesn't expose the api
|
|
* FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
|
|
* the fw api) combination, fall-back to older method of reading
|
|
* the filter mode from indirect-register
|
|
*/
|
|
t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
|
|
TP_VLAN_PRI_MAP_A, sleep_ok);
|
|
|
|
/* With the older-fw and newer-driver combination we might run
|
|
* into an issue when user wants to use hash filter region but
|
|
* the filter_mask is zero, in this case filter_mask validation
|
|
* is tough. To avoid that we set the filter_mask same as filter
|
|
* mode, which will behave exactly as the older way of ignoring
|
|
* the filter mask validation.
|
|
*/
|
|
adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
|
|
}
|
|
|
|
t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
|
|
TP_INGRESS_CONFIG_A, sleep_ok);
|
|
|
|
/* For T6, cache the adapter's compressed error vector
|
|
* and passing outer header info for encapsulated packets.
|
|
*/
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
|
|
v = t4_read_reg(adap, TP_OUT_CONFIG_A);
|
|
adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
|
|
}
|
|
|
|
/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
|
|
* shift positions of several elements of the Compressed Filter Tuple
|
|
* for this adapter which we need frequently ...
|
|
*/
|
|
adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
|
|
adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
|
|
adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
|
|
adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
|
|
adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
|
|
adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
|
|
PROTOCOL_F);
|
|
adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
|
|
ETHERTYPE_F);
|
|
adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
|
|
MACMATCH_F);
|
|
adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
|
|
MPSHITTYPE_F);
|
|
adap->params.tp.frag_shift = t4_filter_field_shift(adap,
|
|
FRAGMENTATION_F);
|
|
|
|
/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
|
|
* represents the presence of an Outer VLAN instead of a VNIC ID.
|
|
*/
|
|
if ((adap->params.tp.ingress_config & VNIC_F) == 0)
|
|
adap->params.tp.vnic_shift = -1;
|
|
|
|
v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
|
|
adap->params.tp.hash_filter_mask = v;
|
|
v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
|
|
adap->params.tp.hash_filter_mask |= ((u64)v << 32);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_filter_field_shift - calculate filter field shift
|
|
* @adap: the adapter
|
|
* @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
|
|
*
|
|
* Return the shift position of a filter field within the Compressed
|
|
* Filter Tuple. The filter field is specified via its selection bit
|
|
* within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
|
|
*/
|
|
int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
|
|
{
|
|
unsigned int filter_mode = adap->params.tp.vlan_pri_map;
|
|
unsigned int sel;
|
|
int field_shift;
|
|
|
|
if ((filter_mode & filter_sel) == 0)
|
|
return -1;
|
|
|
|
for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
|
|
switch (filter_mode & sel) {
|
|
case FCOE_F:
|
|
field_shift += FT_FCOE_W;
|
|
break;
|
|
case PORT_F:
|
|
field_shift += FT_PORT_W;
|
|
break;
|
|
case VNIC_ID_F:
|
|
field_shift += FT_VNIC_ID_W;
|
|
break;
|
|
case VLAN_F:
|
|
field_shift += FT_VLAN_W;
|
|
break;
|
|
case TOS_F:
|
|
field_shift += FT_TOS_W;
|
|
break;
|
|
case PROTOCOL_F:
|
|
field_shift += FT_PROTOCOL_W;
|
|
break;
|
|
case ETHERTYPE_F:
|
|
field_shift += FT_ETHERTYPE_W;
|
|
break;
|
|
case MACMATCH_F:
|
|
field_shift += FT_MACMATCH_W;
|
|
break;
|
|
case MPSHITTYPE_F:
|
|
field_shift += FT_MPSHITTYPE_W;
|
|
break;
|
|
case FRAGMENTATION_F:
|
|
field_shift += FT_FRAGMENTATION_W;
|
|
break;
|
|
}
|
|
}
|
|
return field_shift;
|
|
}
|
|
|
|
int t4_init_rss_mode(struct adapter *adap, int mbox)
|
|
{
|
|
int i, ret;
|
|
struct fw_rss_vi_config_cmd rvc;
|
|
|
|
memset(&rvc, 0, sizeof(rvc));
|
|
|
|
for_each_port(adap, i) {
|
|
struct port_info *p = adap2pinfo(adap, i);
|
|
|
|
rvc.op_to_viid =
|
|
cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F |
|
|
FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
|
|
rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
|
|
ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
|
|
if (ret)
|
|
return ret;
|
|
p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_init_portinfo - allocate a virtual interface and initialize port_info
|
|
* @pi: the port_info
|
|
* @mbox: mailbox to use for the FW command
|
|
* @port: physical port associated with the VI
|
|
* @pf: the PF owning the VI
|
|
* @vf: the VF owning the VI
|
|
* @mac: the MAC address of the VI
|
|
*
|
|
* Allocates a virtual interface for the given physical port. If @mac is
|
|
* not %NULL it contains the MAC address of the VI as assigned by FW.
