linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_lrc.c
Zhenyu Wang a2deb87396 drm/i915: Disable semaphore on vGPU for now
This is to disable semaphore usage when on vGPU for now. Unfortunately
GVT-g hasn't fully enabled semaphore usage yet, so current guest with
semaphore use would cause vGPU failure.

Although current semaphore failure with vGPU can be simply resolved by
allowing cmd parser to accept MI_SEMAPHORE_WAIT command with address
audit, we're checking general usage of semaphore and how we should
handle it properly for virtualization in consider of function and
security concern. So we decide to request to disable it for now in
guest driver. Once GVT could support it, we would add new compat bit
to turn it on.

Fixes: e886196469 ("drm/i915: Use HW semaphores for inter-engine synchronisation on gen8+") #vgpu
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
Acked-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190327090636.3547-1-zhenyuw@linux.intel.com
2019-03-27 15:13:28 +00:00

2963 lines
88 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
* Michel Thierry <michel.thierry@intel.com>
* Thomas Daniel <thomas.daniel@intel.com>
* Oscar Mateo <oscar.mateo@intel.com>
*
*/
/**
* DOC: Logical Rings, Logical Ring Contexts and Execlists
*
* Motivation:
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
* These expanded contexts enable a number of new abilities, especially
* "Execlists" (also implemented in this file).
*
* One of the main differences with the legacy HW contexts is that logical
* ring contexts incorporate many more things to the context's state, like
* PDPs or ringbuffer control registers:
*
* The reason why PDPs are included in the context is straightforward: as
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
* instead, the GPU will do it for you on the context switch.
*
* But, what about the ringbuffer control registers (head, tail, etc..)?
* shouldn't we just need a set of those per engine command streamer? This is
* where the name "Logical Rings" starts to make sense: by virtualizing the
* rings, the engine cs shifts to a new "ring buffer" with every context
* switch. When you want to submit a workload to the GPU you: A) choose your
* context, B) find its appropriate virtualized ring, C) write commands to it
* and then, finally, D) tell the GPU to switch to that context.
*
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
* to a contexts is via a context execution list, ergo "Execlists".
*
* LRC implementation:
* Regarding the creation of contexts, we have:
*
* - One global default context.
* - One local default context for each opened fd.
* - One local extra context for each context create ioctl call.
*
* Now that ringbuffers belong per-context (and not per-engine, like before)
* and that contexts are uniquely tied to a given engine (and not reusable,
* like before) we need:
*
* - One ringbuffer per-engine inside each context.
* - One backing object per-engine inside each context.
*
* The global default context starts its life with these new objects fully
* allocated and populated. The local default context for each opened fd is
* more complex, because we don't know at creation time which engine is going
* to use them. To handle this, we have implemented a deferred creation of LR
* contexts:
*
* The local context starts its life as a hollow or blank holder, that only
* gets populated for a given engine once we receive an execbuffer. If later
* on we receive another execbuffer ioctl for the same context but a different
* engine, we allocate/populate a new ringbuffer and context backing object and
* so on.
*
* Finally, regarding local contexts created using the ioctl call: as they are
* only allowed with the render ring, we can allocate & populate them right
* away (no need to defer anything, at least for now).
*
* Execlists implementation:
* Execlists are the new method by which, on gen8+ hardware, workloads are
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
* This method works as follows:
*
* When a request is committed, its commands (the BB start and any leading or
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
* for the appropriate context. The tail pointer in the hardware context is not
* updated at this time, but instead, kept by the driver in the ringbuffer
* structure. A structure representing this request is added to a request queue
* for the appropriate engine: this structure contains a copy of the context's
* tail after the request was written to the ring buffer and a pointer to the
* context itself.
*
* If the engine's request queue was empty before the request was added, the
* queue is processed immediately. Otherwise the queue will be processed during
* a context switch interrupt. In any case, elements on the queue will get sent
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
* globally unique 20-bits submission ID.
*
* When execution of a request completes, the GPU updates the context status
* buffer with a context complete event and generates a context switch interrupt.
* During the interrupt handling, the driver examines the events in the buffer:
* for each context complete event, if the announced ID matches that on the head
* of the request queue, then that request is retired and removed from the queue.
*
* After processing, if any requests were retired and the queue is not empty
* then a new execution list can be submitted. The two requests at the front of
* the queue are next to be submitted but since a context may not occur twice in
* an execution list, if subsequent requests have the same ID as the first then
* the two requests must be combined. This is done simply by discarding requests
* at the head of the queue until either only one requests is left (in which case
* we use a NULL second context) or the first two requests have unique IDs.
*
* By always executing the first two requests in the queue the driver ensures
* that the GPU is kept as busy as possible. In the case where a single context
* completes but a second context is still executing, the request for this second
* context will be at the head of the queue when we remove the first one. This
* request will then be resubmitted along with a new request for a different context,
* which will cause the hardware to continue executing the second request and queue
* the new request (the GPU detects the condition of a context getting preempted
* with the same context and optimizes the context switch flow by not doing
* preemption, but just sampling the new tail pointer).
*
*/
#include <linux/interrupt.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_gem_render_state.h"
#include "i915_reset.h"
#include "i915_vgpu.h"
#include "intel_lrc_reg.h"
#include "intel_mocs.h"
#include "intel_workarounds.h"
#define RING_EXECLIST_QFULL (1 << 0x2)
#define RING_EXECLIST1_VALID (1 << 0x3)
#define RING_EXECLIST0_VALID (1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
#define GEN8_CTX_STATUS_COMPLETED_MASK \
(GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
#define WA_TAIL_DWORDS 2
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
#define ACTIVE_PRIORITY (I915_PRIORITY_NEWCLIENT | I915_PRIORITY_NOSEMAPHORE)
static int execlists_context_deferred_alloc(struct intel_context *ce,
struct intel_engine_cs *engine);
static void execlists_init_reg_state(u32 *reg_state,
struct intel_context *ce,
struct intel_engine_cs *engine,
struct intel_ring *ring);
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static inline int rq_prio(const struct i915_request *rq)
{
return rq->sched.attr.priority;
}
static int effective_prio(const struct i915_request *rq)
{
int prio = rq_prio(rq);
/*
* On unwinding the active request, we give it a priority bump
* equivalent to a freshly submitted request. This protects it from
* being gazumped again, but it would be preferable if we didn't
* let it be gazumped in the first place!
*
* See __unwind_incomplete_requests()
*/
if (~prio & ACTIVE_PRIORITY && __i915_request_has_started(rq)) {
/*
* After preemption, we insert the active request at the
* end of the new priority level. This means that we will be
* _lower_ priority than the preemptee all things equal (and
* so the preemption is valid), so adjust our comparison
* accordingly.
*/
prio |= ACTIVE_PRIORITY;
prio--;
}
/* Restrict mere WAIT boosts from triggering preemption */
return prio | __NO_PREEMPTION;
}
static int queue_prio(const struct intel_engine_execlists *execlists)
{
struct i915_priolist *p;
struct rb_node *rb;
rb = rb_first_cached(&execlists->queue);
if (!rb)
return INT_MIN;
/*
* As the priolist[] are inverted, with the highest priority in [0],
* we have to flip the index value to become priority.
*/
p = to_priolist(rb);
return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}
static inline bool need_preempt(const struct intel_engine_cs *engine,
const struct i915_request *rq)
{
int last_prio;
if (!intel_engine_has_preemption(engine))
return false;
if (i915_request_completed(rq))
return false;
/*
* Check if the current priority hint merits a preemption attempt.
*
* We record the highest value priority we saw during rescheduling
* prior to this dequeue, therefore we know that if it is strictly
* less than the current tail of ESLP[0], we do not need to force
* a preempt-to-idle cycle.
*
* However, the priority hint is a mere hint that we may need to
* preempt. If that hint is stale or we may be trying to preempt
* ourselves, ignore the request.
*/
last_prio = effective_prio(rq);
if (!__execlists_need_preempt(engine->execlists.queue_priority_hint,
last_prio))
return false;
/*
* Check against the first request in ELSP[1], it will, thanks to the
* power of PI, be the highest priority of that context.
*/
if (!list_is_last(&rq->link, &engine->timeline.requests) &&
rq_prio(list_next_entry(rq, link)) > last_prio)
return true;
/*
* If the inflight context did not trigger the preemption, then maybe
* it was the set of queued requests? Pick the highest priority in
* the queue (the first active priolist) and see if it deserves to be
* running instead of ELSP[0].
*
* The highest priority request in the queue can not be either
* ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
* context, it's priority would not exceed ELSP[0] aka last_prio.
*/
return queue_prio(&engine->execlists) > last_prio;
}
__maybe_unused static inline bool
assert_priority_queue(const struct i915_request *prev,
const struct i915_request *next)
{
const struct intel_engine_execlists *execlists =
&prev->engine->execlists;
/*
* Without preemption, the prev may refer to the still active element
* which we refuse to let go.
