mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 16:57:40 +07:00
6da2ec5605
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
766 lines
20 KiB
C
766 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/ptrace.h>
|
|
|
|
#include "bpf_jit_32.h"
|
|
|
|
static inline bool is_simm13(unsigned int value)
|
|
{
|
|
return value + 0x1000 < 0x2000;
|
|
}
|
|
|
|
#define SEEN_DATAREF 1 /* might call external helpers */
|
|
#define SEEN_XREG 2 /* ebx is used */
|
|
#define SEEN_MEM 4 /* use mem[] for temporary storage */
|
|
|
|
#define S13(X) ((X) & 0x1fff)
|
|
#define IMMED 0x00002000
|
|
#define RD(X) ((X) << 25)
|
|
#define RS1(X) ((X) << 14)
|
|
#define RS2(X) ((X))
|
|
#define OP(X) ((X) << 30)
|
|
#define OP2(X) ((X) << 22)
|
|
#define OP3(X) ((X) << 19)
|
|
#define COND(X) ((X) << 25)
|
|
#define F1(X) OP(X)
|
|
#define F2(X, Y) (OP(X) | OP2(Y))
|
|
#define F3(X, Y) (OP(X) | OP3(Y))
|
|
|
|
#define CONDN COND(0x0)
|
|
#define CONDE COND(0x1)
|
|
#define CONDLE COND(0x2)
|
|
#define CONDL COND(0x3)
|
|
#define CONDLEU COND(0x4)
|
|
#define CONDCS COND(0x5)
|
|
#define CONDNEG COND(0x6)
|
|
#define CONDVC COND(0x7)
|
|
#define CONDA COND(0x8)
|
|
#define CONDNE COND(0x9)
|
|
#define CONDG COND(0xa)
|
|
#define CONDGE COND(0xb)
|
|
#define CONDGU COND(0xc)
|
|
#define CONDCC COND(0xd)
|
|
#define CONDPOS COND(0xe)
|
|
#define CONDVS COND(0xf)
|
|
|
|
#define CONDGEU CONDCC
|
|
#define CONDLU CONDCS
|
|
|
|
#define WDISP22(X) (((X) >> 2) & 0x3fffff)
|
|
|
|
#define BA (F2(0, 2) | CONDA)
|
|
#define BGU (F2(0, 2) | CONDGU)
|
|
#define BLEU (F2(0, 2) | CONDLEU)
|
|
#define BGEU (F2(0, 2) | CONDGEU)
|
|
#define BLU (F2(0, 2) | CONDLU)
|
|
#define BE (F2(0, 2) | CONDE)
|
|
#define BNE (F2(0, 2) | CONDNE)
|
|
|
|
#define BE_PTR BE
|
|
|
|
#define SETHI(K, REG) \
|
|
(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
|
|
#define OR_LO(K, REG) \
|
|
(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
|
|
|
|
#define ADD F3(2, 0x00)
|
|
#define AND F3(2, 0x01)
|
|
#define ANDCC F3(2, 0x11)
|
|
#define OR F3(2, 0x02)
|
|
#define XOR F3(2, 0x03)
|
|
#define SUB F3(2, 0x04)
|
|
#define SUBCC F3(2, 0x14)
|
|
#define MUL F3(2, 0x0a) /* umul */
|
|
#define DIV F3(2, 0x0e) /* udiv */
|
|
#define SLL F3(2, 0x25)
|
|
#define SRL F3(2, 0x26)
|
|
#define JMPL F3(2, 0x38)
|
|
#define CALL F1(1)
|
|
#define BR F2(0, 0x01)
|
|
#define RD_Y F3(2, 0x28)
|
|
#define WR_Y F3(2, 0x30)
|
|
|
|
#define LD32 F3(3, 0x00)
|
|
#define LD8 F3(3, 0x01)
|
|
#define LD16 F3(3, 0x02)
|
|
#define LD64 F3(3, 0x0b)
|
|
#define ST32 F3(3, 0x04)
|
|
|
|
#define LDPTR LD32
|
|
#define BASE_STACKFRAME 96
|
|
|
|
#define LD32I (LD32 | IMMED)
|
|
#define LD8I (LD8 | IMMED)
|
|
#define LD16I (LD16 | IMMED)
|
|
#define LD64I (LD64 | IMMED)
|
|
#define LDPTRI (LDPTR | IMMED)
|
|
#define ST32I (ST32 | IMMED)
|
|
|
|
#define emit_nop() \
|
|
do { \
|
|
*prog++ = SETHI(0, G0); \
|
|
} while (0)
|
|
|
|
#define emit_neg() \
|
|
do { /* sub %g0, r_A, r_A */ \
|
|
*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
|
|
} while (0)
|
|
|
|
#define emit_reg_move(FROM, TO) \
|
|
do { /* or %g0, FROM, TO */ \
|
|
*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
|
|
} while (0)
|
|
|
|
#define emit_clear(REG) \
|
|
do { /* or %g0, %g0, REG */ \
|
|
*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
|
|
} while (0)
|
|
|
|
#define emit_set_const(K, REG) \
|
|
do { /* sethi %hi(K), REG */ \
|
|
*prog++ = SETHI(K, REG); \
|
|
/* or REG, %lo(K), REG */ \
|
|
*prog++ = OR_LO(K, REG); \
|
|
} while (0)
|
|
|
|
/* Emit
|
|
*
|
|
* OP r_A, r_X, r_A
|
|
*/
|
|
#define emit_alu_X(OPCODE) \
|
|
do { \
|
|