|
|
* @mac should be large enough to hold an Ethernet address.
|
|
* Returns < 0 on error.
|
|
*/
|
|
int t4_init_portinfo(struct port_info *pi, int mbox,
|
|
int port, int pf, int vf, u8 mac[])
|
|
{
|
|
struct adapter *adapter = pi->adapter;
|
|
unsigned int fw_caps = adapter->params.fw_caps_support;
|
|
struct fw_port_cmd cmd;
|
|
unsigned int rss_size;
|
|
enum fw_port_type port_type;
|
|
int mdio_addr;
|
|
fw_port_cap32_t pcaps, acaps;
|
|
u8 vivld = 0, vin = 0;
|
|
int ret;
|
|
|
|
/* If we haven't yet determined whether we're talking to Firmware
|
|
* which knows the new 32-bit Port Capabilities, it's time to find
|
|
* out now. This will also tell new Firmware to send us Port Status
|
|
* Updates using the new 32-bit Port Capabilities version of the
|
|
* Port Information message.
|
|
*/
|
|
if (fw_caps == FW_CAPS_UNKNOWN) {
|
|
u32 param, val;
|
|
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
|
|
val = 1;
|
|
ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val);
|
|
fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
|
|
adapter->params.fw_caps_support = fw_caps;
|
|
}
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F |
|
|
FW_PORT_CMD_PORTID_V(port));
|
|
cmd.action_to_len16 = cpu_to_be32(
|
|
FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
|
|
? FW_PORT_ACTION_GET_PORT_INFO
|
|
: FW_PORT_ACTION_GET_PORT_INFO32) |
|
|
FW_LEN16(cmd));
|
|
ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Extract the various fields from the Port Information message.
|
|
*/
|
|
if (fw_caps == FW_CAPS16) {
|
|
u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
|
|
|
|
port_type = FW_PORT_CMD_PTYPE_G(lstatus);
|
|
mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
|
|
? FW_PORT_CMD_MDIOADDR_G(lstatus)
|
|
: -1);
|
|
pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
|
|
acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
|
|
} else {
|
|
u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
|
|
|
|
port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
|
|
mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
|
|
? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
|
|
: -1);
|
|
pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
|
|
acaps = be32_to_cpu(cmd.u.info32.acaps32);
|
|
}
|
|
|
|
ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
|
|
&vivld, &vin);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
pi->viid = ret;
|
|
pi->tx_chan = port;
|
|
pi->lport = port;
|
|
pi->rss_size = rss_size;
|
|
pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
|
|
|
|
/* If fw supports returning the VIN as part of FW_VI_CMD,
|
|
* save the returned values.
