mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-12 18:16:35 +07:00
dce14c239a
checkpatch fixing: WARNING: Missing a blank line after declarations WARNING: space prohibited between function name and open parenthesis '(' ERROR: spaces required around that '<' (ctx:VxV) Cc: Jens Axboe <axboe@kernel.dk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Fabian Frederick <fabf@skynet.be> Signed-off-by: Jens Axboe <axboe@fb.com>
583 lines
16 KiB
C
583 lines
16 KiB
C
/*
|
|
* fs/partitions/msdos.c
|
|
*
|
|
* Code extracted from drivers/block/genhd.c
|
|
* Copyright (C) 1991-1998 Linus Torvalds
|
|
*
|
|
* Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug
|
|
* in the early extended-partition checks and added DM partitions
|
|
*
|
|
* Support for DiskManager v6.0x added by Mark Lord,
|
|
* with information provided by OnTrack. This now works for linux fdisk
|
|
* and LILO, as well as loadlin and bootln. Note that disks other than
|
|
* /dev/hda *must* have a "DOS" type 0x51 partition in the first slot (hda1).
|
|
*
|
|
* More flexible handling of extended partitions - aeb, 950831
|
|
*
|
|
* Check partition table on IDE disks for common CHS translations
|
|
*
|
|
* Re-organised Feb 1998 Russell King
|
|
*/
|
|
#include <linux/msdos_fs.h>
|
|
|
|
#include "check.h"
|
|
#include "msdos.h"
|
|
#include "efi.h"
|
|
#include "aix.h"
|
|
|
|
/*
|
|
* Many architectures don't like unaligned accesses, while
|
|
* the nr_sects and start_sect partition table entries are
|
|
* at a 2 (mod 4) address.
|
|
*/
|
|
#include <asm/unaligned.h>
|
|
|
|
#define SYS_IND(p) get_unaligned(&p->sys_ind)
|
|
|
|
static inline sector_t nr_sects(struct partition *p)
|
|
{
|
|
return (sector_t)get_unaligned_le32(&p->nr_sects);
|
|
}
|
|
|
|
static inline sector_t start_sect(struct partition *p)
|
|
{
|
|
return (sector_t)get_unaligned_le32(&p->start_sect);
|
|
}
|
|
|
|
static inline int is_extended_partition(struct partition *p)
|
|
{
|
|
return (SYS_IND(p) == DOS_EXTENDED_PARTITION ||
|
|
SYS_IND(p) == WIN98_EXTENDED_PARTITION ||
|
|
SYS_IND(p) == LINUX_EXTENDED_PARTITION);
|
|
}
|
|
|
|
#define MSDOS_LABEL_MAGIC1 0x55
|
|
#define MSDOS_LABEL_MAGIC2 0xAA
|
|
|
|
static inline int
|
|
msdos_magic_present(unsigned char *p)
|
|
{
|
|
return (p[0] == MSDOS_LABEL_MAGIC1 && p[1] == MSDOS_LABEL_MAGIC2);
|
|
}
|
|
|
|
/* Value is EBCDIC 'IBMA' */
|
|
#define AIX_LABEL_MAGIC1 0xC9
|
|
#define AIX_LABEL_MAGIC2 0xC2
|
|
#define AIX_LABEL_MAGIC3 0xD4
|
|
#define AIX_LABEL_MAGIC4 0xC1
|
|
static int aix_magic_present(struct parsed_partitions *state, unsigned char *p)
|
|
{
|
|
struct partition *pt = (struct partition *) (p + 0x1be);
|
|
Sector sect;
|
|
unsigned char *d;
|
|
int slot, ret = 0;
|
|
|
|
if (!(p[0] == AIX_LABEL_MAGIC1 &&
|
|
p[1] == AIX_LABEL_MAGIC2 &&
|
|
p[2] == AIX_LABEL_MAGIC3 &&
|
|
p[3] == AIX_LABEL_MAGIC4))
|
|
return 0;
|
|
/* Assume the partition table is valid if Linux partitions exists */
|
|
for (slot = 1; slot <= 4; slot++, pt++) {
|
|
if (pt->sys_ind == LINUX_SWAP_PARTITION ||
|
|
pt->sys_ind == LINUX_RAID_PARTITION ||
|
|
pt->sys_ind == LINUX_DATA_PARTITION ||
|
|
pt->sys_ind == LINUX_LVM_PARTITION ||