*
* Even with preemption, there are times when we think it is better not
* to preempt and leave an ostensibly lower priority request in flight.
*/
if (port_request(execlists->port) == prev)
return true;
return rq_prio(prev) >= rq_prio(next);
}
/*
* The context descriptor encodes various attributes of a context,
* including its GTT address and some flags. Because it's fairly
* expensive to calculate, we'll just do it once and cache the result,
* which remains valid until the context is unpinned.
*
* This is what a descriptor looks like, from LSB to MSB::
*
* bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
* bits 12-31: LRCA, GTT address of (the HWSP of) this context
* bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC)
* bits 53-54: mbz, reserved for use by hardware
* bits 55-63: group ID, currently unused and set to 0
*
* Starting from Gen11, the upper dword of the descriptor has a new format:
*
* bits 32-36: reserved
* bits 37-47: SW context ID
* bits 48:53: engine instance
* bit 54: mbz, reserved for use by hardware
* bits 55-60: SW counter
* bits 61-63: engine class
*
* engine info, SW context ID and SW counter need to form a unique number
* (Context ID) per lrc.
*/
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
{
struct i915_gem_context *ctx = ce->gem_context;
u64 desc;
BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
desc = ctx->desc_template; /* bits 0-11 */
GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
/* bits 12-31 */
GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
/*
* The following 32bits are copied into the OA reports (dword 2).
* Consider updating oa_get_render_ctx_id in i915_perf.c when changing
* anything below.
*/
if (INTEL_GEN(engine->i915) >= 11) {
GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
/* bits 37-47 */
desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
/* bits 48-53 */
/* TODO: decide what to do with SW counter (bits 55-60) */
desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
/* bits 61-63 */
} else {
GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
}
return desc;
}
static void unwind_wa_tail(struct i915_request *rq)
{
rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
assert_ring_tail_valid(rq->ring, rq->tail);
}
static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs *engine)
{
struct i915_request *rq, *rn, *active = NULL;
struct list_head *uninitialized_var(pl);
int prio = I915_PRIORITY_INVALID | ACTIVE_PRIORITY;
lockdep_assert_held(&engine->timeline.lock);
list_for_each_entry_safe_reverse(rq, rn,
&engine->timeline.requests,
link) {
if (i915_request_completed(rq))
break;
__i915_request_unsubmit(rq);
unwind_wa_tail(rq);
GEM_BUG_ON(rq->hw_context->active);
GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
if (rq_prio(rq) != prio) {
prio = rq_prio(rq);
pl = i915_sched_lookup_priolist(engine, prio);
}
GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
list_add(&rq->sched.link, pl);
active = rq;
}
/*
* The active request is now effectively the start of a new client
* stream, so give it the equivalent small priority bump to prevent
* it being gazumped a second time by another peer.
*
* Note we have to be careful not to apply a priority boost to a request
* still spinning on its semaphores. If the request hasn't started, that
* means it is still waiting for its dependencies to be signaled, and
* if we apply a priority boost to this request, we will boost it past
* its signalers and so break PI.
*
* One consequence of this preemption boost is that we may jump
* over lesser priorities (such as I915_PRIORITY_WAIT), effectively
* making those priorities non-preemptible. They will be moved forward
* in the priority queue, but they will not gain immediate access to
* the GPU.
*/
if (~prio & ACTIVE_PRIORITY && __i915_request_has_started(active)) {
prio |= ACTIVE_PRIORITY;
active->sched.attr.priority = prio;
list_move_tail(&active->sched.link,
i915_sched_lookup_priolist(engine, prio));
}
return active;
}
void
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
struct intel_engine_cs *engine =
container_of(execlists, typeof(*engine), execlists);
__unwind_incomplete_requests(engine);
}
static inline void
execlists_context_status_change(struct i915_request *rq, unsigned long status)
{
/*
* Only used when GVT-g is enabled now. When GVT-g is disabled,
* The compiler should eliminate this function as dead-code.
*/
if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
return;
atomic_notifier_call_chain(&rq->engine->context_status_notifier,
status, rq);
}
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
const struct execlist_port *port)
{
execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}
inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}
static inline void
execlists_context_schedule_in(struct i915_request *rq)
{
GEM_BUG_ON(rq->hw_context->active);
execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
intel_engine_context_in(rq->engine);
rq->hw_context->active = rq->engine;
}
static inline void
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
{
rq->hw_context->active = NULL;
intel_engine_context_out(rq->engine);
execlists_context_status_change(rq, status);
trace_i915_request_out(rq);
}
static u64 execlists_update_context(struct i915_request *rq)
{
struct intel_context *ce = rq->hw_context;
ce->lrc_reg_state[CTX_RING_TAIL + 1] =
intel_ring_set_tail(rq->ring, rq->tail);
/*
* Make sure the context image is complete before we submit it to HW.
*
* Ostensibly, writes (including the WCB) should be flushed prior to
* an uncached write such as our mmio register access, the empirical
* evidence (esp. on Braswell) suggests that the WC write into memory
* may not be visible to the HW prior to the completion of the UC
* register write and that we may begin execution from the context
* before its image is complete leading to invalid PD chasing.
*
* Furthermore, Braswell, at least, wants a full mb to be sure that
* the writes are coherent in memory (visible to the GPU) prior to
* execution, and not just visible to other CPUs (as is the result of
* wmb).
*/
mb();
return ce->lrc_desc;
}
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
{
if (execlists->ctrl_reg) {
writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
} else {
writel(upper_32_bits(desc), execlists->submit_reg);
writel(lower_32_bits(desc), execlists->submit_reg);
}
}
static void execlists_submit_ports(struct intel_engine_cs *engine)
{
struct intel_engine_execlists *execlists = &engine->execlists;
struct execlist_port *port = execlists->port;
unsigned int n;
/*
* We can skip acquiring intel_runtime_pm_get() here as it was taken
* on our behalf by the request (see i915_gem_mark_busy()) and it will
* not be relinquished until the device is idle (see
* i915_gem_idle_work_handler()). As a precaution, we make sure
* that all ELSP are drained i.e. we have processed the CSB,
* before allowing ourselves to idle and calling intel_runtime_pm_put().
*/
GEM_BUG_ON(!engine->i915->gt.awake);
/*
* ELSQ note: the submit queue is not cleared after being submitted
* to the HW so we need to make sure we always clean it up. This is
* currently ensured by the fact that we always write the same number
* of elsq entries, keep this in mind before changing the loop below.
*/
for (n = execlists_num_ports(execlists); n--; ) {
struct i915_request *rq;
unsigned int count;
u64 desc;
rq = port_unpack(&port[n], &count);
if (rq) {
GEM_BUG_ON(count > !n);
if (!count++)
execlists_context_schedule_in(rq);
port_set(&port[n], port_pack(rq, count));
desc = execlists_update_context(rq);
GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
GEM_TRACE("%s in[%d]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
engine->name, n,
port[n].context_id, count,
rq->fence.context, rq->fence.seqno,
hwsp_seqno(rq),
rq_prio(rq));
} else {
GEM_BUG_ON(!n);
desc = 0;
}
write_desc(execlists, desc, n);
}
/* we need to manually load the submit queue */
if (execlists->ctrl_reg)
writel(EL_CTRL_LOAD, execlists->ctrl_reg);
execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
}
static bool ctx_single_port_submission(const struct intel_context *ce)
{
return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
i915_gem_context_force_single_submission(ce->gem_context));
}
static bool can_merge_ctx(const struct intel_context *prev,
const struct intel_context *next)
{
if (prev != next)
return false;
if (ctx_single_port_submission(prev))
return false;
return true;
}
static bool can_merge_rq(const struct i915_request *prev,
const struct i915_request *next)
{
GEM_BUG_ON(!assert_priority_queue(prev, next));
if (!can_merge_ctx(prev->hw_context, next->hw_context))
return false;
return true;
}
static void port_assign(struct execlist_port *port, struct i915_request *rq)
{
GEM_BUG_ON(rq == port_request(port));
if (port_isset(port))
i915_request_put(port_request(port));
port_set(port, port_pack(i915_request_get(rq), port_count(port)));
}
static void inject_preempt_context(struct intel_engine_cs *engine)
{
struct intel_engine_execlists *execlists = &engine->execlists;
struct intel_context *ce = engine->preempt_context;
unsigned int n;
GEM_BUG_ON(execlists->preempt_complete_status !=
upper_32_bits(ce->lrc_desc));
/*
* Switch to our empty preempt context so
* the state of the GPU is known (idle).