|
|
*/
|
|
if (adapter->params.viid_smt_extn_support) {
|
|
pi->vivld = vivld;
|
|
pi->vin = vin;
|
|
} else {
|
|
/* Retrieve the values from VIID */
|
|
pi->vivld = FW_VIID_VIVLD_G(pi->viid);
|
|
pi->vin = FW_VIID_VIN_G(pi->viid);
|
|
}
|
|
|
|
pi->port_type = port_type;
|
|
pi->mdio_addr = mdio_addr;
|
|
pi->mod_type = FW_PORT_MOD_TYPE_NA;
|
|
|
|
init_link_config(&pi->link_cfg, pcaps, acaps);
|
|
return 0;
|
|
}
|
|
|
|
int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
|
|
{
|
|
u8 addr[6];
|
|
int ret, i, j = 0;
|
|
|
|
for_each_port(adap, i) {
|
|
struct port_info *pi = adap2pinfo(adap, i);
|
|
|
|
while ((adap->params.portvec & (1 << j)) == 0)
|
|
j++;
|
|
|
|
ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
|
|
j++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_read_cimq_cfg - read CIM queue configuration
|
|
* @adap: the adapter
|
|
* @base: holds the queue base addresses in bytes
|
|
* @size: holds the queue sizes in bytes
|
|
* @thres: holds the queue full thresholds in bytes
|
|
*
|
|
* Returns the current configuration of the CIM queues, starting with
|
|
* the IBQs, then the OBQs.
|
|
*/
|
|
void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
|
|
{
|
|
unsigned int i, v;
|
|
int cim_num_obq = is_t4(adap->params.chip) ?
|
|
CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
|
|
|
|
for (i = 0; i < CIM_NUM_IBQ; i++) {
|
|
t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
|
|
QUENUMSELECT_V(i));
|
|
v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
|
|
/* value is in 256-byte units */
|
|
*base++ = CIMQBASE_G(v) * 256;
|
|
*size++ = CIMQSIZE_G(v) * 256;
|
|
*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
|
|
}
|
|
for (i = 0; i < cim_num_obq; i++) {
|
|
t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
|
|
QUENUMSELECT_V(i));
|
|
v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
|
|
/* value is in 256-byte units */
|
|
*base++ = CIMQBASE_G(v) * 256;
|
|
*size++ = CIMQSIZE_G(v) * 256;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_read_cim_ibq - read the contents of a CIM inbound queue
|
|
* @adap: the adapter
|
|
* @qid: the queue index
|
|
* @data: where to store the queue contents
|
|
* @n: capacity of @data in 32-bit words
|
|
*
|
|
* Reads the contents of the selected CIM queue starting at address 0 up
|
|
* to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
|
|
* error and the number of 32-bit words actually read on success.
|
|
*/
|
|
int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
|
|
{
|
|
int i, err, attempts;
|
|
unsigned int addr;
|
|
const unsigned int nwords = CIM_IBQ_SIZE * 4;
|
|
|
|
if (qid > 5 || (n & 3))
|
|
return -EINVAL;
|
|
|
|
addr = qid * nwords;
|
|
if (n > nwords)
|
|
n = nwords;
|
|
|
|
/* It might take 3-10ms before the IBQ debug read access is allowed.
|
|
* Wait for 1 Sec with a delay of 1 usec.
|
|
*/
|
|
attempts = 1000000;
|
|
|
|
for (i = 0; i < n; i++, addr++) {
|
|
t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
|
|
IBQDBGEN_F);
|
|
err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
|
|
attempts, 1);
|
|
if (err)
|
|
return err;
|
|
*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
|
|
}
|
|
t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* t4_read_cim_obq - read the contents of a CIM outbound queue
|
|
* @adap: the adapter
|
|
* @qid: the queue index
|
|
* @data: where to store the queue contents
|
|
* @n: capacity of @data in 32-bit words
|
|
*
|
|
* Reads the contents of the selected CIM queue starting at address 0 up
|
|
* to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
|
|
* error and the number of 32-bit words actually read on success.
|
|
*/
|
|
int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
|
|
{
|
|
int i, err;
|
|
unsigned int addr, v, nwords;
|
|
int cim_num_obq = is_t4(adap->params.chip) ?