seen |= SEEN_XREG; \
|
|
*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
|
|
} while (0)
|
|
|
|
/* Emit either:
|
|
*
|
|
* OP r_A, K, r_A
|
|
*
|
|
* or
|
|
*
|
|
* sethi %hi(K), r_TMP
|
|
* or r_TMP, %lo(K), r_TMP
|
|
* OP r_A, r_TMP, r_A
|
|
*
|
|
* depending upon whether K fits in a signed 13-bit
|
|
* immediate instruction field. Emit nothing if K
|
|
* is zero.
|
|
*/
|
|
#define emit_alu_K(OPCODE, K) \
|
|
do { \
|
|
if (K || OPCODE == AND || OPCODE == MUL) { \
|
|
unsigned int _insn = OPCODE; \
|
|
_insn |= RS1(r_A) | RD(r_A); \
|
|
if (is_simm13(K)) { \
|
|
*prog++ = _insn | IMMED | S13(K); \
|
|
} else { \
|
|
emit_set_const(K, r_TMP); \
|
|
*prog++ = _insn | RS2(r_TMP); \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
#define emit_loadimm(K, DEST) \
|
|
do { \
|
|
if (is_simm13(K)) { \
|
|
/* or %g0, K, DEST */ \
|
|
*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
|
|
} else { \
|
|
emit_set_const(K, DEST); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
|
|
*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_load32(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
|
|
*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_load16(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
|
|
*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define __emit_load8(BASE, STRUCT, FIELD, DEST) \
|
|
do { unsigned int _off = offsetof(STRUCT, FIELD); \
|
|
*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_load8(BASE, STRUCT, FIELD, DEST) \
|
|
do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
|
|
__emit_load8(BASE, STRUCT, FIELD, DEST); \
|
|
} while (0)
|
|
|
|
#define BIAS (-4)
|
|
|
|
#define emit_ldmem(OFF, DEST) \
|
|
do { *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST); \
|
|
} while (0)
|
|
|
|
#define emit_stmem(OFF, SRC) \
|
|
do { *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC); \
|
|
} while (0)
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define emit_load_cpu(REG) \
|
|
emit_load32(G6, struct thread_info, cpu, REG)
|
|
#else
|
|
#define emit_load_cpu(REG) emit_clear(REG)
|
|
#endif
|
|
|
|
#define emit_skb_loadptr(FIELD, DEST) \
|
|
emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define emit_skb_load32(FIELD, DEST) \
|
|
emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define emit_skb_load16(FIELD, DEST) \
|
|
emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define __emit_skb_load8(FIELD, DEST) \
|
|
__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
|
|
#define emit_skb_load8(FIELD, DEST) \
|
|
emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
|
|
|
|
#define emit_jmpl(BASE, IMM_OFF, LREG) \
|
|
*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
|
|
|
|
#define emit_call(FUNC) \
|
|
do { void *_here = image + addrs[i] - 8; \
|
|
unsigned int _off = (void *)(FUNC) - _here; \
|
|
*prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
|
|
emit_nop(); \
|
|
} while (0)
|
|
|
|
#define emit_branch(BR_OPC, DEST) \
|
|
do { unsigned int _here = addrs[i] - 8; \
|
|
*prog++ = BR_OPC | WDISP22((DEST) - _here); \
|
|
} while (0)
|
|
|
|
#define emit_branch_off(BR_OPC, OFF) \
|
|
do { *prog++ = BR_OPC | WDISP22(OFF); \
|
|
} while (0)
|
|
|
|
#define emit_jump(DEST) emit_branch(BA, DEST)
|
|
|
|
#define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
|
|
#define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
|
|
|
|
#define emit_cmp(R1, R2) \
|
|
*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
|
|
|
|
#define emit_cmpi(R1, IMM) \
|
|
*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
|
|
|
|
#define emit_btst(R1, R2) \
|
|