*/
GEM_TRACE("%s\n", engine->name);
for (n = execlists_num_ports(execlists); --n; )
write_desc(execlists, 0, n);
write_desc(execlists, ce->lrc_desc, n);
/* we need to manually load the submit queue */
if (execlists->ctrl_reg)
writel(EL_CTRL_LOAD, execlists->ctrl_reg);
execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
}
static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
if (inject_preempt_hang(execlists))
return;
execlists_cancel_port_requests(execlists);
__unwind_incomplete_requests(container_of(execlists,
struct intel_engine_cs,
execlists));
}
static void execlists_dequeue(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct execlist_port *port = execlists->port;
const struct execlist_port * const last_port =
&execlists->port[execlists->port_mask];
struct i915_request *last = port_request(port);
struct rb_node *rb;
bool submit = false;
/*
* Hardware submission is through 2 ports. Conceptually each port
* has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
* static for a context, and unique to each, so we only execute
* requests belonging to a single context from each ring. RING_HEAD
* is maintained by the CS in the context image, it marks the place
* where it got up to last time, and through RING_TAIL we tell the CS
* where we want to execute up to this time.
*
* In this list the requests are in order of execution. Consecutive
* requests from the same context are adjacent in the ringbuffer. We
* can combine these requests into a single RING_TAIL update:
*
* RING_HEAD...req1...req2
* ^- RING_TAIL
* since to execute req2 the CS must first execute req1.
*
* Our goal then is to point each port to the end of a consecutive
* sequence of requests as being the most optimal (fewest wake ups
* and context switches) submission.
*/
if (last) {
/*
* Don't resubmit or switch until all outstanding
* preemptions (lite-restore) are seen. Then we
* know the next preemption status we see corresponds
* to this ELSP update.
*/
GEM_BUG_ON(!execlists_is_active(execlists,
EXECLISTS_ACTIVE_USER));
GEM_BUG_ON(!port_count(&port[0]));
/*
* If we write to ELSP a second time before the HW has had
* a chance to respond to the previous write, we can confuse
* the HW and hit "undefined behaviour". After writing to ELSP,
* we must then wait until we see a context-switch event from
* the HW to indicate that it has had a chance to respond.
*/
if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
return;
if (need_preempt(engine, last)) {
inject_preempt_context(engine);
return;
}
/*
* In theory, we could coalesce more requests onto
* the second port (the first port is active, with
* no preemptions pending). However, that means we
* then have to deal with the possible lite-restore
* of the second port (as we submit the ELSP, there
* may be a context-switch) but also we may complete
* the resubmission before the context-switch. Ergo,
* coalescing onto the second port will cause a
* preemption event, but we cannot predict whether
* that will affect port[0] or port[1].
*
* If the second port is already active, we can wait
* until the next context-switch before contemplating
* new requests. The GPU will be busy and we should be
* able to resubmit the new ELSP before it idles,
* avoiding pipeline bubbles (momentary pauses where
* the driver is unable to keep up the supply of new
* work). However, we have to double check that the
* priorities of the ports haven't been switch.
*/
if (port_count(&port[1]))
return;
/*
* WaIdleLiteRestore:bdw,skl
* Apply the wa NOOPs to prevent
* ring:HEAD == rq:TAIL as we resubmit the
* request. See gen8_emit_fini_breadcrumb() for
* where we prepare the padding after the
* end of the request.
*/
last->tail = last->wa_tail;
}
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
struct i915_request *rq, *rn;
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
/*
* Can we combine this request with the current port?
* It has to be the same context/ringbuffer and not
* have any exceptions (e.g. GVT saying never to
* combine contexts).
*
* If we can combine the requests, we can execute both
* by updating the RING_TAIL to point to the end of the
* second request, and so we never need to tell the
* hardware about the first.
*/
if (last && !can_merge_rq(last, rq)) {
/*
* If we are on the second port and cannot
* combine this request with the last, then we
* are done.
*/
if (port == last_port)
goto done;
/*
* We must not populate both ELSP[] with the
* same LRCA, i.e. we must submit 2 different
* contexts if we submit 2 ELSP.
*/
if (last->hw_context == rq->hw_context)
goto done;
/*
* If GVT overrides us we only ever submit
* port[0], leaving port[1] empty. Note that we
* also have to be careful that we don't queue
* the same context (even though a different
* request) to the second port.
*/
if (ctx_single_port_submission(last->hw_context) ||
ctx_single_port_submission(rq->hw_context))
goto done;
if (submit)
port_assign(port, last);
port++;
GEM_BUG_ON(port_isset(port));
}
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
trace_i915_request_in(rq, port_index(port, execlists));
last = rq;
submit = true;
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
done:
/*
* Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
*
* We choose the priority hint such that if we add a request of greater
* priority than this, we kick the submission tasklet to decide on
* the right order of submitting the requests to hardware. We must
* also be prepared to reorder requests as they are in-flight on the
* HW. We derive the priority hint then as the first "hole" in
* the HW submission ports and if there are no available slots,
* the priority of the lowest executing request, i.e. last.
*
* When we do receive a higher priority request ready to run from the
* user, see queue_request(), the priority hint is bumped to that
* request triggering preemption on the next dequeue (or subsequent
* interrupt for secondary ports).
*/
execlists->queue_priority_hint = queue_prio(execlists);
if (submit) {
port_assign(port, last);
execlists_submit_ports(engine);
}
/* We must always keep the beast fed if we have work piled up */
GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
!port_isset(execlists->port));
/* Re-evaluate the executing context setup after each preemptive kick */
if (last)
execlists_user_begin(execlists, execlists->port);
/* If the engine is now idle, so should be the flag; and vice versa. */
GEM_BUG_ON(execlists_is_active(&engine->execlists,
EXECLISTS_ACTIVE_USER) ==
!port_isset(engine->execlists.port));
}
void
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
{
struct execlist_port *port = execlists->port;
unsigned int num_ports = execlists_num_ports(execlists);
while (num_ports-- && port_isset(port)) {
struct i915_request *rq = port_request(port);
GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
rq->engine->name,
(unsigned int)(port - execlists->port),
rq->fence.context, rq->fence.seqno,
hwsp_seqno(rq));
GEM_BUG_ON(!execlists->active);
execlists_context_schedule_out(rq,
i915_request_completed(rq) ?
INTEL_CONTEXT_SCHEDULE_OUT :
INTEL_CONTEXT_SCHEDULE_PREEMPTED);
i915_request_put(rq);
memset(port, 0, sizeof(*port));
port++;
}
execlists_clear_all_active(execlists);
}
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
clflush((void *)first);
clflush((void *)last);
}
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
const unsigned int reset_value = GEN8_CSB_ENTRIES - 1;
/*
* After a reset, the HW starts writing into CSB entry [0]. We
* therefore have to set our HEAD pointer back one entry so that
* the *first* entry we check is entry 0. To complicate this further,
* as we don't wait for the first interrupt after reset, we have to
* fake the HW write to point back to the last entry so that our
* inline comparison of our cached head position against the last HW
* write works even before the first interrupt.
*/
execlists->csb_head = reset_value;
WRITE_ONCE(*execlists->csb_write, reset_value);
invalidate_csb_entries(&execlists->csb_status[0],
&execlists->csb_status[GEN8_CSB_ENTRIES - 1]);
}
static void nop_submission_tasklet(unsigned long data)
{
/* The driver is wedged; don't process any more events. */
}
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq, *rn;
struct rb_node *rb;
unsigned long flags;
GEM_TRACE("%s\n", engine->name);
/*
* Before we call engine->cancel_requests(), we should have exclusive
* access to the submission state. This is arranged for us by the
* caller disabling the interrupt generation, the tasklet and other
* threads that may then access the same state, giving us a free hand
* to reset state. However, we still need to let lockdep be aware that
* we know this state may be accessed in hardirq context, so we
* disable the irq around this manipulation and we want to keep
* the spinlock focused on its duties and not accidentally conflate
* coverage to the submission's irq state. (Similarly, although we
* shouldn't need to disable irq around the manipulation of the
* submission's irq state, we also wish to remind ourselves that
* it is irq state.)
*/
spin_lock_irqsave(&engine->timeline.lock, flags);
/* Cancel the requests on the HW and clear the ELSP tracker. */
execlists_cancel_port_requests(execlists);
execlists_user_end(execlists);
/* Mark all executing requests as skipped. */
list_for_each_entry(rq, &engine->timeline.requests, link) {
if (!i915_request_signaled(rq))
dma_fence_set_error(&rq->fence, -EIO);
i915_request_mark_complete(rq);
}
/* Flush the queued requests to the timeline list (for retiring). */
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
dma_fence_set_error(&rq->fence, -EIO);
i915_request_mark_complete(rq);
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
/* Remaining _unready_ requests will be nop'ed when submitted */
execlists->queue_priority_hint = INT_MIN;
execlists->queue = RB_ROOT_CACHED;
GEM_BUG_ON(port_isset(execlists->port));
GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
execlists->tasklet.func = nop_submission_tasklet;
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}
static void process_csb(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct execlist_port *port = execlists->port;
const u32 * const buf = execlists->csb_status;
u8 head, tail;
lockdep_assert_held(&engine->timeline.lock);
/*
* Note that csb_write, csb_status may be either in HWSP or mmio.