|
|
CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
|
|
|
|
if ((qid > (cim_num_obq - 1)) || (n & 3))
|
|
return -EINVAL;
|
|
|
|
t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
|
|
QUENUMSELECT_V(qid));
|
|
v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
|
|
|
|
addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
|
|
nwords = CIMQSIZE_G(v) * 64; /* same */
|
|
if (n > nwords)
|
|
n = nwords;
|
|
|
|
for (i = 0; i < n; i++, addr++) {
|
|
t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
|
|
OBQDBGEN_F);
|
|
err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
|
|
2, 1);
|
|
if (err)
|
|
return err;
|
|
*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
|
|
}
|
|
t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* t4_cim_read - read a block from CIM internal address space
|
|
* @adap: the adapter
|
|
* @addr: the start address within the CIM address space
|
|
* @n: number of words to read
|
|
* @valp: where to store the result
|
|
*
|
|
* Reads a block of 4-byte words from the CIM intenal address space.
|
|
*/
|
|
int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
|
|
unsigned int *valp)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
|
|
return -EBUSY;
|
|
|
|
for ( ; !ret && n--; addr += 4) {
|
|
t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
|
|
ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
|
|
0, 5, 2);
|
|
if (!ret)
|
|
*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_cim_write - write a block into CIM internal address space
|
|
* @adap: the adapter
|
|
* @addr: the start address within the CIM address space
|
|
* @n: number of words to write
|
|
* @valp: set of values to write
|
|
*
|
|
* Writes a block of 4-byte words into the CIM intenal address space.
|
|
*/
|
|
int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
|
|
const unsigned int *valp)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
|
|
return -EBUSY;
|
|
|
|
for ( ; !ret && n--; addr += 4) {
|
|
t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
|
|
t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
|
|
ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
|
|
0, 5, 2);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int t4_cim_write1(struct adapter *adap, unsigned int addr,
|
|
unsigned int val)
|
|
{
|
|
return t4_cim_write(adap, addr, 1, &val);
|
|
}
|
|
|
|
/**
|
|
* t4_cim_read_la - read CIM LA capture buffer
|
|
* @adap: the adapter
|
|
* @la_buf: where to store the LA data
|
|
* @wrptr: the HW write pointer within the capture buffer
|
|
*
|
|
* Reads the contents of the CIM LA buffer with the most recent entry at
|
|
* the end of the returned data and with the entry at @wrptr first.
|
|
* We try to leave the LA in the running state we find it in.
|
|
*/
|
|
int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
|
|
{
|
|
int i, ret;
|
|
unsigned int cfg, val, idx;
|
|
|
|
ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
|
|
ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
|
|
if (ret)
|
|
goto restart;
|
|
|
|
idx = UPDBGLAWRPTR_G(val);
|
|
if (wrptr)
|
|
*wrptr = idx;
|
|
|
|
for (i = 0; i < adap->params.cim_la_size; i++) {
|
|
ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
|
|
UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
|
|
if (ret)
|
|
break;
|
|
ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
|
|
if (ret)
|
|
break;
|
|
if (val & UPDBGLARDEN_F) {
|
|
ret = -ETIMEDOUT;
|
|
break;
|
|
}
|
|
ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
|
|
if (ret)
|
|
break;
|
|
|
|
/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
|
|
* identify the 32-bit portion of the full 312-bit data
|
|
*/
|
|
if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
|
|
idx = (idx & 0xff0) + 0x10;
|
|
else
|
|
idx++;
|
|
/* address can't exceed 0xfff */
|
|
idx &= UPDBGLARDPTR_M;
|
|
}
|
|
restart:
|
|
if (cfg & UPDBGLAEN_F) {
|
|
int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
|
|
cfg & ~UPDBGLARDEN_F);
|
|
if (!ret)
|
|
ret = r;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_tp_read_la - read TP LA capture buffer
|
|
* @adap: the adapter
|
|
* @la_buf: where to store the LA data
|
|
* @wrptr: the HW write pointer within the capture buffer
|
|
*
|
|
* Reads the contents of the TP LA buffer with the most recent entry at
|
|
* the end of the returned data and with the entry at @wrptr first.
|
|
* We leave the LA in the running state we find it in.