*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
|
|
|
|
#define emit_btsti(R1, IMM) \
|
|
*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
|
|
|
|
#define emit_sub(R1, R2, R3) \
|
|
*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
|
|
|
|
#define emit_subi(R1, IMM, R3) \
|
|
*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
|
|
|
|
#define emit_add(R1, R2, R3) \
|
|
*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
|
|
|
|
#define emit_addi(R1, IMM, R3) \
|
|
*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
|
|
|
|
#define emit_and(R1, R2, R3) \
|
|
*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
|
|
|
|
#define emit_andi(R1, IMM, R3) \
|
|
*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
|
|
|
|
#define emit_alloc_stack(SZ) \
|
|
*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
|
|
|
|
#define emit_release_stack(SZ) \
|
|
*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
|
|
|
|
/* A note about branch offset calculations. The addrs[] array,
|
|
* indexed by BPF instruction, records the address after all the
|
|
* sparc instructions emitted for that BPF instruction.
|
|
*
|
|
* The most common case is to emit a branch at the end of such
|
|
* a code sequence. So this would be two instructions, the
|
|
* branch and it's delay slot.
|
|
*
|
|
* Therefore by default the branch emitters calculate the branch
|
|
* offset field as:
|
|
*
|
|
* destination - (addrs[i] - 8)
|
|
*
|
|
* This "addrs[i] - 8" is the address of the branch itself or
|
|
* what "." would be in assembler notation. The "8" part is
|
|
* how we take into consideration the branch and it's delay
|
|
* slot mentioned above.
|
|
*
|
|
* Sometimes we need to emit a branch earlier in the code
|
|
* sequence. And in these situations we adjust "destination"
|
|
* to accommodate this difference. For example, if we needed
|
|
* to emit a branch (and it's delay slot) right before the
|
|
* final instruction emitted for a BPF opcode, we'd use
|
|
* "destination + 4" instead of just plain "destination" above.
|
|
*
|
|
* This is why you see all of these funny emit_branch() and
|
|
* emit_jump() calls with adjusted offsets.
|
|
*/
|
|
|
|
void bpf_jit_compile(struct bpf_prog *fp)
|
|
{
|
|
unsigned int cleanup_addr, proglen, oldproglen = 0;
|
|
u32 temp[8], *prog, *func, seen = 0, pass;
|
|
const struct sock_filter *filter = fp->insns;
|
|
int i, flen = fp->len, pc_ret0 = -1;
|
|
unsigned int *addrs;
|
|
void *image;
|
|
|
|
if (!bpf_jit_enable)
|
|
return;
|
|
|
|
addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL);
|
|
if (addrs == NULL)
|
|
return;
|
|
|
|
/* Before first pass, make a rough estimation of addrs[]
|
|
* each bpf instruction is translated to less than 64 bytes
|
|
*/
|
|
for (proglen = 0, i = 0; i < flen; i++) {
|
|
proglen += 64;
|
|
addrs[i] = proglen;
|
|
}
|
|
cleanup_addr = proglen; /* epilogue address */
|
|
image = NULL;
|
|
for (pass = 0; pass < 10; pass++) {
|
|
u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
|
|
|
|
/* no prologue/epilogue for trivial filters (RET something) */
|
|
proglen = 0;
|
|
prog = temp;
|
|
|
|
/* Prologue */
|
|
if (seen_or_pass0) {
|
|
if (seen_or_pass0 & SEEN_MEM) {
|
|
unsigned int sz = BASE_STACKFRAME;
|
|
sz += BPF_MEMWORDS * sizeof(u32);
|
|
emit_alloc_stack(sz);
|
|
}
|
|
|
|
/* Make sure we dont leek kernel memory. */
|
|
if (seen_or_pass0 & SEEN_XREG)
|
|
emit_clear(r_X);
|
|
|
|
/* If this filter needs to access skb data,
|
|
* load %o4 and %o5 with:
|
|
* %o4 = skb->len - skb->data_len
|
|
* %o5 = skb->data
|
|
* And also back up %o7 into r_saved_O7 so we can
|
|
* invoke the stubs using 'call'.