* When reading from the csb_write mmio register, we have to be
* careful to only use the GEN8_CSB_WRITE_PTR portion, which is
* the low 4bits. As it happens we know the next 4bits are always
* zero and so we can simply masked off the low u8 of the register
* and treat it identically to reading from the HWSP (without having
* to use explicit shifting and masking, and probably bifurcating
* the code to handle the legacy mmio read).
*/
head = execlists->csb_head;
tail = READ_ONCE(*execlists->csb_write);
GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
if (unlikely(head == tail))
return;
/*
* Hopefully paired with a wmb() in HW!
*
* We must complete the read of the write pointer before any reads
* from the CSB, so that we do not see stale values. Without an rmb
* (lfence) the HW may speculatively perform the CSB[] reads *before*
* we perform the READ_ONCE(*csb_write).
*/
rmb();
do {
struct i915_request *rq;
unsigned int status;
unsigned int count;
if (++head == GEN8_CSB_ENTRIES)
head = 0;
/*
* We are flying near dragons again.
*
* We hold a reference to the request in execlist_port[]
* but no more than that. We are operating in softirq
* context and so cannot hold any mutex or sleep. That
* prevents us stopping the requests we are processing
* in port[] from being retired simultaneously (the
* breadcrumb will be complete before we see the
* context-switch). As we only hold the reference to the
* request, any pointer chasing underneath the request
* is subject to a potential use-after-free. Thus we
* store all of the bookkeeping within port[] as
* required, and avoid using unguarded pointers beneath
* request itself. The same applies to the atomic
* status notifier.
*/
GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
engine->name, head,
buf[2 * head + 0], buf[2 * head + 1],
execlists->active);
status = buf[2 * head];
if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
GEN8_CTX_STATUS_PREEMPTED))
execlists_set_active(execlists,
EXECLISTS_ACTIVE_HWACK);
if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
execlists_clear_active(execlists,
EXECLISTS_ACTIVE_HWACK);
if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
continue;
/* We should never get a COMPLETED | IDLE_ACTIVE! */
GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
if (status & GEN8_CTX_STATUS_COMPLETE &&
buf[2*head + 1] == execlists->preempt_complete_status) {
GEM_TRACE("%s preempt-idle\n", engine->name);
complete_preempt_context(execlists);
continue;
}
if (status & GEN8_CTX_STATUS_PREEMPTED &&
execlists_is_active(execlists,
EXECLISTS_ACTIVE_PREEMPT))
continue;
GEM_BUG_ON(!execlists_is_active(execlists,
EXECLISTS_ACTIVE_USER));
rq = port_unpack(port, &count);
GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
engine->name,
port->context_id, count,
rq ? rq->fence.context : 0,
rq ? rq->fence.seqno : 0,
rq ? hwsp_seqno(rq) : 0,
rq ? rq_prio(rq) : 0);
/* Check the context/desc id for this event matches */
GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
GEM_BUG_ON(count == 0);
if (--count == 0) {
/*
* On the final event corresponding to the
* submission of this context, we expect either
* an element-switch event or a completion
* event (and on completion, the active-idle
* marker). No more preemptions, lite-restore
* or otherwise.
*/
GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
GEM_BUG_ON(port_isset(&port[1]) &&
!(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
GEM_BUG_ON(!port_isset(&port[1]) &&
!(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
/*
* We rely on the hardware being strongly
* ordered, that the breadcrumb write is
* coherent (visible from the CPU) before the
* user interrupt and CSB is processed.
*/
GEM_BUG_ON(!i915_request_completed(rq));
execlists_context_schedule_out(rq,
INTEL_CONTEXT_SCHEDULE_OUT);
i915_request_put(rq);
GEM_TRACE("%s completed ctx=%d\n",
engine->name, port->context_id);
port = execlists_port_complete(execlists, port);
if (port_isset(port))
execlists_user_begin(execlists, port);
else
execlists_user_end(execlists);
} else {
port_set(port, port_pack(rq, count));
}
} while (head != tail);
execlists->csb_head = head;
/*
* Gen11 has proven to fail wrt global observation point between
* entry and tail update, failing on the ordering and thus
* we see an old entry in the context status buffer.
*
* Forcibly evict out entries for the next gpu csb update,
* to increase the odds that we get a fresh entries with non
* working hardware. The cost for doing so comes out mostly with
* the wash as hardware, working or not, will need to do the
* invalidation before.
*/
invalidate_csb_entries(&buf[0], &buf[GEN8_CSB_ENTRIES - 1]);
}
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
{
lockdep_assert_held(&engine->timeline.lock);
process_csb(engine);
if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
execlists_dequeue(engine);
}
/*
* Check the unread Context Status Buffers and manage the submission of new
* contexts to the ELSP accordingly.
*/
static void execlists_submission_tasklet(unsigned long data)
{
struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
unsigned long flags;
GEM_TRACE("%s awake?=%d, active=%x\n",
engine->name,
!!engine->i915->gt.awake,
engine->execlists.active);
spin_lock_irqsave(&engine->timeline.lock, flags);
__execlists_submission_tasklet(engine);
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
static void queue_request(struct intel_engine_cs *engine,
struct i915_sched_node *node,
int prio)
{
list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
}
static void __submit_queue_imm(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
if (reset_in_progress(execlists))
return; /* defer until we restart the engine following reset */
if (execlists->tasklet.func == execlists_submission_tasklet)
__execlists_submission_tasklet(engine);
else
tasklet_hi_schedule(&execlists->tasklet);
}
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
if (prio > engine->execlists.queue_priority_hint) {
engine->execlists.queue_priority_hint = prio;
__submit_queue_imm(engine);
}
}
static void execlists_submit_request(struct i915_request *request)
{
struct intel_engine_cs *engine = request->engine;
unsigned long flags;
/* Will be called from irq-context when using foreign fences. */
spin_lock_irqsave(&engine->timeline.lock, flags);
queue_request(engine, &request->sched, rq_prio(request));
GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
GEM_BUG_ON(list_empty(&request->sched.link));
submit_queue(engine, rq_prio(request));
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
static void __execlists_context_fini(struct intel_context *ce)
{
intel_ring_put(ce->ring);
GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
i915_gem_object_put(ce->state->obj);
}
static void execlists_context_destroy(struct kref *kref)
{
struct intel_context *ce = container_of(kref, typeof(*ce), ref);
GEM_BUG_ON(intel_context_is_pinned(ce));
if (ce->state)
__execlists_context_fini(ce);
intel_context_free(ce);
}
static int __context_pin(struct i915_vma *vma)
{
unsigned int flags;
int err;
flags = PIN_GLOBAL | PIN_HIGH;
flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
err = i915_vma_pin(vma, 0, 0, flags);
if (err)
return err;
vma->obj->pin_global++;
vma->obj->mm.dirty = true;
return 0;
}
static void __context_unpin(struct i915_vma *vma)
{
vma->obj->pin_global--;
__i915_vma_unpin(vma);
}
static void execlists_context_unpin(struct intel_context *ce)
{
struct intel_engine_cs *engine;
/*
* The tasklet may still be using a pointer to our state, via an
* old request. However, since we know we only unpin the context
* on retirement of the following request, we know that the last
* request referencing us will have had a completion CS interrupt.
* If we see that it is still active, it means that the tasklet hasn't
* had the chance to run yet; let it run before we teardown the
* reference it may use.