|
|
*/
|
|
void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
|
|
{
|
|
bool last_incomplete;
|
|
unsigned int i, cfg, val, idx;
|
|
|
|
cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
|
|
if (cfg & DBGLAENABLE_F) /* freeze LA */
|
|
t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
|
|
adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
|
|
|
|
val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
|
|
idx = DBGLAWPTR_G(val);
|
|
last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
|
|
if (last_incomplete)
|
|
idx = (idx + 1) & DBGLARPTR_M;
|
|
if (wrptr)
|
|
*wrptr = idx;
|
|
|
|
val &= 0xffff;
|
|
val &= ~DBGLARPTR_V(DBGLARPTR_M);
|
|
val |= adap->params.tp.la_mask;
|
|
|
|
for (i = 0; i < TPLA_SIZE; i++) {
|
|
t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
|
|
la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
|
|
idx = (idx + 1) & DBGLARPTR_M;
|
|
}
|
|
|
|
/* Wipe out last entry if it isn't valid */
|
|
if (last_incomplete)
|
|
la_buf[TPLA_SIZE - 1] = ~0ULL;
|
|
|
|
if (cfg & DBGLAENABLE_F) /* restore running state */
|
|
t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
|
|
cfg | adap->params.tp.la_mask);
|
|
}
|
|
|
|
/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
|
|
* seconds). If we find one of the SGE Ingress DMA State Machines in the same
|
|
* state for more than the Warning Threshold then we'll issue a warning about
|
|
* a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
|
|
* appears to be hung every Warning Repeat second till the situation clears.
|
|
* If the situation clears, we'll note that as well.
|
|
*/
|
|
#define SGE_IDMA_WARN_THRESH 1
|
|
#define SGE_IDMA_WARN_REPEAT 300
|
|
|
|
/**
|
|
* t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
|
|
* @adapter: the adapter
|
|
* @idma: the adapter IDMA Monitor state
|
|
*
|
|
* Initialize the state of an SGE Ingress DMA Monitor.
|
|
*/
|
|
void t4_idma_monitor_init(struct adapter *adapter,
|
|
struct sge_idma_monitor_state *idma)
|
|
{
|
|
/* Initialize the state variables for detecting an SGE Ingress DMA
|
|
* hang. The SGE has internal counters which count up on each clock
|
|
* tick whenever the SGE finds its Ingress DMA State Engines in the
|
|
* same state they were on the previous clock tick. The clock used is
|
|
* the Core Clock so we have a limit on the maximum "time" they can
|
|
* record; typically a very small number of seconds. For instance,
|
|
* with a 600MHz Core Clock, we can only count up to a bit more than
|
|
* 7s. So we'll synthesize a larger counter in order to not run the
|
|
* risk of having the "timers" overflow and give us the flexibility to
|
|
* maintain a Hung SGE State Machine of our own which operates across
|
|
* a longer time frame.
|
|
*/
|
|
idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
|
|
idma->idma_stalled[0] = 0;
|
|
idma->idma_stalled[1] = 0;
|
|
}
|
|
|
|
/**
|
|
* t4_idma_monitor - monitor SGE Ingress DMA state
|
|
* @adapter: the adapter
|
|
* @idma: the adapter IDMA Monitor state
|
|
* @hz: number of ticks/second
|
|
* @ticks: number of ticks since the last IDMA Monitor call
|
|
*/
|
|
void t4_idma_monitor(struct adapter *adapter,
|
|
struct sge_idma_monitor_state *idma,
|
|
int hz, int ticks)
|
|
{
|
|
int i, idma_same_state_cnt[2];
|
|
|
|
/* Read the SGE Debug Ingress DMA Same State Count registers. These
|
|
* are counters inside the SGE which count up on each clock when the
|
|
* SGE finds its Ingress DMA State Engines in the same states they
|
|
* were in the previous clock. The counters will peg out at
|
|
* 0xffffffff without wrapping around so once they pass the 1s
|
|
* threshold they'll stay above that till the IDMA state changes.