|
|
is_extended_partition(pt))
|
|
return 0;
|
|
}
|
|
d = read_part_sector(state, 7, §);
|
|
if (d) {
|
|
if (d[0] == '_' && d[1] == 'L' && d[2] == 'V' && d[3] == 'M')
|
|
ret = 1;
|
|
put_dev_sector(sect);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void set_info(struct parsed_partitions *state, int slot,
|
|
u32 disksig)
|
|
{
|
|
struct partition_meta_info *info = &state->parts[slot].info;
|
|
|
|
snprintf(info->uuid, sizeof(info->uuid), "%08x-%02x", disksig,
|
|
slot);
|
|
info->volname[0] = 0;
|
|
state->parts[slot].has_info = true;
|
|
}
|
|
|
|
/*
|
|
* Create devices for each logical partition in an extended partition.
|
|
* The logical partitions form a linked list, with each entry being
|
|
* a partition table with two entries. The first entry
|
|
* is the real data partition (with a start relative to the partition
|
|
* table start). The second is a pointer to the next logical partition
|
|
* (with a start relative to the entire extended partition).
|
|
* We do not create a Linux partition for the partition tables, but
|
|
* only for the actual data partitions.
|
|
*/
|
|
|
|
static void parse_extended(struct parsed_partitions *state,
|
|
sector_t first_sector, sector_t first_size,
|
|
u32 disksig)
|
|
{
|
|
struct partition *p;
|
|
Sector sect;
|
|
unsigned char *data;
|
|
sector_t this_sector, this_size;
|
|
sector_t sector_size = bdev_logical_block_size(state->bdev) / 512;
|
|
int loopct = 0; /* number of links followed
|
|
without finding a data partition */
|
|
int i;
|
|
|
|
this_sector = first_sector;
|
|
this_size = first_size;
|
|
|
|
while (1) {
|
|
if (++loopct > 100)
|
|
return;
|
|
if (state->next == state->limit)
|
|
return;
|
|
data = read_part_sector(state, this_sector, §);
|
|
if (!data)
|
|
return;
|
|
|
|
if (!msdos_magic_present(data + 510))
|
|
goto done;
|
|
|
|
p = (struct partition *) (data + 0x1be);
|
|
|
|
/*
|
|
* Usually, the first entry is the real data partition,
|
|
* the 2nd entry is the next extended partition, or empty,
|
|
* and the 3rd and 4th entries are unused.
|
|
* However, DRDOS sometimes has the extended partition as
|
|
* the first entry (when the data partition is empty),
|
|
* and OS/2 seems to use all four entries.
|
|
*/
|
|
|
|
/*
|
|
* First process the data partition(s)
|
|
*/
|
|
for (i = 0; i < 4; i++, p++) {
|
|
sector_t offs, size, next;
|
|
|
|
if (!nr_sects(p) || is_extended_partition(p))
|
|
continue;
|
|
|
|
/* Check the 3rd and 4th entries -
|
|
these sometimes contain random garbage */
|
|
offs = start_sect(p)*sector_size;
|
|
size = nr_sects(p)*sector_size;
|
|
next = this_sector + offs;
|
|
if (i >= 2) {
|
|
if (offs + size > this_size)
|
|
continue;
|
|
if (next < first_sector)
|
|
continue;
|
|
if (next + size > first_sector + first_size)
|
|
continue;
|
|
}
|
|
|
|
put_partition(state, state->next, next, size);
|
|
set_info(state, state->next, disksig);
|
|
if (SYS_IND(p) == LINUX_RAID_PARTITION)
|
|
state->parts[state->next].flags = ADDPART_FLAG_RAID;
|
|
loopct = 0;
|
|
if (++state->next == state->limit)
|
|
goto done;
|
|
}
|
|
/*
|
|
* Next, process the (first) extended partition, if present.