*/
engine = READ_ONCE(ce->active);
if (unlikely(engine)) {
unsigned long flags;
spin_lock_irqsave(&engine->timeline.lock, flags);
process_csb(engine);
spin_unlock_irqrestore(&engine->timeline.lock, flags);
GEM_BUG_ON(READ_ONCE(ce->active));
}
i915_gem_context_unpin_hw_id(ce->gem_context);
intel_ring_unpin(ce->ring);
i915_gem_object_unpin_map(ce->state->obj);
__context_unpin(ce->state);
}
static void
__execlists_update_reg_state(struct intel_context *ce,
struct intel_engine_cs *engine)
{
struct intel_ring *ring = ce->ring;
u32 *regs = ce->lrc_reg_state;
GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
regs[CTX_RING_HEAD + 1] = ring->head;
regs[CTX_RING_TAIL + 1] = ring->tail;
/* RPCS */
if (engine->class == RENDER_CLASS)
regs[CTX_R_PWR_CLK_STATE + 1] =
gen8_make_rpcs(engine->i915, &ce->sseu);
}
static int
__execlists_context_pin(struct intel_context *ce,
struct intel_engine_cs *engine)
{
void *vaddr;
int ret;
GEM_BUG_ON(!ce->gem_context->ppgtt);
ret = execlists_context_deferred_alloc(ce, engine);
if (ret)
goto err;
GEM_BUG_ON(!ce->state);
ret = __context_pin(ce->state);
if (ret)
goto err;
vaddr = i915_gem_object_pin_map(ce->state->obj,
i915_coherent_map_type(engine->i915) |
I915_MAP_OVERRIDE);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto unpin_vma;
}
ret = intel_ring_pin(ce->ring);
if (ret)
goto unpin_map;
ret = i915_gem_context_pin_hw_id(ce->gem_context);
if (ret)
goto unpin_ring;
ce->lrc_desc = lrc_descriptor(ce, engine);
ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
__execlists_update_reg_state(ce, engine);
return 0;
unpin_ring:
intel_ring_unpin(ce->ring);
unpin_map:
i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
__context_unpin(ce->state);
err:
return ret;
}
static int execlists_context_pin(struct intel_context *ce)
{
return __execlists_context_pin(ce, ce->engine);
}
static const struct intel_context_ops execlists_context_ops = {
.pin = execlists_context_pin,
.unpin = execlists_context_unpin,
.destroy = execlists_context_destroy,
};
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
u32 *cs;
GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* Check if we have been preempted before we even get started.
*
* After this point i915_request_started() reports true, even if
* we get preempted and so are no longer running.
*/
*cs++ = MI_ARB_CHECK;
*cs++ = MI_NOOP;
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = rq->timeline->hwsp_offset;
*cs++ = 0;
*cs++ = rq->fence.seqno - 1;
intel_ring_advance(rq, cs);
/* Record the updated position of the request's payload */
rq->infix = intel_ring_offset(rq, cs);
return 0;
}
static int emit_pdps(struct i915_request *rq)
{
const struct intel_engine_cs * const engine = rq->engine;
struct i915_hw_ppgtt * const ppgtt = rq->gem_context->ppgtt;
int err, i;
u32 *cs;
GEM_BUG_ON(intel_vgpu_active(rq->i915));
/*
* Beware ye of the dragons, this sequence is magic!
*
* Small changes to this sequence can cause anything from
* GPU hangs to forcewake errors and machine lockups!
*/
/* Flush any residual operations from the context load */
err = engine->emit_flush(rq, EMIT_FLUSH);
if (err)
return err;
/* Magic required to prevent forcewake errors! */
err = engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
return err;
cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* Ensure the LRI have landed before we invalidate & continue */
*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
for (i = GEN8_3LVL_PDPES; i--; ) {
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
*cs++ = upper_32_bits(pd_daddr);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
*cs++ = lower_32_bits(pd_daddr);
}
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
/* Be doubly sure the LRI have landed before proceeding */
err = engine->emit_flush(rq, EMIT_FLUSH);
if (err)
return err;
/* Re-invalidate the TLB for luck */
return engine->emit_flush(rq, EMIT_INVALIDATE);
}
static int execlists_request_alloc(struct i915_request *request)
{
int ret;
GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
/*
* Flush enough space to reduce the likelihood of waiting after
* we start building the request - in which case we will just
* have to repeat work.
*/
request->reserved_space += EXECLISTS_REQUEST_SIZE;
/*
* Note that after this point, we have committed to using
* this request as it is being used to both track the
* state of engine initialisation and liveness of the
* golden renderstate above. Think twice before you try
* to cancel/unwind this request now.
*/
/* Unconditionally invalidate GPU caches and TLBs. */
if (i915_vm_is_4lvl(&request->gem_context->ppgtt->vm))
ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
else
ret = emit_pdps(request);
if (ret)
return ret;
request->reserved_space -= EXECLISTS_REQUEST_SIZE;
return 0;
}
/*
* In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
* PIPE_CONTROL instruction. This is required for the flush to happen correctly
* but there is a slight complication as this is applied in WA batch where the
* values are only initialized once so we cannot take register value at the
* beginning and reuse it further; hence we save its value to memory, upload a
* constant value with bit21 set and then we restore it back with the saved value.
* To simplify the WA, a constant value is formed by using the default value
* of this register. This shouldn't be a problem because we are only modifying
* it for a short period and this batch in non-premptible. We can ofcourse
* use additional instructions that read the actual value of the register
* at that time and set our bit of interest but it makes the WA complicated.
*
* This WA is also required for Gen9 so extracting as a function avoids
* code duplication.
*/
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
{
/* NB no one else is allowed to scribble over scratch + 256! */
*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = i915_scratch_offset(engine->i915) + 256;
*batch++ = 0;
*batch++ = MI_LOAD_REGISTER_IMM(1);
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = i915_scratch_offset(engine->i915) + 256;
*batch++ = 0;
return batch;
}
/*
* Typically we only have one indirect_ctx and per_ctx batch buffer which are
* initialized at the beginning and shared across all contexts but this field
* helps us to have multiple batches at different offsets and select them based
* on a criteria. At the moment this batch always start at the beginning of the page
* and at this point we don't have multiple wa_ctx batch buffers.
*
* The number of WA applied are not known at the beginning; we use this field
* to return the no of DWORDS written.
*
* It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
* so it adds NOOPs as padding to make it cacheline aligned.
* MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
* makes a complete batch buffer.
*/
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
/* WaDisableCtxRestoreArbitration:bdw,chv */
*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
if (IS_BROADWELL(engine->i915))
batch = gen8_emit_flush_coherentl3_wa(engine, batch);
/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
/* Actual scratch location is at 128 bytes offset */
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE,
i915_scratch_offset(engine->i915) +
2 * CACHELINE_BYTES);
*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
/*
* MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
* execution depends on the length specified in terms of cache lines
* in the register CTX_RCS_INDIRECT_CTX
*/
return batch;
}
struct lri {
i915_reg_t reg;
u32 value;
};
static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
{
GEM_BUG_ON(!count || count > 63);
*batch++ = MI_LOAD_REGISTER_IMM(count);
do {
*batch++ = i915_mmio_reg_offset(lri->reg);
*batch++ = lri->value;
} while (lri++, --count);
*batch++ = MI_NOOP;
return batch;
}
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
static const struct lri lri[] = {
/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
{
COMMON_SLICE_CHICKEN2,
__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
0),
},
/* BSpec: 11391 */
{
FF_SLICE_CHICKEN,
__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
},
/* BSpec: 11299 */
{
_3D_CHICKEN3,
__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
}
};
*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
batch = gen8_emit_flush_coherentl3_wa(engine, batch);
batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
/* WaMediaPoolStateCmdInWABB:bxt,glk */
if (HAS_POOLED_EU(engine->i915)) {
/*
* EU pool configuration is setup along with golden context
* during context initialization. This value depends on
* device type (2x6 or 3x6) and needs to be updated based
* on which subslice is disabled especially for 2x6
* devices, however it is safe to load default
* configuration of 3x6 device instead of masking off
* corresponding bits because HW ignores bits of a disabled
* subslice and drops down to appropriate config. Please
* see render_state_setup() in i915_gem_render_state.c for
* possible configurations, to avoid duplication they are
* not shown here again.
*/
*batch++ = GEN9_MEDIA_POOL_STATE;
*batch++ = GEN9_MEDIA_POOL_ENABLE;
*batch++ = 0x00777000;
*batch++ = 0;
*batch++ = 0;
*batch++ = 0;
}
*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
return batch;
}
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
int i;
/*
* WaPipeControlBefore3DStateSamplePattern: cnl
*
* Ensure the engine is idle prior to programming a
* 3DSTATE_SAMPLE_PATTERN during a context restore.
*/
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_CS_STALL,
0);
/*
* WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
* the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
* total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
* confusing. Since gen8_emit_pipe_control() already advances the
* batch by 6 dwords, we advance the other 10 here, completing a
* cacheline. It's not clear if the workaround requires this padding
* before other commands, or if it's just the regular padding we would
* already have for the workaround bb, so leave it here for now.
*/
for (i = 0; i < 10; i++)
*batch++ = MI_NOOP;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
return batch;
}
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int err;
obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
if (IS_ERR(obj))
return PTR_ERR(obj);
vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
if (err)
goto err;
engine->wa_ctx.vma = vma;
return 0;
err:
i915_gem_object_put(obj);
return err;
}
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
{
i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
}
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
{
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
&wa_ctx->per_ctx };
wa_bb_func_t wa_bb_fn[2];
struct page *page;
void *batch, *batch_ptr;
unsigned int i;
int ret;
if (GEM_DEBUG_WARN_ON(engine->id != RCS0))
return -EINVAL;
switch (INTEL_GEN(engine->i915)) {
case 11:
return 0;
case 10:
wa_bb_fn[0] = gen10_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
case 9:
wa_bb_fn[0] = gen9_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
case 8:
wa_bb_fn[0] = gen8_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
default:
MISSING_CASE(INTEL_GEN(engine->i915));
return 0;
}
ret = lrc_setup_wa_ctx(engine);
if (ret) {
DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
return ret;
}
page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
batch = batch_ptr = kmap_atomic(page);
/*
* Emit the two workaround batch buffers, recording the offset from the
* start of the workaround batch buffer object for each and their
* respective sizes.