|
|
*/
|
|
t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
|
|
idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
|
|
idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
u32 debug0, debug11;
|
|
|
|
/* If the Ingress DMA Same State Counter ("timer") is less
|
|
* than 1s, then we can reset our synthesized Stall Timer and
|
|
* continue. If we have previously emitted warnings about a
|
|
* potential stalled Ingress Queue, issue a note indicating
|
|
* that the Ingress Queue has resumed forward progress.
|
|
*/
|
|
if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
|
|
if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
|
|
dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
|
|
"resumed after %d seconds\n",
|
|
i, idma->idma_qid[i],
|
|
idma->idma_stalled[i] / hz);
|
|
idma->idma_stalled[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
|
|
* domain. The first time we get here it'll be because we
|
|
* passed the 1s Threshold; each additional time it'll be
|
|
* because the RX Timer Callback is being fired on its regular
|
|
* schedule.
|
|
*
|
|
* If the stall is below our Potential Hung Ingress Queue
|
|
* Warning Threshold, continue.
|
|
*/
|
|
if (idma->idma_stalled[i] == 0) {
|
|
idma->idma_stalled[i] = hz;
|
|
idma->idma_warn[i] = 0;
|
|
} else {
|
|
idma->idma_stalled[i] += ticks;
|
|
idma->idma_warn[i] -= ticks;
|
|
}
|
|
|
|
if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
|
|
continue;
|
|
|
|
/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
|
|
*/
|
|
if (idma->idma_warn[i] > 0)
|
|
continue;
|
|
idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
|
|
|
|
/* Read and save the SGE IDMA State and Queue ID information.
|
|
* We do this every time in case it changes across time ...
|
|
* can't be too careful ...
|
|
*/
|
|
t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
|
|
debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
|
|
idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
|
|
|
|
t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
|
|
debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
|
|
idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
|
|
|
|
dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
|
|
"state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
|
|
i, idma->idma_qid[i], idma->idma_state[i],
|
|
idma->idma_stalled[i] / hz,
|
|
debug0, debug11);
|
|
t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_load_cfg - download config file
|
|
* @adap: the adapter
|
|
* @cfg_data: the cfg text file to write
|
|
* @size: text file size
|
|
*
|
|
* Write the supplied config text file to the card's serial flash.
|
|
*/
|
|
int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
|
|
{
|
|
int ret, i, n, cfg_addr;
|
|
unsigned int addr;
|
|
unsigned int flash_cfg_start_sec;
|
|
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
|
|
|
|
cfg_addr = t4_flash_cfg_addr(adap);
|
|
if (cfg_addr < 0)
|
|
return cfg_addr;
|
|
|
|
addr = cfg_addr;
|
|
flash_cfg_start_sec = addr / SF_SEC_SIZE;
|
|
|
|
if (size > FLASH_CFG_MAX_SIZE) {
|
|
dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
|
|
FLASH_CFG_MAX_SIZE);
|
|
return -EFBIG;
|
|
}
|
|
|
|
i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
|
|
sf_sec_size);
|
|
ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
|
|
flash_cfg_start_sec + i - 1);
|
|
/* If size == 0 then we're simply erasing the FLASH sectors associated
|
|
* with the on-adapter Firmware Configuration File.