|
|
*/
|
|
if (seen_or_pass0 & SEEN_DATAREF) {
|
|
emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
|
|
emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
|
|
emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
|
|
emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
|
|
}
|
|
}
|
|
emit_reg_move(O7, r_saved_O7);
|
|
|
|
/* Make sure we dont leak kernel information to the user. */
|
|
if (bpf_needs_clear_a(&filter[0]))
|
|
emit_clear(r_A); /* A = 0 */
|
|
|
|
for (i = 0; i < flen; i++) {
|
|
unsigned int K = filter[i].k;
|
|
unsigned int t_offset;
|
|
unsigned int f_offset;
|
|
u32 t_op, f_op;
|
|
u16 code = bpf_anc_helper(&filter[i]);
|
|
int ilen;
|
|
|
|
switch (code) {
|
|
case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
|
|
emit_alu_X(ADD);
|
|
break;
|
|
case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
|
|
emit_alu_K(ADD, K);
|
|
break;
|
|
case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
|
|
emit_alu_X(SUB);
|
|
break;
|
|
case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
|
|
emit_alu_K(SUB, K);
|
|
break;
|
|
case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
|
|
emit_alu_X(AND);
|
|
break;
|
|
case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
|
|
emit_alu_K(AND, K);
|
|
break;
|
|
case BPF_ALU | BPF_OR | BPF_X: /* A |= X */
|
|
emit_alu_X(OR);
|
|
break;
|
|
case BPF_ALU | BPF_OR | BPF_K: /* A |= K */
|
|
emit_alu_K(OR, K);
|
|
break;
|
|
case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
emit_alu_X(XOR);
|
|
break;
|
|
case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
|
|
emit_alu_K(XOR, K);
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
|
|
emit_alu_X(SLL);
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
|
|
emit_alu_K(SLL, K);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
|
|
emit_alu_X(SRL);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
|
|
emit_alu_K(SRL, K);
|
|
break;
|
|
case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
|
|
emit_alu_X(MUL);
|
|
break;
|
|
case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
|
|
emit_alu_K(MUL, K);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
|
|
if (K == 1)
|
|
break;
|
|
emit_write_y(G0);
|
|
/* The Sparc v8 architecture requires
|
|
* three instructions between a %y
|
|
* register write and the first use.
|
|
*/
|
|
emit_nop();
|
|
emit_nop();
|
|
emit_nop();
|
|
emit_alu_K(DIV, K);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
|
|
emit_cmpi(r_X, 0);
|
|
if (pc_ret0 > 0) {
|
|
t_offset = addrs[pc_ret0 - 1];
|
|
emit_branch(BE, t_offset + 20);
|
|
emit_nop(); /* delay slot */
|
|
} else {
|
|
emit_branch_off(BNE, 16);
|
|
emit_nop();
|
|
emit_jump(cleanup_addr + 20);
|
|
emit_clear(r_A);
|
|
}
|
|
emit_write_y(G0);
|
|
/* The Sparc v8 architecture requires
|
|
* three instructions between a %y
|
|
* register write and the first use.