*/
for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
wa_bb[i]->offset = batch_ptr - batch;
if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
CACHELINE_BYTES))) {
ret = -EINVAL;
break;
}
if (wa_bb_fn[i])
batch_ptr = wa_bb_fn[i](engine, batch_ptr);
wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
}
BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
kunmap_atomic(batch);
if (ret)
lrc_destroy_wa_ctx(engine);
return ret;
}
static void enable_execlists(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
/*
* Make sure we're not enabling the new 12-deep CSB
* FIFO as that requires a slightly updated handling
* in the ctx switch irq. Since we're currently only
* using only 2 elements of the enhanced execlists the
* deeper FIFO it's not needed and it's not worth adding
* more statements to the irq handler to support it.
*/
if (INTEL_GEN(dev_priv) >= 11)
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
else
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
I915_WRITE(RING_MI_MODE(engine->mmio_base),
_MASKED_BIT_DISABLE(STOP_RING));
I915_WRITE(RING_HWS_PGA(engine->mmio_base),
i915_ggtt_offset(engine->status_page.vma));
POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
bool unexpected = false;
if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
unexpected = true;
}
return unexpected;
}
static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
intel_engine_apply_workarounds(engine);
intel_engine_apply_whitelist(engine);
intel_mocs_init_engine(engine);
intel_engine_reset_breadcrumbs(engine);
if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
struct drm_printer p = drm_debug_printer(__func__);
intel_engine_dump(engine, &p, NULL);
}
enable_execlists(engine);
return 0;
}
static void execlists_reset_prepare(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
unsigned long flags;
GEM_TRACE("%s: depth<-%d\n", engine->name,
atomic_read(&execlists->tasklet.count));
/*
* Prevent request submission to the hardware until we have
* completed the reset in i915_gem_reset_finish(). If a request
* is completed by one engine, it may then queue a request
* to a second via its execlists->tasklet *just* as we are
* calling engine->init_hw() and also writing the ELSP.
* Turning off the execlists->tasklet until the reset is over
* prevents the race.
*/
__tasklet_disable_sync_once(&execlists->tasklet);
GEM_BUG_ON(!reset_in_progress(execlists));
intel_engine_stop_cs(engine);
/* And flush any current direct submission. */
spin_lock_irqsave(&engine->timeline.lock, flags);
process_csb(engine); /* drain preemption events */
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
static bool lrc_regs_ok(const struct i915_request *rq)
{
const struct intel_ring *ring = rq->ring;
const u32 *regs = rq->hw_context->lrc_reg_state;
/* Quick spot check for the common signs of context corruption */
if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
(RING_CTL_SIZE(ring->size) | RING_VALID))
return false;
if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
return false;
return true;
}
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq;
unsigned long flags;
u32 *regs;
spin_lock_irqsave(&engine->timeline.lock, flags);
/*
* Catch up with any missed context-switch interrupts.
*
* Ideally we would just read the remaining CSB entries now that we
* know the gpu is idle. However, the CSB registers are sometimes^W
* often trashed across a GPU reset! Instead we have to rely on
* guessing the missed context-switch events by looking at what
* requests were completed.
*/
execlists_cancel_port_requests(execlists);
/* Push back any incomplete requests for replay after the reset. */
rq = __unwind_incomplete_requests(engine);
/* Following the reset, we need to reload the CSB read/write pointers */
reset_csb_pointers(&engine->execlists);
if (!rq)
goto out_unlock;
/*
* If this request hasn't started yet, e.g. it is waiting on a
* semaphore, we need to avoid skipping the request or else we
* break the signaling chain. However, if the context is corrupt
* the request will not restart and we will be stuck with a wedged
* device. It is quite often the case that if we issue a reset
* while the GPU is loading the context image, that the context
* image becomes corrupt.
*
* Otherwise, if we have not started yet, the request should replay
* perfectly and we do not need to flag the result as being erroneous.
*/
if (!i915_request_started(rq) && lrc_regs_ok(rq))
goto out_unlock;
/*
* If the request was innocent, we leave the request in the ELSP
* and will try to replay it on restarting. The context image may
* have been corrupted by the reset, in which case we may have
* to service a new GPU hang, but more likely we can continue on
* without impact.
*
* If the request was guilty, we presume the context is corrupt
* and have to at least restore the RING register in the context
* image back to the expected values to skip over the guilty request.
*/
i915_reset_request(rq, stalled);
if (!stalled && lrc_regs_ok(rq))
goto out_unlock;
/*
* We want a simple context + ring to execute the breadcrumb update.
* We cannot rely on the context being intact across the GPU hang,
* so clear it and rebuild just what we need for the breadcrumb.
* All pending requests for this context will be zapped, and any
* future request will be after userspace has had the opportunity
* to recreate its own state.
*/
regs = rq->hw_context->lrc_reg_state;
if (engine->pinned_default_state) {
memcpy(regs, /* skip restoring the vanilla PPHWSP */
engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
engine->context_size - PAGE_SIZE);
}
/* Rerun the request; its payload has been neutered (if guilty). */
rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
intel_ring_update_space(rq->ring);
execlists_init_reg_state(regs, rq->hw_context, engine, rq->ring);
__execlists_update_reg_state(rq->hw_context, engine);
out_unlock:
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
/*
* After a GPU reset, we may have requests to replay. Do so now while
* we still have the forcewake to be sure that the GPU is not allowed
* to sleep before we restart and reload a context.
*/
GEM_BUG_ON(!reset_in_progress(execlists));
if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
execlists->tasklet.func(execlists->tasklet.data);
if (__tasklet_enable(&execlists->tasklet))
/* And kick in case we missed a new request submission. */
tasklet_hi_schedule(&execlists->tasklet);
GEM_TRACE("%s: depth->%d\n", engine->name,
atomic_read(&execlists->tasklet.count));
}
static int gen8_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* WaDisableCtxRestoreArbitration:bdw,chv
*
* We don't need to perform MI_ARB_ENABLE as often as we do (in
* particular all the gen that do not need the w/a at all!), if we
* took care to make sure that on every switch into this context
* (both ordinary and for preemption) that arbitrartion was enabled
* we would be fine. However, there doesn't seem to be a downside to
* being paranoid and making sure it is set before each batch and
* every context-switch.
*
* Note that if we fail to enable arbitration before the request
* is complete, then we do not see the context-switch interrupt and
* the engine hangs (with RING_HEAD == RING_TAIL).
*
* That satisfies both the GPGPU w/a and our heavy-handed paranoia.
*/
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
/* FIXME(BDW): Address space and security selectors. */
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR,
~(engine->irq_enable_mask | engine->irq_keep_mask));
ENGINE_POSTING_READ(engine, RING_IMR);
}
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
}
static int gen8_emit_flush(struct i915_request *request, u32 mode)
{
u32 cmd, *cs;
cs = intel_ring_begin(request, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW + 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_INVALIDATE_TLB;
if (request->engine->class == VIDEO_DECODE_CLASS)
cmd |= MI_INVALIDATE_BSD;
}
*cs++ = cmd;
*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
intel_ring_advance(request, cs);
return 0;
}
static int gen8_emit_flush_render(struct i915_request *request,
u32 mode)
{
struct intel_engine_cs *engine = request->engine;
u32 scratch_addr =
i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
bool vf_flush_wa = false, dc_flush_wa = false;
u32 *cs, flags = 0;
int len;
flags |= PIPE_CONTROL_CS_STALL;
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/*
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
* pipe control.
*/
if (IS_GEN(request->i915, 9))
vf_flush_wa = true;
/* WaForGAMHang:kbl */
if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
dc_flush_wa = true;
}
len = 6;
if (vf_flush_wa)
len += 6;
if (dc_flush_wa)
len += 12;
cs = intel_ring_begin(request, len);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (vf_flush_wa)
cs = gen8_emit_pipe_control(cs, 0, 0);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
intel_ring_advance(request, cs);
return 0;
}
/*
* Reserve space for 2 NOOPs at the end of each request to be
* used as a workaround for not being allowed to do lite
* restore with HEAD==TAIL (WaIdleLiteRestore).