|
|
*/
|
|
if (ret || size == 0)
|
|
goto out;
|
|
|
|
/* this will write to the flash up to SF_PAGE_SIZE at a time */
|
|
for (i = 0; i < size; i += SF_PAGE_SIZE) {
|
|
if ((size - i) < SF_PAGE_SIZE)
|
|
n = size - i;
|
|
else
|
|
n = SF_PAGE_SIZE;
|
|
ret = t4_write_flash(adap, addr, n, cfg_data);
|
|
if (ret)
|
|
goto out;
|
|
|
|
addr += SF_PAGE_SIZE;
|
|
cfg_data += SF_PAGE_SIZE;
|
|
}
|
|
|
|
out:
|
|
if (ret)
|
|
dev_err(adap->pdev_dev, "config file %s failed %d\n",
|
|
(size == 0 ? "clear" : "download"), ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_set_vf_mac - Set MAC address for the specified VF
|
|
* @adapter: The adapter
|
|
* @vf: one of the VFs instantiated by the specified PF
|
|
* @naddr: the number of MAC addresses
|
|
* @addr: the MAC address(es) to be set to the specified VF
|
|
*/
|
|
int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
|
|
unsigned int naddr, u8 *addr)
|
|
{
|
|
struct fw_acl_mac_cmd cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F |
|
|
FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
|
|
FW_ACL_MAC_CMD_VFN_V(vf));
|
|
|
|
/* Note: Do not enable the ACL */
|
|
cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
|
|
cmd.nmac = naddr;
|
|
|
|
switch (adapter->pf) {
|
|
case 3:
|
|
memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
|
|
break;
|
|
case 2:
|
|
memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
|
|
break;
|
|
case 1:
|
|
memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
|
|
break;
|
|
case 0:
|
|
memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
|
|
break;
|
|
}
|
|
|
|
return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
/**
|
|
* t4_read_pace_tbl - read the pace table
|
|
* @adap: the adapter
|
|
* @pace_vals: holds the returned values
|
|
*
|
|
* Returns the values of TP's pace table in microseconds.
|
|
*/
|
|
void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
|
|
{
|
|
unsigned int i, v;
|
|
|
|
for (i = 0; i < NTX_SCHED; i++) {
|
|
t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
|
|
v = t4_read_reg(adap, TP_PACE_TABLE_A);
|
|
pace_vals[i] = dack_ticks_to_usec(adap, v);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
|
|
* @adap: the adapter
|
|
* @sched: the scheduler index
|
|
* @kbps: the byte rate in Kbps
|
|
* @ipg: the interpacket delay in tenths of nanoseconds
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Return the current configuration of a HW Tx scheduler.
|
|
*/
|
|
void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
|
|
unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
|
|
{
|
|
unsigned int v, addr, bpt, cpt;
|
|
|
|
if (kbps) {
|
|
addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
|
|
t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
|
|
if (sched & 1)
|
|
v >>= 16;
|
|
bpt = (v >> 8) & 0xff;
|
|
cpt = v & 0xff;
|
|
if (!cpt) {
|
|
*kbps = 0; /* scheduler disabled */
|
|
} else {
|
|
v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
|
|
*kbps = (v * bpt) / 125;
|
|
}
|
|
}
|
|
if (ipg) {
|
|
addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
|
|
t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
|
|
if (sched & 1)
|
|
v >>= 16;
|
|
v &= 0xffff;
|
|
*ipg = (10000 * v) / core_ticks_per_usec(adap);
|
|
}
|
|
}
|
|
|
|
/* t4_sge_ctxt_rd - read an SGE context through FW
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @cid: the context id
|
|
* @ctype: the context type
|
|
* @data: where to store the context data
|
|
*
|
|
* Issues a FW command through the given mailbox to read an SGE context.
|
|
*/
|
|
int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
|
|
enum ctxt_type ctype, u32 *data)
|
|
{
|
|
struct fw_ldst_cmd c;
|
|
int ret;
|
|
|
|
if (ctype == CTXT_FLM)
|
|
ret = FW_LDST_ADDRSPC_SGE_FLMC;
|
|
else
|
|
ret = FW_LDST_ADDRSPC_SGE_CONMC;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F |
|
|
FW_LDST_CMD_ADDRSPACE_V(ret));
|
|
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
|
|
c.u.idctxt.physid = cpu_to_be32(cid);
|
|
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret == 0) {
|
|
data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
|
|
data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
|
|
data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
|
|
data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
|
|
data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
|
|
data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
|
|
* @adap: the adapter
|
|
* @cid: the context id
|
|
* @ctype: the context type
|
|
* @data: where to store the context data
|
|
*
|
|
* Reads an SGE context directly, bypassing FW. This is only for
|
|
* debugging when FW is unavailable.