|
|
* (So far, there seems to be no reason to make
|
|
* parse_extended() recursive and allow a tree
|
|
* of extended partitions.)
|
|
* It should be a link to the next logical partition.
|
|
*/
|
|
p -= 4;
|
|
for (i = 0; i < 4; i++, p++)
|
|
if (nr_sects(p) && is_extended_partition(p))
|
|
break;
|
|
if (i == 4)
|
|
goto done; /* nothing left to do */
|
|
|
|
this_sector = first_sector + start_sect(p) * sector_size;
|
|
this_size = nr_sects(p) * sector_size;
|
|
put_dev_sector(sect);
|
|
}
|
|
done:
|
|
put_dev_sector(sect);
|
|
}
|
|
|
|
/* james@bpgc.com: Solaris has a nasty indicator: 0x82 which also
|
|
indicates linux swap. Be careful before believing this is Solaris. */
|
|
|
|
static void parse_solaris_x86(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_SOLARIS_X86_PARTITION
|
|
Sector sect;
|
|
struct solaris_x86_vtoc *v;
|
|
int i;
|
|
short max_nparts;
|
|
|
|
v = read_part_sector(state, offset + 1, §);
|
|
if (!v)
|
|
return;
|
|
if (le32_to_cpu(v->v_sanity) != SOLARIS_X86_VTOC_SANE) {
|
|
put_dev_sector(sect);
|
|
return;
|
|
}
|
|
{
|
|
char tmp[1 + BDEVNAME_SIZE + 10 + 11 + 1];
|
|
|
|
snprintf(tmp, sizeof(tmp), " %s%d: <solaris:", state->name, origin);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
}
|
|
if (le32_to_cpu(v->v_version) != 1) {
|
|
char tmp[64];
|
|
|
|
snprintf(tmp, sizeof(tmp), " cannot handle version %d vtoc>\n",
|
|
le32_to_cpu(v->v_version));
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
put_dev_sector(sect);
|
|
return;
|
|
}
|
|
/* Ensure we can handle previous case of VTOC with 8 entries gracefully */
|
|
max_nparts = le16_to_cpu(v->v_nparts) > 8 ? SOLARIS_X86_NUMSLICE : 8;
|
|
for (i = 0; i < max_nparts && state->next < state->limit; i++) {
|
|
struct solaris_x86_slice *s = &v->v_slice[i];
|
|
char tmp[3 + 10 + 1 + 1];
|
|
|
|
if (s->s_size == 0)
|
|
continue;
|
|
snprintf(tmp, sizeof(tmp), " [s%d]", i);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
/* solaris partitions are relative to current MS-DOS
|
|
* one; must add the offset of the current partition */
|
|
put_partition(state, state->next++,
|
|
le32_to_cpu(s->s_start)+offset,
|
|
le32_to_cpu(s->s_size));
|
|
}
|
|
put_dev_sector(sect);
|
|
strlcat(state->pp_buf, " >\n", PAGE_SIZE);
|
|
#endif
|
|
}
|
|
|
|
#if defined(CONFIG_BSD_DISKLABEL)
|
|
/*
|
|
* Create devices for BSD partitions listed in a disklabel, under a
|
|
* dos-like partition. See parse_extended() for more information.
|
|
*/
|
|
static void parse_bsd(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin, char *flavour,
|
|
int max_partitions)
|
|
{
|
|
Sector sect;
|
|
struct bsd_disklabel *l;
|
|
struct bsd_partition *p;
|
|
char tmp[64];
|
|
|
|
l = read_part_sector(state, offset + 1, §);
|
|
if (!l)
|
|
return;
|
|
if (le32_to_cpu(l->d_magic) != BSD_DISKMAGIC) {
|
|
put_dev_sector(sect);
|
|
return;
|
|
}
|
|
|
|
snprintf(tmp, sizeof(tmp), " %s%d: <%s:", state->name, origin, flavour);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
|
|
if (le16_to_cpu(l->d_npartitions) < max_partitions)
|
|
max_partitions = le16_to_cpu(l->d_npartitions);
|
|
for (p = l->d_partitions; p - l->d_partitions < max_partitions; p++) {
|
|
sector_t bsd_start, bsd_size;
|
|
|
|
if (state->next == state->limit)
|
|
break;
|
|
if (p->p_fstype == BSD_FS_UNUSED)
|
|
continue;
|
|
bsd_start = le32_to_cpu(p->p_offset);
|
|
bsd_size = le32_to_cpu(p->p_size);
|
|
if (offset == bsd_start && size == bsd_size)
|
|
/* full parent partition, we have it already */
|
|
continue;
|
|
if (offset > bsd_start || offset+size < bsd_start+bsd_size) {
|
|
strlcat(state->pp_buf, "bad subpartition - ignored\n", PAGE_SIZE);
|
|
continue;
|
|
}
|
|
put_partition(state, state->next++, bsd_start, bsd_size);
|
|
}
|
|
put_dev_sector(sect);
|
|
if (le16_to_cpu(l->d_npartitions) > max_partitions) {
|
|
snprintf(tmp, sizeof(tmp), " (ignored %d more)",
|
|
le16_to_cpu(l->d_npartitions) - max_partitions);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
}
|
|
strlcat(state->pp_buf, " >\n", PAGE_SIZE);
|
|
}
|
|
#endif
|
|
|
|
static void parse_freebsd(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_BSD_DISKLABEL
|
|
parse_bsd(state, offset, size, origin, "bsd", BSD_MAXPARTITIONS);
|
|
#endif
|
|
}
|
|
|
|
static void parse_netbsd(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_BSD_DISKLABEL
|
|
parse_bsd(state, offset, size, origin, "netbsd", BSD_MAXPARTITIONS);
|
|
#endif
|
|
}
|
|
|
|
static void parse_openbsd(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_BSD_DISKLABEL
|
|
parse_bsd(state, offset, size, origin, "openbsd",
|
|
OPENBSD_MAXPARTITIONS);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Create devices for Unixware partitions listed in a disklabel, under a
|
|
* dos-like partition. See parse_extended() for more information.
|
|
*/
|
|
static void parse_unixware(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_UNIXWARE_DISKLABEL
|
|
Sector sect;
|
|
struct unixware_disklabel *l;
|
|
struct unixware_slice *p;
|
|
|
|
l = read_part_sector(state, offset + 29, §);
|
|
if (!l)
|
|
return;
|
|
if (le32_to_cpu(l->d_magic) != UNIXWARE_DISKMAGIC ||
|
|
le32_to_cpu(l->vtoc.v_magic) != UNIXWARE_DISKMAGIC2) {
|
|
put_dev_sector(sect);
|
|
return;
|
|
}
|
|
{
|
|
char tmp[1 + BDEVNAME_SIZE + 10 + 12 + 1];
|
|
|
|
snprintf(tmp, sizeof(tmp), " %s%d: <unixware:", state->name, origin);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
}
|
|
p = &l->vtoc.v_slice[1];
|
|
/* I omit the 0th slice as it is the same as whole disk. */
|
|
while (p - &l->vtoc.v_slice[0] < UNIXWARE_NUMSLICE) {
|
|
if (state->next == state->limit)
|
|
break;
|
|
|
|
if (p->s_label != UNIXWARE_FS_UNUSED)
|
|
put_partition(state, state->next++,
|
|
le32_to_cpu(p->start_sect),
|
|
le32_to_cpu(p->nr_sects));
|
|
p++;
|
|
}
|
|
put_dev_sector(sect);
|
|
strlcat(state->pp_buf, " >\n", PAGE_SIZE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Minix 2.0.0/2.0.2 subpartition support.
|
|
* Anand Krishnamurthy <anandk@wiproge.med.ge.com>
|
|
* Rajeev V. Pillai <rajeevvp@yahoo.com>
|
|
*/
|
|
static void parse_minix(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_MINIX_SUBPARTITION
|
|
Sector sect;
|
|
unsigned char *data;
|
|
struct partition *p;
|
|
int i;
|
|
|
|
data = read_part_sector(state, offset, §);
|
|
if (!data)
|
|
return;
|
|
|
|
p = (struct partition *)(data + 0x1be);
|
|
|
|
/* The first sector of a Minix partition can have either
|
|
* a secondary MBR describing its subpartitions, or
|
|
* the normal boot sector. */
|
|
if (msdos_magic_present(data + 510) &&
|
|
SYS_IND(p) == MINIX_PARTITION) { /* subpartition table present */
|
|
char tmp[1 + BDEVNAME_SIZE + 10 + 9 + 1];
|
|
|
|
snprintf(tmp, sizeof(tmp), " %s%d: <minix:", state->name, origin);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
for (i = 0; i < MINIX_NR_SUBPARTITIONS; i++, p++) {
|
|
if (state->next == state->limit)
|
|
break;
|
|
/* add each partition in use */
|
|
if (SYS_IND(p) == MINIX_PARTITION)
|
|
put_partition(state, state->next++,
|
|
start_sect(p), nr_sects(p));
|
|
}
|
|
strlcat(state->pp_buf, " >\n", PAGE_SIZE);
|
|
}
|
|
put_dev_sector(sect);
|
|
#endif /* CONFIG_MINIX_SUBPARTITION */
|
|
}
|
|
|
|
static struct {
|
|
unsigned char id;
|
|
void (*parse)(struct parsed_partitions *, sector_t, sector_t, int);
|
|
} subtypes[] = {
|
|
{FREEBSD_PARTITION, parse_freebsd},
|
|
{NETBSD_PARTITION, parse_netbsd},
|
|
{OPENBSD_PARTITION, parse_openbsd},
|
|
{MINIX_PARTITION, parse_minix},
|
|
{UNIXWARE_PARTITION, parse_unixware},
|
|
{SOLARIS_X86_PARTITION, parse_solaris_x86},
|
|
{NEW_SOLARIS_X86_PARTITION, parse_solaris_x86},
|
|
{0, NULL},
|
|
};
|
|
|
|
int msdos_partition(struct parsed_partitions *state)
|
|
{
|
|
sector_t sector_size = bdev_logical_block_size(state->bdev) / 512;
|
|
Sector sect;
|
|
unsigned char *data;
|
|
struct partition *p;
|
|
struct fat_boot_sector *fb;
|
|
int slot;
|
|
u32 disksig;
|
|
|
|
data = read_part_sector(state, 0, §);
|
|
if (!data)
|
|
return -1;
|
|
|
|
/*
|
|
* Note order! (some AIX disks, e.g. unbootable kind,
|
|
* have no MSDOS 55aa)
|
|
*/
|
|
if (aix_magic_present(state, data)) {
|
|
put_dev_sector(sect);
|
|
#ifdef CONFIG_AIX_PARTITION
|
|
return aix_partition(state);
|
|
#else
|
|
strlcat(state->pp_buf, " [AIX]", PAGE_SIZE);
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
if (!msdos_magic_present(data + 510)) {
|
|
put_dev_sector(sect);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Now that the 55aa signature is present, this is probably
|
|
* either the boot sector of a FAT filesystem or a DOS-type
|
|
* partition table. Reject this in case the boot indicator
|
|
* is not 0 or 0x80.
|
|
*/
|
|
p = (struct partition *) (data + 0x1be);
|
|
for (slot = 1; slot <= 4; slot++, p++) {
|
|
if (p->boot_ind != 0 && p->boot_ind != 0x80) {
|
|
/*
|
|
* Even without a valid boot inidicator value
|
|
* its still possible this is valid FAT filesystem
|
|
* without a partition table.
|
|
*/
|
|
fb = (struct fat_boot_sector *) data;
|
|
if (slot == 1 && fb->reserved && fb->fats
|
|
&& fat_valid_media(fb->media)) {
|
|
strlcat(state->pp_buf, "\n", PAGE_SIZE);
|
|
put_dev_sector(sect);
|
|
return 1;
|
|
} else {
|
|
put_dev_sector(sect);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_EFI_PARTITION
|
|
p = (struct partition *) (data + 0x1be);
|
|
for (slot = 1 ; slot <= 4 ; slot++, p++) {
|
|
/* If this is an EFI GPT disk, msdos should ignore it. */
|
|
if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) {
|
|
put_dev_sector(sect);
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
p = (struct partition *) (data + 0x1be);
|
|
|
|
disksig = le32_to_cpup((__le32 *)(data + 0x1b8));
|
|
|
|
/*
|
|
* Look for partitions in two passes:
|
|
* First find the primary and DOS-type extended partitions.
|
|
* On the second pass look inside *BSD, Unixware and Solaris partitions.
|
|
*/
|
|
|
|
state->next = 5;
|
|
for (slot = 1 ; slot <= 4 ; slot++, p++) {
|
|
sector_t start = start_sect(p)*sector_size;
|
|
sector_t size = nr_sects(p)*sector_size;
|
|
|
|
if (!size)
|
|
continue;
|
|
if (is_extended_partition(p)) {
|
|
/*
|
|
* prevent someone doing mkfs or mkswap on an
|
|
* extended partition, but leave room for LILO
|
|
* FIXME: this uses one logical sector for > 512b
|
|
* sector, although it may not be enough/proper.
|
|
*/
|
|
sector_t n = 2;
|
|
|
|
n = min(size, max(sector_size, n));
|
|
put_partition(state, slot, start, n);
|
|
|
|
strlcat(state->pp_buf, " <", PAGE_SIZE);
|
|
parse_extended(state, start, size, disksig);
|
|
strlcat(state->pp_buf, " >", PAGE_SIZE);
|
|
continue;
|
|
}
|
|
put_partition(state, slot, start, size);
|
|
set_info(state, slot, disksig);
|
|
if (SYS_IND(p) == LINUX_RAID_PARTITION)
|
|
state->parts[slot].flags = ADDPART_FLAG_RAID;
|
|
if (SYS_IND(p) == DM6_PARTITION)
|
|
strlcat(state->pp_buf, "[DM]", PAGE_SIZE);
|
|
if (SYS_IND(p) == EZD_PARTITION)
|
|
strlcat(state->pp_buf, "[EZD]", PAGE_SIZE);
|
|
}
|
|
|
|
strlcat(state->pp_buf, "\n", PAGE_SIZE);
|
|
|
|
/* second pass - output for each on a separate line */
|
|
p = (struct partition *) (0x1be + data);
|
|
for (slot = 1 ; slot <= 4 ; slot++, p++) {
|
|
unsigned char id = SYS_IND(p);
|
|
int n;
|
|
|
|
if (!nr_sects(p))
|
|
continue;
|
|
|
|
for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++)
|
|
;
|
|
|
|
if (!subtypes[n].parse)
|
|
continue;
|
|
subtypes[n].parse(state, start_sect(p) * sector_size,
|
|
nr_sects(p) * sector_size, slot);
|
|
}
|
|
put_dev_sector(sect);
|
|
return 1;
|
|
}
|