*/
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
{
/* Ensure there's always at least one preemption point per-request. */
*cs++ = MI_ARB_CHECK;
*cs++ = MI_NOOP;
request->wa_tail = intel_ring_offset(request, cs);
return cs;
}
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write(cs,
request->fence.seqno,
request->timeline->hwsp_offset,
0);
cs = gen8_emit_ggtt_write(cs,
intel_engine_next_hangcheck_seqno(request->engine),
I915_GEM_HWS_HANGCHECK_ADDR,
MI_FLUSH_DW_STORE_INDEX);
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
request->tail = intel_ring_offset(request, cs);
assert_ring_tail_valid(request->ring, request->tail);
return gen8_emit_wa_tail(request, cs);
}
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write_rcs(cs,
request->fence.seqno,
request->timeline->hwsp_offset,
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_CS_STALL);
cs = gen8_emit_ggtt_write_rcs(cs,
intel_engine_next_hangcheck_seqno(request->engine),
I915_GEM_HWS_HANGCHECK_ADDR,
PIPE_CONTROL_STORE_DATA_INDEX);
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
request->tail = intel_ring_offset(request, cs);
assert_ring_tail_valid(request->ring, request->tail);
return gen8_emit_wa_tail(request, cs);
}
static int gen8_init_rcs_context(struct i915_request *rq)
{
int ret;
ret = intel_engine_emit_ctx_wa(rq);
if (ret)
return ret;
ret = intel_rcs_context_init_mocs(rq);
/*
* Failing to program the MOCS is non-fatal.The system will not
* run at peak performance. So generate an error and carry on.
*/
if (ret)
DRM_ERROR("MOCS failed to program: expect performance issues.\n");
return i915_gem_render_state_emit(rq);
}
/**
* intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
* @engine: Engine Command Streamer.
*/
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv;
/*
* Tasklet cannot be active at this point due intel_mark_active/idle
* so this is just for documentation.
*/
if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
&engine->execlists.tasklet.state)))
tasklet_kill(&engine->execlists.tasklet);
dev_priv = engine->i915;
if (engine->buffer) {
WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
}
if (engine->cleanup)
engine->cleanup(engine);
intel_engine_cleanup_common(engine);
lrc_destroy_wa_ctx(engine);
engine->i915 = NULL;
dev_priv->engine[engine->id] = NULL;
kfree(engine);
}
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
{
engine->submit_request = execlists_submit_request;
engine->cancel_requests = execlists_cancel_requests;
engine->schedule = i915_schedule;
engine->execlists.tasklet.func = execlists_submission_tasklet;
engine->reset.prepare = execlists_reset_prepare;
engine->park = NULL;
engine->unpark = NULL;
engine->flags |= I915_ENGINE_SUPPORTS_STATS;
if (!intel_vgpu_active(engine->i915))
engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
if (engine->preempt_context)
engine->flags |= I915_ENGINE_HAS_PREEMPTION;
}
static void
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
{
/* Default vfuncs which can be overriden by each engine. */
engine->init_hw = gen8_init_common_ring;
engine->reset.prepare = execlists_reset_prepare;
engine->reset.reset = execlists_reset;
engine->reset.finish = execlists_reset_finish;
engine->cops = &execlists_context_ops;
engine->request_alloc = execlists_request_alloc;
engine->emit_flush = gen8_emit_flush;
engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
engine->set_default_submission = intel_execlists_set_default_submission;
if (INTEL_GEN(engine->i915) < 11) {
engine->irq_enable = gen8_logical_ring_enable_irq;
engine->irq_disable = gen8_logical_ring_disable_irq;
} else {
/*
* TODO: On Gen11 interrupt masks need to be clear
* to allow C6 entry. Keep interrupts enabled at
* and take the hit of generating extra interrupts
* until a more refined solution exists.
*/
}
engine->emit_bb_start = gen8_emit_bb_start;
}
static inline void
logical_ring_default_irqs(struct intel_engine_cs *engine)
{
unsigned int shift = 0;
if (INTEL_GEN(engine->i915) < 11) {
const u8 irq_shifts[] = {
[RCS0] = GEN8_RCS_IRQ_SHIFT,
[BCS0] = GEN8_BCS_IRQ_SHIFT,
[VCS0] = GEN8_VCS0_IRQ_SHIFT,
[VCS1] = GEN8_VCS1_IRQ_SHIFT,
[VECS0] = GEN8_VECS_IRQ_SHIFT,
};
shift = irq_shifts[engine->id];
}
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
}
static int
logical_ring_setup(struct intel_engine_cs *engine)
{
int err;
err = intel_engine_setup_common(engine);
if (err)
return err;
/* Intentionally left blank. */
engine->buffer = NULL;
tasklet_init(&engine->execlists.tasklet,
execlists_submission_tasklet, (unsigned long)engine);
logical_ring_default_vfuncs(engine);
logical_ring_default_irqs(engine);
return 0;
}
static int logical_ring_init(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
struct intel_engine_execlists * const execlists = &engine->execlists;
u32 base = engine->mmio_base;
int ret;
ret = intel_engine_init_common(engine);
if (ret)
return ret;
intel_engine_init_workarounds(engine);
if (HAS_LOGICAL_RING_ELSQ(i915)) {
execlists->submit_reg = i915->uncore.regs +
i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
execlists->ctrl_reg = i915->uncore.regs +
i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
} else {
execlists->submit_reg = i915->uncore.regs +
i915_mmio_reg_offset(RING_ELSP(base));
}
execlists->preempt_complete_status = ~0u;
if (engine->preempt_context)
execlists->preempt_complete_status =
upper_32_bits(engine->preempt_context->lrc_desc);
execlists->csb_status =
&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
execlists->csb_write =
&engine->status_page.addr[intel_hws_csb_write_index(i915)];
reset_csb_pointers(execlists);
return 0;
}
int logical_render_ring_init(struct intel_engine_cs *engine)
{
int ret;
ret = logical_ring_setup(engine);
if (ret)
return ret;
/* Override some for render ring. */
engine->init_context = gen8_init_rcs_context;
engine->emit_flush = gen8_emit_flush_render;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
ret = logical_ring_init(engine);
if (ret)
return ret;
ret = intel_init_workaround_bb(engine);
if (ret) {
/*
* We continue even if we fail to initialize WA batch
* because we only expect rare glitches but nothing
* critical to prevent us from using GPU
*/
DRM_ERROR("WA batch buffer initialization failed: %d\n",
ret);
}
intel_engine_init_whitelist(engine);
return 0;
}
int logical_xcs_ring_init(struct intel_engine_cs *engine)
{
int err;
err = logical_ring_setup(engine);
if (err)
return err;
return logical_ring_init(engine);
}
u32 gen8_make_rpcs(struct drm_i915_private *i915, struct intel_sseu *req_sseu)
{
const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
bool subslice_pg = sseu->has_subslice_pg;
struct intel_sseu ctx_sseu;
u8 slices, subslices;
u32 rpcs = 0;
/*
* No explicit RPCS request is needed to ensure full
* slice/subslice/EU enablement prior to Gen9.
*/
if (INTEL_GEN(i915) < 9)
return 0;
/*
* If i915/perf is active, we want a stable powergating configuration
* on the system.
*
* We could choose full enablement, but on ICL we know there are use
* cases which disable slices for functional, apart for performance
* reasons. So in this case we select a known stable subset.
*/
if (!i915->perf.oa.exclusive_stream) {
ctx_sseu = *req_sseu;
} else {
ctx_sseu = intel_device_default_sseu(i915);
if (IS_GEN(i915, 11)) {
/*
* We only need subslice count so it doesn't matter
* which ones we select - just turn off low bits in the
* amount of half of all available subslices per slice.
*/
ctx_sseu.subslice_mask =
~(~0 << (hweight8(ctx_sseu.subslice_mask) / 2));
ctx_sseu.slice_mask = 0x1;
}
}
slices = hweight8(ctx_sseu.slice_mask);
subslices = hweight8(ctx_sseu.subslice_mask);
/*
* Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
* wide and Icelake has up to eight subslices, specfial programming is
* needed in order to correctly enable all subslices.
*
* According to documentation software must consider the configuration
* as 2x4x8 and hardware will translate this to 1x8x8.
*
* Furthemore, even though SScount is three bits, maximum documented
* value for it is four. From this some rules/restrictions follow:
*
* 1.
* If enabled subslice count is greater than four, two whole slices must
* be enabled instead.
*
* 2.
* When more than one slice is enabled, hardware ignores the subslice
* count altogether.
*
* From these restrictions it follows that it is not possible to enable
* a count of subslices between the SScount maximum of four restriction,
* and the maximum available number on a particular SKU. Either all
* subslices are enabled, or a count between one and four on the first
* slice.
*/
if (IS_GEN(i915, 11) &&
slices == 1 &&
subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
GEM_BUG_ON(subslices & 1);
subslice_pg = false;
slices *= 2;
}
/*
* Starting in Gen9, render power gating can leave
* slice/subslice/EU in a partially enabled state. We
* must make an explicit request through RPCS for full
* enablement.