|
|
*/
|
|
int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
|
|
enum ctxt_type ctype, u32 *data)
|
|
{
|
|
int i, ret;
|
|
|
|
t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
|
|
ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
|
|
if (!ret)
|
|
for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
|
|
*data++ = t4_read_reg(adap, i);
|
|
return ret;
|
|
}
|
|
|
|
int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
|
|
int rateunit, int ratemode, int channel, int class,
|
|
int minrate, int maxrate, int weight, int pktsize)
|
|
{
|
|
struct fw_sched_cmd cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F);
|
|
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
|
|
|
|
cmd.u.params.sc = FW_SCHED_SC_PARAMS;
|
|
cmd.u.params.type = type;
|
|
cmd.u.params.level = level;
|
|
cmd.u.params.mode = mode;
|
|
cmd.u.params.ch = channel;
|
|
cmd.u.params.cl = class;
|
|
cmd.u.params.unit = rateunit;
|
|
cmd.u.params.rate = ratemode;
|
|
cmd.u.params.min = cpu_to_be32(minrate);
|
|
cmd.u.params.max = cpu_to_be32(maxrate);
|
|
cmd.u.params.weight = cpu_to_be16(weight);
|
|
cmd.u.params.pktsize = cpu_to_be16(pktsize);
|
|
|
|
return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
|
|
NULL, 1);
|
|
}
|
|
|
|
/**
|
|
* t4_i2c_rd - read I2C data from adapter
|
|
* @adap: the adapter
|
|
* @port: Port number if per-port device; <0 if not
|
|
* @devid: per-port device ID or absolute device ID
|
|
* @offset: byte offset into device I2C space
|
|
* @len: byte length of I2C space data
|
|
* @buf: buffer in which to return I2C data
|
|
*
|
|
* Reads the I2C data from the indicated device and location.
|
|
*/
|
|
int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
|
|
unsigned int devid, unsigned int offset,
|
|
unsigned int len, u8 *buf)
|
|
{
|
|
struct fw_ldst_cmd ldst_cmd, ldst_rpl;
|
|
unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
|
|
int ret = 0;
|
|
|
|
if (len > I2C_PAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
/* Dont allow reads that spans multiple pages */
|
|
if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
memset(&ldst_cmd, 0, sizeof(ldst_cmd));
|
|
ldst_cmd.op_to_addrspace =
|
|
cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_READ_F |
|
|
FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
|
|
ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
|
|
ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
|
|
ldst_cmd.u.i2c.did = devid;
|
|
|
|
while (len > 0) {
|
|
unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
|
|
|
|
ldst_cmd.u.i2c.boffset = offset;
|
|
ldst_cmd.u.i2c.blen = i2c_len;
|
|
|
|
ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
|
|
&ldst_rpl);
|
|
if (ret)
|
|
break;
|
|
|
|
memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
|
|
offset += i2c_len;
|
|
buf += i2c_len;
|
|
len -= i2c_len;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_set_vlan_acl - Set a VLAN id for the specified VF
|
|
* @adapter: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @vf: one of the VFs instantiated by the specified PF
|
|
* @vlan: The vlanid to be set
|
|
*/
|
|
int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
|
|
u16 vlan)
|
|
{
|
|
struct fw_acl_vlan_cmd vlan_cmd;
|
|
unsigned int enable;
|
|
|
|
enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
|
|
memset(&vlan_cmd, 0, sizeof(vlan_cmd));
|
|
vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F |
|
|
FW_CMD_EXEC_F |
|
|
FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
|
|
FW_ACL_VLAN_CMD_VFN_V(vf));
|
|
vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
|
|
/* Drop all packets that donot match vlan id */
|
|
vlan_cmd.dropnovlan_fm = (enable
|
|
? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
|
|
FW_ACL_VLAN_CMD_FM_F) : 0);
|
|
if (enable != 0) {
|
|
vlan_cmd.nvlan = 1;
|
|
vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
|
|
}
|
|
|
|
return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
|
|
}
|