|
|
*/
|
|
emit_nop();
|
|
emit_nop();
|
|
emit_nop();
|
|
emit_alu_X(DIV);
|
|
break;
|
|
case BPF_ALU | BPF_NEG:
|
|
emit_neg();
|
|
break;
|
|
case BPF_RET | BPF_K:
|
|
if (!K) {
|
|
if (pc_ret0 == -1)
|
|
pc_ret0 = i;
|
|
emit_clear(r_A);
|
|
} else {
|
|
emit_loadimm(K, r_A);
|
|
}
|
|
/* Fallthrough */
|
|
case BPF_RET | BPF_A:
|
|
if (seen_or_pass0) {
|
|
if (i != flen - 1) {
|
|
emit_jump(cleanup_addr);
|
|
emit_nop();
|
|
break;
|
|
}
|
|
if (seen_or_pass0 & SEEN_MEM) {
|
|
unsigned int sz = BASE_STACKFRAME;
|
|
sz += BPF_MEMWORDS * sizeof(u32);
|
|
emit_release_stack(sz);
|
|
}
|
|
}
|
|
/* jmpl %r_saved_O7 + 8, %g0 */
|
|
emit_jmpl(r_saved_O7, 8, G0);
|
|
emit_reg_move(r_A, O0); /* delay slot */
|
|
break;
|
|
case BPF_MISC | BPF_TAX:
|
|
seen |= SEEN_XREG;
|
|
emit_reg_move(r_A, r_X);
|
|
break;
|
|
case BPF_MISC | BPF_TXA:
|
|
seen |= SEEN_XREG;
|
|
emit_reg_move(r_X, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_CPU:
|
|
emit_load_cpu(r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_PROTOCOL:
|
|
emit_skb_load16(protocol, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_PKTTYPE:
|
|
__emit_skb_load8(__pkt_type_offset, r_A);
|
|
emit_andi(r_A, PKT_TYPE_MAX, r_A);
|
|
emit_alu_K(SRL, 5);
|
|
break;
|
|
case BPF_ANC | SKF_AD_IFINDEX:
|
|
emit_skb_loadptr(dev, r_A);
|
|
emit_cmpi(r_A, 0);
|
|
emit_branch(BE_PTR, cleanup_addr + 4);
|
|
emit_nop();
|
|
emit_load32(r_A, struct net_device, ifindex, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_MARK:
|
|
emit_skb_load32(mark, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_QUEUE:
|
|
emit_skb_load16(queue_mapping, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_HATYPE:
|
|
emit_skb_loadptr(dev, r_A);
|
|
emit_cmpi(r_A, 0);
|
|
emit_branch(BE_PTR, cleanup_addr + 4);
|
|
emit_nop();
|
|
emit_load16(r_A, struct net_device, type, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_RXHASH:
|
|
emit_skb_load32(hash, r_A);
|
|
break;
|
|
case BPF_ANC | SKF_AD_VLAN_TAG:
|
|
case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
|
|
emit_skb_load16(vlan_tci, r_A);
|
|
if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
|
|
emit_alu_K(SRL, 12);
|
|
emit_andi(r_A, 1, r_A);
|
|
} else {
|
|
emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
|
|
emit_and(r_A, r_TMP, r_A);
|
|
}
|
|
break;
|
|
case BPF_LD | BPF_W | BPF_LEN:
|
|
emit_skb_load32(len, r_A);
|
|
break;
|
|
case BPF_LDX | BPF_W | BPF_LEN:
|
|
emit_skb_load32(len, r_X);
|
|
break;
|
|
case BPF_LD | BPF_IMM:
|
|
emit_loadimm(K, r_A);
|
|
break;
|
|
case BPF_LDX | BPF_IMM:
|
|
emit_loadimm(K, r_X);
|
|
break;
|
|
case BPF_LD | BPF_MEM:
|
|
seen |= SEEN_MEM;
|
|
emit_ldmem(K * 4, r_A);
|
|
break;
|
|
case BPF_LDX | BPF_MEM:
|
|
seen |= SEEN_MEM | SEEN_XREG;
|
|
emit_ldmem(K * 4, r_X);
|
|
break;
|
|
case BPF_ST:
|
|
seen |= SEEN_MEM;
|
|
emit_stmem(K * 4, r_A);
|
|
break;
|
|
case BPF_STX:
|
|
seen |= SEEN_MEM | SEEN_XREG;
|
|
emit_stmem(K * 4, r_X);
|
|
break;
|
|
|
|
#define CHOOSE_LOAD_FUNC(K, func) \
|
|
((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
|
|
|
|
case BPF_LD | BPF_W | BPF_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
|
|
common_load: seen |= SEEN_DATAREF;
|
|
emit_loadimm(K, r_OFF);
|
|
emit_call(func);
|
|
break;
|
|
case BPF_LD | BPF_H | BPF_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
|
|
goto common_load;
|
|
case BPF_LD | BPF_B | BPF_ABS:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
|
|
goto common_load;
|
|
case BPF_LDX | BPF_B | BPF_MSH:
|
|
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
|
|
goto common_load;
|
|
case BPF_LD | BPF_W | BPF_IND:
|
|
func = bpf_jit_load_word;
|
|
common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
|
|
if (K) {
|
|
if (is_simm13(K)) {
|
|
emit_addi(r_X, K, r_OFF);
|
|
} else {
|
|
emit_loadimm(K, r_TMP);
|
|
emit_add(r_X, r_TMP, r_OFF);
|
|
}
|
|
} else {
|
|
emit_reg_move(r_X, r_OFF);
|
|
}
|
|
emit_call(func);
|
|
break;
|
|
case BPF_LD | BPF_H | BPF_IND:
|
|
func = bpf_jit_load_half;
|
|
goto common_load_ind;
|
|
case BPF_LD | BPF_B | BPF_IND:
|
|
func = bpf_jit_load_byte;
|
|
goto common_load_ind;
|
|
case BPF_JMP | BPF_JA:
|
|
emit_jump(addrs[i + K]);
|
|
emit_nop();
|
|
break;
|
|
|
|
#define COND_SEL(CODE, TOP, FOP) \
|
|
case CODE: \
|
|
t_op = TOP; \
|
|
f_op = FOP; \
|
|
goto cond_branch
|
|
|
|
COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
|
|
COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
|
|
COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
|
|
COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
|
|
COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
|
|
COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
|
|
COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
|
|
COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
|
|
|
|
cond_branch: f_offset = addrs[i + filter[i].jf];
|
|
t_offset = addrs[i + filter[i].jt];
|
|
|
|
/* same targets, can avoid doing the test :) */
|
|
if (filter[i].jt == filter[i].jf) {
|
|
emit_jump(t_offset);
|
|
emit_nop();
|
|
break;
|
|
}
|
|
|
|
switch (code) {
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
seen |= SEEN_XREG;
|
|
emit_cmp(r_A, r_X);
|
|
break;
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
seen |= SEEN_XREG;
|
|
emit_btst(r_A, r_X);
|
|
break;
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
if (is_simm13(K)) {
|
|
emit_cmpi(r_A, K);
|
|
} else {
|
|
emit_loadimm(K, r_TMP);
|
|
emit_cmp(r_A, r_TMP);
|
|
}
|
|
break;
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
if (is_simm13(K)) {
|
|
emit_btsti(r_A, K);
|
|
} else {
|
|
emit_loadimm(K, r_TMP);
|
|
emit_btst(r_A, r_TMP);
|
|
}
|
|
break;
|
|
}
|
|
if (filter[i].jt != 0) {
|
|
if (filter[i].jf)
|
|
t_offset += 8;
|
|
emit_branch(t_op, t_offset);
|
|
emit_nop(); /* delay slot */
|
|
if (filter[i].jf) {
|
|
emit_jump(f_offset);
|
|
emit_nop();
|
|
}
|
|
break;
|
|
}
|
|
emit_branch(f_op, f_offset);
|
|
emit_nop(); /* delay slot */
|
|
break;
|
|
|
|
default:
|
|
/* hmm, too complex filter, give up with jit compiler */
|
|
goto out;
|
|
}
|
|
ilen = (void *) prog - (void *) temp;
|
|
if (image) {
|
|
if (unlikely(proglen + ilen > oldproglen)) {
|
|
pr_err("bpb_jit_compile fatal error\n");
|
|
kfree(addrs);
|
|
module_memfree(image);
|
|
return;
|
|
}
|
|
memcpy(image + proglen, temp, ilen);
|
|
}
|
|
proglen += ilen;
|
|
addrs[i] = proglen;
|
|
prog = temp;
|
|
}
|
|
/* last bpf instruction is always a RET :
|
|
* use it to give the cleanup instruction(s) addr
|
|
*/
|
|
cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
|
|
if (seen_or_pass0 & SEEN_MEM)
|
|
cleanup_addr -= 4; /* add %sp, X, %sp; */
|
|
|
|
if (image) {
|
|
if (proglen != oldproglen)
|
|
pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
|
|
proglen, oldproglen);
|
|
break;
|
|
}
|
|
if (proglen == oldproglen) {
|
|
image = module_alloc(proglen);
|
|
if (!image)
|
|
goto out;
|
|
}
|
|
oldproglen = proglen;
|
|
}
|
|
|
|
if (bpf_jit_enable > 1)
|
|
bpf_jit_dump(flen, proglen, pass + 1, image);
|
|
|
|
if (image) {
|
|
fp->bpf_func = (void *)image;
|
|
fp->jited = 1;
|
|
}
|
|
out:
|
|
kfree(addrs);
|
|
return;
|
|
}
|
|
|
|
void bpf_jit_free(struct bpf_prog *fp)
|
|
{
|
|
if (fp->jited)
|
|
module_memfree(fp->bpf_func);
|
|
|
|
bpf_prog_unlock_free(fp);
|
|
}
|