*/
if (sseu->has_slice_pg) {
u32 mask, val = slices;
if (INTEL_GEN(i915) >= 11) {
mask = GEN11_RPCS_S_CNT_MASK;
val <<= GEN11_RPCS_S_CNT_SHIFT;
} else {
mask = GEN8_RPCS_S_CNT_MASK;
val <<= GEN8_RPCS_S_CNT_SHIFT;
}
GEM_BUG_ON(val & ~mask);
val &= mask;
rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
}
if (subslice_pg) {
u32 val = subslices;
val <<= GEN8_RPCS_SS_CNT_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
val &= GEN8_RPCS_SS_CNT_MASK;
rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
}
if (sseu->has_eu_pg) {
u32 val;
val = ctx_sseu.min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
val &= GEN8_RPCS_EU_MIN_MASK;
rpcs |= val;
val = ctx_sseu.max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
val &= GEN8_RPCS_EU_MAX_MASK;
rpcs |= val;
rpcs |= GEN8_RPCS_ENABLE;
}
return rpcs;
}
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
{
u32 indirect_ctx_offset;
switch (INTEL_GEN(engine->i915)) {
default:
MISSING_CASE(INTEL_GEN(engine->i915));
/* fall through */
case 11:
indirect_ctx_offset =
GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 10:
indirect_ctx_offset =
GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 9:
indirect_ctx_offset =
GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 8:
indirect_ctx_offset =
GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
}
return indirect_ctx_offset;
}
static void execlists_init_reg_state(u32 *regs,
struct intel_context *ce,
struct intel_engine_cs *engine,
struct intel_ring *ring)
{
struct i915_hw_ppgtt *ppgtt = ce->gem_context->ppgtt;
bool rcs = engine->class == RENDER_CLASS;
u32 base = engine->mmio_base;
/* A context is actually a big batch buffer with several
* MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
* values we are setting here are only for the first context restore:
* on a subsequent save, the GPU will recreate this batchbuffer with new
* values (including all the missing MI_LOAD_REGISTER_IMM commands that
* we are not initializing here).
*/
regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
MI_LRI_FORCE_POSTED;
CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
if (INTEL_GEN(engine->i915) < 11) {
regs[CTX_CONTEXT_CONTROL + 1] |=
_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
CTX_CTRL_RS_CTX_ENABLE);
}
CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
RING_CTL_SIZE(ring->size) | RING_VALID);
CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
if (rcs) {
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
RING_INDIRECT_CTX_OFFSET(base), 0);
if (wa_ctx->indirect_ctx.size) {
u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
regs[CTX_RCS_INDIRECT_CTX + 1] =
(ggtt_offset + wa_ctx->indirect_ctx.offset) |
(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
intel_lr_indirect_ctx_offset(engine) << 6;
}
CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
if (wa_ctx->per_ctx.size) {
u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
regs[CTX_BB_PER_CTX_PTR + 1] =
(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
}
}
regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
/* PDP values well be assigned later if needed */
CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
if (i915_vm_is_4lvl(&ppgtt->vm)) {
/* 64b PPGTT (48bit canonical)
* PDP0_DESCRIPTOR contains the base address to PML4 and
* other PDP Descriptors are ignored.
*/
ASSIGN_CTX_PML4(ppgtt, regs);
} else {
ASSIGN_CTX_PDP(ppgtt, regs, 3);
ASSIGN_CTX_PDP(ppgtt, regs, 2);
ASSIGN_CTX_PDP(ppgtt, regs, 1);
ASSIGN_CTX_PDP(ppgtt, regs, 0);
}
if (rcs) {
regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
i915_oa_init_reg_state(engine, ce, regs);
}
regs[CTX_END] = MI_BATCH_BUFFER_END;
if (INTEL_GEN(engine->i915) >= 10)
regs[CTX_END] |= BIT(0);
}
static int
populate_lr_context(struct intel_context *ce,
struct drm_i915_gem_object *ctx_obj,
struct intel_engine_cs *engine,
struct intel_ring *ring)
{
void *vaddr;
u32 *regs;
int ret;
vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
return ret;
}
if (engine->default_state) {
/*
* We only want to copy over the template context state;
* skipping over the headers reserved for GuC communication,
* leaving those as zero.
*/
const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
void *defaults;
defaults = i915_gem_object_pin_map(engine->default_state,
I915_MAP_WB);
if (IS_ERR(defaults)) {
ret = PTR_ERR(defaults);
goto err_unpin_ctx;
}
memcpy(vaddr + start, defaults + start, engine->context_size);
i915_gem_object_unpin_map(engine->default_state);
}
/* The second page of the context object contains some fields which must
* be set up prior to the first execution. */
regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
execlists_init_reg_state(regs, ce, engine, ring);
if (!engine->default_state)
regs[CTX_CONTEXT_CONTROL + 1] |=
_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
if (ce->gem_context == engine->i915->preempt_context &&
INTEL_GEN(engine->i915) < 11)
regs[CTX_CONTEXT_CONTROL + 1] |=
_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
ret = 0;
err_unpin_ctx:
__i915_gem_object_flush_map(ctx_obj,
LRC_HEADER_PAGES * PAGE_SIZE,
engine->context_size);
i915_gem_object_unpin_map(ctx_obj);
return ret;
}
static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
{
if (ctx->timeline)
return i915_timeline_get(ctx->timeline);
else
return i915_timeline_create(ctx->i915, NULL);
}
static int execlists_context_deferred_alloc(struct intel_context *ce,
struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *ctx_obj;
struct i915_vma *vma;
u32 context_size;
struct intel_ring *ring;
struct i915_timeline *timeline;
int ret;
if (ce->state)
return 0;
context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
/*
* Before the actual start of the context image, we insert a few pages
* for our own use and for sharing with the GuC.
*/
context_size += LRC_HEADER_PAGES * PAGE_SIZE;
ctx_obj = i915_gem_object_create(engine->i915, context_size);
if (IS_ERR(ctx_obj))
return PTR_ERR(ctx_obj);
vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto error_deref_obj;
}
timeline = get_timeline(ce->gem_context);
if (IS_ERR(timeline)) {
ret = PTR_ERR(timeline);
goto error_deref_obj;
}
ring = intel_engine_create_ring(engine,
timeline,
ce->gem_context->ring_size);
i915_timeline_put(timeline);
if (IS_ERR(ring)) {
ret = PTR_ERR(ring);
goto error_deref_obj;
}
ret = populate_lr_context(ce, ctx_obj, engine, ring);
if (ret) {
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
goto error_ring_free;
}
ce->ring = ring;
ce->state = vma;
return 0;
error_ring_free:
intel_ring_put(ring);
error_deref_obj:
i915_gem_object_put(ctx_obj);
return ret;
}
void intel_lr_context_resume(struct drm_i915_private *i915)
{
struct i915_gem_context *ctx;
struct intel_context *ce;
/*
* Because we emit WA_TAIL_DWORDS there may be a disparity
* between our bookkeeping in ce->ring->head and ce->ring->tail and
* that stored in context. As we only write new commands from
* ce->ring->tail onwards, everything before that is junk. If the GPU
* starts reading from its RING_HEAD from the context, it may try to
* execute that junk and die.
*
* So to avoid that we reset the context images upon resume. For
* simplicity, we just zero everything out.
*/
list_for_each_entry(ctx, &i915->contexts.list, link) {
list_for_each_entry(ce, &ctx->active_engines, active_link) {
GEM_BUG_ON(!ce->ring);
intel_ring_reset(ce->ring, 0);
__execlists_update_reg_state(ce, ce->engine);
}
}
}
void intel_execlists_show_requests(struct intel_engine_cs *engine,
struct drm_printer *m,
void (*show_request)(struct drm_printer *m,
struct i915_request *rq,
const char *prefix),
unsigned int max)
{
const struct intel_engine_execlists *execlists = &engine->execlists;
struct i915_request *rq, *last;
unsigned long flags;
unsigned int count;
struct rb_node *rb;
spin_lock_irqsave(&engine->timeline.lock, flags);
last = NULL;
count = 0;
list_for_each_entry(rq, &engine->timeline.requests, link) {
if (count++ < max - 1)
show_request(m, rq, "\t\tE ");
else
last = rq;
}
if (last) {
if (count > max) {
drm_printf(m,
"\t\t...skipping %d executing requests...\n",
count - max);
}
show_request(m, last, "\t\tE ");
}
last = NULL;
count = 0;
if (execlists->queue_priority_hint != INT_MIN)
drm_printf(m, "\t\tQueue priority hint: %d\n",
execlists->queue_priority_hint);
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
int i;
priolist_for_each_request(rq, p, i) {
if (count++ < max - 1)
show_request(m, rq, "\t\tQ ");
else
last = rq;
}
}
if (last) {
if (count > max) {
drm_printf(m,
"\t\t...skipping %d queued requests...\n",
count - max);
}
show_request(m, last, "\t\tQ ");
}
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif