mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 10:37:45 +07:00
13decfb438
Genwqe uses dma_alloc_coherent and depends on zero initialized memory. On one occasion it ueses an explicit memset on others it uses un-initialized memory. This bug was covered because some archs actually return zero initialized memory when using dma_alloc_coherent but this is by no means guaranteed. Simply switch to dma_zalloc_coherent. Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com> Signed-off-by: Frank Haverkamp <haver@linux.vnet.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1410 lines
38 KiB
C
1410 lines
38 KiB
C
/**
|
|
* IBM Accelerator Family 'GenWQE'
|
|
*
|
|
* (C) Copyright IBM Corp. 2013
|
|
*
|
|
* Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
|
|
* Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
|
|
* Author: Michael Jung <mijung@gmx.net>
|
|
* Author: Michael Ruettger <michael@ibmra.de>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License (version 2 only)
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
/*
|
|
* Device Driver Control Block (DDCB) queue support. Definition of
|
|
* interrupt handlers for queue support as well as triggering the
|
|
* health monitor code in case of problems. The current hardware uses
|
|
* an MSI interrupt which is shared between error handling and
|
|
* functional code.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/string.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/crc-itu-t.h>
|
|
|
|
#include "card_base.h"
|
|
#include "card_ddcb.h"
|
|
|
|
/*
|
|
* N: next DDCB, this is where the next DDCB will be put.
|
|
* A: active DDCB, this is where the code will look for the next completion.
|
|
* x: DDCB is enqueued, we are waiting for its completion.
|
|
|
|
* Situation (1): Empty queue
|
|
* +---+---+---+---+---+---+---+---+
|
|
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|
|
* | | | | | | | | |
|
|
* +---+---+---+---+---+---+---+---+
|
|
* A/N
|
|
* enqueued_ddcbs = A - N = 2 - 2 = 0
|
|
*
|
|
* Situation (2): Wrapped, N > A
|
|
* +---+---+---+---+---+---+---+---+
|
|
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|
|
* | | | x | x | | | | |
|
|
* +---+---+---+---+---+---+---+---+
|
|
* A N
|
|
* enqueued_ddcbs = N - A = 4 - 2 = 2
|
|
*
|
|
* Situation (3): Queue wrapped, A > N
|
|
* +---+---+---+---+---+---+---+---+
|
|
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|
|
* | x | x | | | x | x | x | x |
|
|
* +---+---+---+---+---+---+---+---+
|
|
* N A
|
|
* enqueued_ddcbs = queue_max - (A - N) = 8 - (4 - 2) = 6
|
|
*
|
|
* Situation (4a): Queue full N > A
|
|
* +---+---+---+---+---+---+---+---+
|
|
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|
|
* | x | x | x | x | x | x | x | |
|
|
* +---+---+---+---+---+---+---+---+
|
|
* A N
|
|
*
|
|
* enqueued_ddcbs = N - A = 7 - 0 = 7
|
|
*
|
|
* Situation (4a): Queue full A > N
|
|
* +---+---+---+---+---+---+---+---+
|
|
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|
|
* | x | x | x | | x | x | x | x |
|
|
* +---+---+---+---+---+---+---+---+
|
|
* N A
|
|
* enqueued_ddcbs = queue_max - (A - N) = 8 - (4 - 3) = 7
|
|
*/
|
|
|
|
static int queue_empty(struct ddcb_queue *queue)
|
|
{
|
|
return queue->ddcb_next == queue->ddcb_act;
|
|
}
|
|
|
|
static int queue_enqueued_ddcbs(struct ddcb_queue *queue)
|
|
{
|
|
if (queue->ddcb_next >= queue->ddcb_act)
|
|
return queue->ddcb_next - queue->ddcb_act;
|
|
|
|
return queue->ddcb_max - (queue->ddcb_act - queue->ddcb_next);
|
|
}
|
|
|
|
static int queue_free_ddcbs(struct ddcb_queue *queue)
|
|
{
|
|
int free_ddcbs = queue->ddcb_max - queue_enqueued_ddcbs(queue) - 1;
|
|
|
|
if (WARN_ON_ONCE(free_ddcbs < 0)) { /* must never ever happen! */
|
|
return 0;
|
|
}
|
|
return free_ddcbs;
|
|
}
|
|
|
|
/*
|
|
* Use of the PRIV field in the DDCB for queue debugging:
|
|
*
|
|
* (1) Trying to get rid of a DDCB which saw a timeout:
|
|
* pddcb->priv[6] = 0xcc; # cleared
|
|
*
|
|
* (2) Append a DDCB via NEXT bit:
|
|
* pddcb->priv[7] = 0xaa; # appended
|
|
*
|
|
* (3) DDCB needed tapping:
|
|
* pddcb->priv[7] = 0xbb; # tapped
|
|
*
|
|
* (4) DDCB marked as correctly finished:
|
|
* pddcb->priv[6] = 0xff; # finished
|
|
*/
|
|
|
|
static inline void ddcb_mark_tapped(struct ddcb *pddcb)
|
|
{
|
|
pddcb->priv[7] = 0xbb; /* tapped */
|
|
}
|
|
|
|
static inline void ddcb_mark_appended(struct ddcb *pddcb)
|
|
{
|
|
pddcb->priv[7] = 0xaa; /* appended */
|
|
}
|
|
|
|
static inline void ddcb_mark_cleared(struct ddcb *pddcb)
|
|
{
|
|
pddcb->priv[6] = 0xcc; /* cleared */
|
|
}
|
|
|
|
static inline void ddcb_mark_finished(struct ddcb *pddcb)
|
|
{
|
|
pddcb->priv[6] = 0xff; /* finished */
|
|
}
|
|
|
|
static inline void ddcb_mark_unused(struct ddcb *pddcb)
|
|
{
|
|
pddcb->priv_64 = cpu_to_be64(0); /* not tapped */
|
|
}
|
|
|
|
/**
|
|
* genwqe_crc16() - Generate 16-bit crc as required for DDCBs
|
|
* @buff: pointer to data buffer
|
|
* @len: length of data for calculation
|
|
* @init: initial crc (0xffff at start)
|
|
*
|
|
* Polynomial = x^16 + x^12 + x^5 + 1 (0x1021)
|
|
* Example: 4 bytes 0x01 0x02 0x03 0x04 with init = 0xffff
|
|
* should result in a crc16 of 0x89c3
|
|
*
|
|
* Return: crc16 checksum in big endian format !
|
|
*/
|
|
static inline u16 genwqe_crc16(const u8 *buff, size_t len, u16 init)
|
|
{
|
|
return crc_itu_t(init, buff, len);
|
|
}
|
|
|
|
static void print_ddcb_info(struct genwqe_dev *cd, struct ddcb_queue *queue)
|
|
{
|
|
int i;
|
|
struct ddcb *pddcb;
|
|
unsigned long flags;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
|
|
spin_lock_irqsave(&cd->print_lock, flags);
|
|
|
|
dev_info(&pci_dev->dev,
|
|
"DDCB list for card #%d (ddcb_act=%d / ddcb_next=%d):\n",
|
|
cd->card_idx, queue->ddcb_act, queue->ddcb_next);
|
|
|
|
pddcb = queue->ddcb_vaddr;
|
|
for (i = 0; i < queue->ddcb_max; i++) {
|
|
dev_err(&pci_dev->dev,
|
|
" %c %-3d: RETC=%03x SEQ=%04x HSI=%02X SHI=%02x PRIV=%06llx CMD=%03x\n",
|
|
i == queue->ddcb_act ? '>' : ' ',
|
|
i,
|
|
be16_to_cpu(pddcb->retc_16),
|
|
be16_to_cpu(pddcb->seqnum_16),
|
|
pddcb->hsi,
|
|
pddcb->shi,
|
|
be64_to_cpu(pddcb->priv_64),
|
|
pddcb->cmd);
|
|
pddcb++;
|
|
}
|
|
spin_unlock_irqrestore(&cd->print_lock, flags);
|
|
}
|
|
|
|
struct genwqe_ddcb_cmd *ddcb_requ_alloc(void)
|
|
{
|
|
struct ddcb_requ *req;
|
|
|
|
req = kzalloc(sizeof(*req), GFP_KERNEL);
|
|
if (!req)
|
|
return NULL;
|
|
|
|
return &req->cmd;
|
|
}
|
|
|
|
void ddcb_requ_free(struct genwqe_ddcb_cmd *cmd)
|
|
{
|
|
struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd);
|
|
|
|
kfree(req);
|
|
}
|
|
|
|
static inline enum genwqe_requ_state ddcb_requ_get_state(struct ddcb_requ *req)
|
|
{
|
|
return req->req_state;
|
|
}
|
|
|
|
static inline void ddcb_requ_set_state(struct ddcb_requ *req,
|
|
enum genwqe_requ_state new_state)
|
|
{
|
|
req->req_state = new_state;
|
|
}
|
|
|
|
static inline int ddcb_requ_collect_debug_data(struct ddcb_requ *req)
|
|
{
|
|
return req->cmd.ddata_addr != 0x0;
|
|
}
|
|
|
|
/**
|
|
* ddcb_requ_finished() - Returns the hardware state of the associated DDCB
|
|
* @cd: pointer to genwqe device descriptor
|
|
* @req: DDCB work request
|
|
*
|
|
* Status of ddcb_requ mirrors this hardware state, but is copied in
|
|
* the ddcb_requ on interrupt/polling function. The lowlevel code
|
|
* should check the hardware state directly, the higher level code
|
|
* should check the copy.
|
|
*
|
|
* This function will also return true if the state of the queue is
|
|
* not GENWQE_CARD_USED. This enables us to purge all DDCBs in the
|
|
* shutdown case.
|
|
*/
|
|
static int ddcb_requ_finished(struct genwqe_dev *cd, struct ddcb_requ *req)
|
|
{
|
|
return (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED) ||
|
|
(cd->card_state != GENWQE_CARD_USED);
|
|
}
|
|
|
|
/**
|
|
* enqueue_ddcb() - Enqueue a DDCB
|
|
* @cd: pointer to genwqe device descriptor
|
|
* @queue: queue this operation should be done on
|
|
* @ddcb_no: pointer to ddcb number being tapped
|
|
*
|
|
* Start execution of DDCB by tapping or append to queue via NEXT
|
|
* bit. This is done by an atomic 'compare and swap' instruction and
|
|
* checking SHI and HSI of the previous DDCB.
|
|
*
|
|
* This function must only be called with ddcb_lock held.
|
|
*
|
|
* Return: 1 if new DDCB is appended to previous
|
|
* 2 if DDCB queue is tapped via register/simulation
|
|
*/
|
|
#define RET_DDCB_APPENDED 1
|
|
#define RET_DDCB_TAPPED 2
|
|
|
|
static int enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_queue *queue,
|
|
struct ddcb *pddcb, int ddcb_no)
|
|
{
|
|
unsigned int try;
|
|
int prev_no;
|
|
struct ddcb *prev_ddcb;
|
|
__be32 old, new, icrc_hsi_shi;
|
|
u64 num;
|
|
|
|
/*
|
|
* For performance checks a Dispatch Timestamp can be put into
|
|
* DDCB It is supposed to use the SLU's free running counter,
|
|
* but this requires PCIe cycles.
|
|
*/
|
|
ddcb_mark_unused(pddcb);
|
|
|
|
/* check previous DDCB if already fetched */
|
|
prev_no = (ddcb_no == 0) ? queue->ddcb_max - 1 : ddcb_no - 1;
|
|
prev_ddcb = &queue->ddcb_vaddr[prev_no];
|
|
|
|
/*
|
|
* It might have happened that the HSI.FETCHED bit is
|
|
* set. Retry in this case. Therefore I expect maximum 2 times
|
|
* trying.
|
|
*/
|
|
ddcb_mark_appended(pddcb);
|
|
for (try = 0; try < 2; try++) {
|
|
old = prev_ddcb->icrc_hsi_shi_32; /* read SHI/HSI in BE32 */
|
|
|
|
/* try to append via NEXT bit if prev DDCB is not completed */
|
|
if ((old & DDCB_COMPLETED_BE32) != 0x00000000)
|
|
break;
|
|
|
|
new = (old | DDCB_NEXT_BE32);
|
|
|
|
wmb(); /* need to ensure write ordering */
|
|
icrc_hsi_shi = cmpxchg(&prev_ddcb->icrc_hsi_shi_32, old, new);
|
|
|
|
if (icrc_hsi_shi == old)
|
|
return RET_DDCB_APPENDED; /* appended to queue */
|
|
}
|
|
|
|
/* Queue must be re-started by updating QUEUE_OFFSET */
|
|
ddcb_mark_tapped(pddcb);
|
|
num = (u64)ddcb_no << 8;
|
|
|
|
wmb(); /* need to ensure write ordering */
|
|
__genwqe_writeq(cd, queue->IO_QUEUE_OFFSET, num); /* start queue */
|
|
|
|
return RET_DDCB_TAPPED;
|
|
}
|
|
|
|
/**
|
|
* copy_ddcb_results() - Copy output state from real DDCB to request
|
|
*
|
|
* Copy DDCB ASV to request struct. There is no endian
|
|
* conversion made, since data structure in ASV is still
|
|
* unknown here.
|
|
*
|
|
* This is needed by:
|
|
* - genwqe_purge_ddcb()
|
|
* - genwqe_check_ddcb_queue()
|
|
*/
|
|
static void copy_ddcb_results(struct ddcb_requ *req, int ddcb_no)
|
|
{
|
|
struct ddcb_queue *queue = req->queue;
|
|
struct ddcb *pddcb = &queue->ddcb_vaddr[req->num];
|
|
|
|
memcpy(&req->cmd.asv[0], &pddcb->asv[0], DDCB_ASV_LENGTH);
|
|
|
|
/* copy status flags of the variant part */
|
|
req->cmd.vcrc = be16_to_cpu(pddcb->vcrc_16);
|
|
req->cmd.deque_ts = be64_to_cpu(pddcb->deque_ts_64);
|
|
req->cmd.cmplt_ts = be64_to_cpu(pddcb->cmplt_ts_64);
|
|
|
|
req->cmd.attn = be16_to_cpu(pddcb->attn_16);
|
|
req->cmd.progress = be32_to_cpu(pddcb->progress_32);
|
|
req->cmd.retc = be16_to_cpu(pddcb->retc_16);
|
|
|
|
if (ddcb_requ_collect_debug_data(req)) {
|
|
int prev_no = (ddcb_no == 0) ?
|
|
queue->ddcb_max - 1 : ddcb_no - 1;
|
|
struct ddcb *prev_pddcb = &queue->ddcb_vaddr[prev_no];
|
|
|
|
memcpy(&req->debug_data.ddcb_finished, pddcb,
|
|
sizeof(req->debug_data.ddcb_finished));
|
|
memcpy(&req->debug_data.ddcb_prev, prev_pddcb,
|
|
sizeof(req->debug_data.ddcb_prev));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* genwqe_check_ddcb_queue() - Checks DDCB queue for completed work equests.
|
|
* @cd: pointer to genwqe device descriptor
|
|
*
|
|
* Return: Number of DDCBs which were finished
|
|
*/
|
|
static int genwqe_check_ddcb_queue(struct genwqe_dev *cd,
|
|
struct ddcb_queue *queue)
|
|
{
|
|
unsigned long flags;
|
|
int ddcbs_finished = 0;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
|
|
spin_lock_irqsave(&queue->ddcb_lock, flags);
|
|
|
|
/* FIXME avoid soft locking CPU */
|
|
while (!queue_empty(queue) && (ddcbs_finished < queue->ddcb_max)) {
|
|
|
|
struct ddcb *pddcb;
|
|
struct ddcb_requ *req;
|
|
u16 vcrc, vcrc_16, retc_16;
|
|
|
|
pddcb = &queue->ddcb_vaddr[queue->ddcb_act];
|
|
|
|
if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) ==
|
|
0x00000000)
|
|
goto go_home; /* not completed, continue waiting */
|
|
|
|
wmb(); /* Add sync to decouple prev. read operations */
|
|
|
|
/* Note: DDCB could be purged */
|
|
req = queue->ddcb_req[queue->ddcb_act];
|
|
if (req == NULL) {
|
|
/* this occurs if DDCB is purged, not an error */
|
|
/* Move active DDCB further; Nothing to do anymore. */
|
|
goto pick_next_one;
|
|
}
|
|
|
|
/*
|
|
* HSI=0x44 (fetched and completed), but RETC is
|
|
* 0x101, or even worse 0x000.
|
|
*
|
|
* In case of seeing the queue in inconsistent state
|
|
* we read the errcnts and the queue status to provide
|
|
* a trigger for our PCIe analyzer stop capturing.
|
|
*/
|
|
retc_16 = be16_to_cpu(pddcb->retc_16);
|
|
if ((pddcb->hsi == 0x44) && (retc_16 <= 0x101)) {
|
|
u64 errcnts, status;
|
|
u64 ddcb_offs = (u64)pddcb - (u64)queue->ddcb_vaddr;
|
|
|
|
errcnts = __genwqe_readq(cd, queue->IO_QUEUE_ERRCNTS);
|
|
status = __genwqe_readq(cd, queue->IO_QUEUE_STATUS);
|
|
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] SEQN=%04x HSI=%02x RETC=%03x Q_ERRCNTS=%016llx Q_STATUS=%016llx DDCB_DMA_ADDR=%016llx\n",
|
|
__func__, be16_to_cpu(pddcb->seqnum_16),
|
|
pddcb->hsi, retc_16, errcnts, status,
|
|
queue->ddcb_daddr + ddcb_offs);
|
|
}
|
|
|
|
copy_ddcb_results(req, queue->ddcb_act);
|
|
queue->ddcb_req[queue->ddcb_act] = NULL; /* take from queue */
|
|
|
|
dev_dbg(&pci_dev->dev, "FINISHED DDCB#%d\n", req->num);
|
|
genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
|
|
|
|
ddcb_mark_finished(pddcb);
|
|
|
|
/* calculate CRC_16 to see if VCRC is correct */
|
|
vcrc = genwqe_crc16(pddcb->asv,
|
|
VCRC_LENGTH(req->cmd.asv_length),
|
|
0xffff);
|
|
vcrc_16 = be16_to_cpu(pddcb->vcrc_16);
|
|
if (vcrc != vcrc_16) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s %s: err: wrong VCRC pre=%02x vcrc_len=%d bytes vcrc_data=%04x is not vcrc_card=%04x\n",
|
|
GENWQE_DEVNAME, dev_name(&pci_dev->dev),
|
|
pddcb->pre, VCRC_LENGTH(req->cmd.asv_length),
|
|
vcrc, vcrc_16);
|
|
}
|
|
|
|
ddcb_requ_set_state(req, GENWQE_REQU_FINISHED);
|
|
queue->ddcbs_completed++;
|
|
queue->ddcbs_in_flight--;
|
|
|
|
/* wake up process waiting for this DDCB, and
|
|
processes on the busy queue */
|
|
wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]);
|
|
wake_up_interruptible(&queue->busy_waitq);
|
|
|
|
pick_next_one:
|
|
queue->ddcb_act = (queue->ddcb_act + 1) % queue->ddcb_max;
|
|
ddcbs_finished++;
|
|
}
|
|
|
|
go_home:
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
return ddcbs_finished;
|
|
}
|
|
|
|
/**
|
|
* __genwqe_wait_ddcb(): Waits until DDCB is completed
|
|
* @cd: pointer to genwqe device descriptor
|
|
* @req: pointer to requsted DDCB parameters
|
|
*
|
|
* The Service Layer will update the RETC in DDCB when processing is
|
|
* pending or done.
|
|
*
|
|
* Return: > 0 remaining jiffies, DDCB completed
|
|
* -ETIMEDOUT when timeout
|
|
* -ERESTARTSYS when ^C
|
|
* -EINVAL when unknown error condition
|
|
*
|
|
* When an error is returned the called needs to ensure that
|
|
* purge_ddcb() is being called to get the &req removed from the
|
|
* queue.
|
|
*/
|
|
int __genwqe_wait_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req)
|
|
{
|
|
int rc;
|
|
unsigned int ddcb_no;
|
|
struct ddcb_queue *queue;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
|
|
if (req == NULL)
|
|
return -EINVAL;
|
|
|
|
queue = req->queue;
|
|
if (queue == NULL)
|
|
return -EINVAL;
|
|
|
|
ddcb_no = req->num;
|
|
if (ddcb_no >= queue->ddcb_max)
|
|
return -EINVAL;
|
|
|
|
rc = wait_event_interruptible_timeout(queue->ddcb_waitqs[ddcb_no],
|
|
ddcb_requ_finished(cd, req),
|
|
genwqe_ddcb_software_timeout * HZ);
|
|
|
|
/*
|
|
* We need to distinguish 3 cases here:
|
|
* 1. rc == 0 timeout occured
|
|
* 2. rc == -ERESTARTSYS signal received
|
|
* 3. rc > 0 remaining jiffies condition is true
|
|
*/
|
|
if (rc == 0) {
|
|
struct ddcb_queue *queue = req->queue;
|
|
struct ddcb *pddcb;
|
|
|
|
/*
|
|
* Timeout may be caused by long task switching time.
|
|
* When timeout happens, check if the request has
|
|
* meanwhile completed.
|
|
*/
|
|
genwqe_check_ddcb_queue(cd, req->queue);
|
|
if (ddcb_requ_finished(cd, req))
|
|
return rc;
|
|
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] err: DDCB#%d timeout rc=%d state=%d req @ %p\n",
|
|
__func__, req->num, rc, ddcb_requ_get_state(req),
|
|
req);
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] IO_QUEUE_STATUS=0x%016llx\n", __func__,
|
|
__genwqe_readq(cd, queue->IO_QUEUE_STATUS));
|
|
|
|
pddcb = &queue->ddcb_vaddr[req->num];
|
|
genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
|
|
|
|
print_ddcb_info(cd, req->queue);
|
|
return -ETIMEDOUT;
|
|
|
|
} else if (rc == -ERESTARTSYS) {
|
|
return rc;
|
|
/*
|
|
* EINTR: Stops the application
|
|
* ERESTARTSYS: Restartable systemcall; called again
|
|
*/
|
|
|
|
} else if (rc < 0) {
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] err: DDCB#%d unknown result (rc=%d) %d!\n",
|
|
__func__, req->num, rc, ddcb_requ_get_state(req));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Severe error occured. Driver is forced to stop operation */
|
|
if (cd->card_state != GENWQE_CARD_USED) {
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] err: DDCB#%d forced to stop (rc=%d)\n",
|
|
__func__, req->num, rc);
|
|
return -EIO;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* get_next_ddcb() - Get next available DDCB
|
|
* @cd: pointer to genwqe device descriptor
|
|
*
|
|
* DDCB's content is completely cleared but presets for PRE and
|
|
* SEQNUM. This function must only be called when ddcb_lock is held.
|
|
*
|
|
* Return: NULL if no empty DDCB available otherwise ptr to next DDCB.
|
|
*/
|
|
static struct ddcb *get_next_ddcb(struct genwqe_dev *cd,
|
|
struct ddcb_queue *queue,
|
|
int *num)
|
|
{
|
|
u64 *pu64;
|
|
struct ddcb *pddcb;
|
|
|
|
if (queue_free_ddcbs(queue) == 0) /* queue is full */
|
|
return NULL;
|
|
|
|
/* find new ddcb */
|
|
pddcb = &queue->ddcb_vaddr[queue->ddcb_next];
|
|
|
|
/* if it is not completed, we are not allowed to use it */
|
|
/* barrier(); */
|
|
if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) == 0x00000000)
|
|
return NULL;
|
|
|
|
*num = queue->ddcb_next; /* internal DDCB number */
|
|
queue->ddcb_next = (queue->ddcb_next + 1) % queue->ddcb_max;
|
|
|
|
/* clear important DDCB fields */
|
|
pu64 = (u64 *)pddcb;
|
|
pu64[0] = 0ULL; /* offs 0x00 (ICRC,HSI,SHI,...) */
|
|
pu64[1] = 0ULL; /* offs 0x01 (ACFUNC,CMD...) */
|
|
|
|
/* destroy previous results in ASV */
|
|
pu64[0x80/8] = 0ULL; /* offs 0x80 (ASV + 0) */
|
|
pu64[0x88/8] = 0ULL; /* offs 0x88 (ASV + 0x08) */
|
|
pu64[0x90/8] = 0ULL; /* offs 0x90 (ASV + 0x10) */
|
|
pu64[0x98/8] = 0ULL; /* offs 0x98 (ASV + 0x18) */
|
|
pu64[0xd0/8] = 0ULL; /* offs 0xd0 (RETC,ATTN...) */
|
|
|
|
pddcb->pre = DDCB_PRESET_PRE; /* 128 */
|
|
pddcb->seqnum_16 = cpu_to_be16(queue->ddcb_seq++);
|
|
return pddcb;
|
|
}
|
|
|
|
/**
|
|
* __genwqe_purge_ddcb() - Remove a DDCB from the workqueue
|
|
* @cd: genwqe device descriptor
|
|
* @req: DDCB request
|
|
*
|
|
* This will fail when the request was already FETCHED. In this case
|
|
* we need to wait until it is finished. Else the DDCB can be
|
|
* reused. This function also ensures that the request data structure
|
|
* is removed from ddcb_req[].
|
|
*
|
|
* Do not forget to call this function when genwqe_wait_ddcb() fails,
|
|
* such that the request gets really removed from ddcb_req[].
|
|
*
|
|
* Return: 0 success
|
|
*/
|
|
int __genwqe_purge_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req)
|
|
{
|
|
struct ddcb *pddcb = NULL;
|
|
unsigned int t;
|
|
unsigned long flags;
|
|
struct ddcb_queue *queue = req->queue;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
u64 queue_status;
|
|
__be32 icrc_hsi_shi = 0x0000;
|
|
__be32 old, new;
|
|
|
|
/* unsigned long flags; */
|
|
if (genwqe_ddcb_software_timeout <= 0) {
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] err: software timeout is not set!\n", __func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
pddcb = &queue->ddcb_vaddr[req->num];
|
|
|
|
for (t = 0; t < genwqe_ddcb_software_timeout * 10; t++) {
|
|
|
|
spin_lock_irqsave(&queue->ddcb_lock, flags);
|
|
|
|
/* Check if req was meanwhile finished */
|
|
if (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED)
|
|
goto go_home;
|
|
|
|
/* try to set PURGE bit if FETCHED/COMPLETED are not set */
|
|
old = pddcb->icrc_hsi_shi_32; /* read SHI/HSI in BE32 */
|
|
if ((old & DDCB_FETCHED_BE32) == 0x00000000) {
|
|
|
|
new = (old | DDCB_PURGE_BE32);
|
|
icrc_hsi_shi = cmpxchg(&pddcb->icrc_hsi_shi_32,
|
|
old, new);
|
|
if (icrc_hsi_shi == old)
|
|
goto finish_ddcb;
|
|
}
|
|
|
|
/* normal finish with HSI bit */
|
|
barrier();
|
|
icrc_hsi_shi = pddcb->icrc_hsi_shi_32;
|
|
if (icrc_hsi_shi & DDCB_COMPLETED_BE32)
|
|
goto finish_ddcb;
|
|
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
|
|
/*
|
|
* Here the check_ddcb() function will most likely
|
|
* discover this DDCB to be finished some point in
|
|
* time. It will mark the req finished and free it up
|
|
* in the list.
|
|
*/
|
|
|
|
copy_ddcb_results(req, req->num); /* for the failing case */
|
|
msleep(100); /* sleep for 1/10 second and try again */
|
|
continue;
|
|
|
|
finish_ddcb:
|
|
copy_ddcb_results(req, req->num);
|
|
ddcb_requ_set_state(req, GENWQE_REQU_FINISHED);
|
|
queue->ddcbs_in_flight--;
|
|
queue->ddcb_req[req->num] = NULL; /* delete from array */
|
|
ddcb_mark_cleared(pddcb);
|
|
|
|
/* Move active DDCB further; Nothing to do here anymore. */
|
|
|
|
/*
|
|
* We need to ensure that there is at least one free
|
|
* DDCB in the queue. To do that, we must update
|
|
* ddcb_act only if the COMPLETED bit is set for the
|
|
* DDCB we are working on else we treat that DDCB even
|
|
* if we PURGED it as occupied (hardware is supposed
|
|
* to set the COMPLETED bit yet!).
|
|
*/
|
|
icrc_hsi_shi = pddcb->icrc_hsi_shi_32;
|
|
if ((icrc_hsi_shi & DDCB_COMPLETED_BE32) &&
|
|
(queue->ddcb_act == req->num)) {
|
|
queue->ddcb_act = ((queue->ddcb_act + 1) %
|
|
queue->ddcb_max);
|
|
}
|
|
go_home:
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the card is dead and the queue is forced to stop, we
|
|
* might see this in the queue status register.
|
|
*/
|
|
queue_status = __genwqe_readq(cd, queue->IO_QUEUE_STATUS);
|
|
|
|
dev_dbg(&pci_dev->dev, "UN/FINISHED DDCB#%d\n", req->num);
|
|
genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
|
|
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] err: DDCB#%d not purged and not completed after %d seconds QSTAT=%016llx!!\n",
|
|
__func__, req->num, genwqe_ddcb_software_timeout,
|
|
queue_status);
|
|
|
|
print_ddcb_info(cd, req->queue);
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
int genwqe_init_debug_data(struct genwqe_dev *cd, struct genwqe_debug_data *d)
|
|
{
|
|
int len;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
|
|
if (d == NULL) {
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] err: invalid memory for debug data!\n",
|
|
__func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
len = sizeof(d->driver_version);
|
|
snprintf(d->driver_version, len, "%s", DRV_VERSION);
|
|
d->slu_unitcfg = cd->slu_unitcfg;
|
|
d->app_unitcfg = cd->app_unitcfg;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __genwqe_enqueue_ddcb() - Enqueue a DDCB
|
|
* @cd: pointer to genwqe device descriptor
|
|
* @req: pointer to DDCB execution request
|
|
* @f_flags: file mode: blocking, non-blocking
|
|
*
|
|
* Return: 0 if enqueuing succeeded
|
|
* -EIO if card is unusable/PCIe problems
|
|
* -EBUSY if enqueuing failed
|
|
*/
|
|
int __genwqe_enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req,
|
|
unsigned int f_flags)
|
|
{
|
|
struct ddcb *pddcb;
|
|
unsigned long flags;
|
|
struct ddcb_queue *queue;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
u16 icrc;
|
|
|
|
retry:
|
|
if (cd->card_state != GENWQE_CARD_USED) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s %s: [%s] Card is unusable/PCIe problem Req#%d\n",
|
|
GENWQE_DEVNAME, dev_name(&pci_dev->dev),
|
|
__func__, req->num);
|
|
return -EIO;
|
|
}
|
|
|
|
queue = req->queue = &cd->queue;
|
|
|
|
/* FIXME circumvention to improve performance when no irq is
|
|
* there.
|
|
*/
|
|
if (genwqe_polling_enabled)
|
|
genwqe_check_ddcb_queue(cd, queue);
|
|
|
|
/*
|
|
* It must be ensured to process all DDCBs in successive
|
|
* order. Use a lock here in order to prevent nested DDCB
|
|
* enqueuing.
|
|
*/
|
|
spin_lock_irqsave(&queue->ddcb_lock, flags);
|
|
|
|
pddcb = get_next_ddcb(cd, queue, &req->num); /* get ptr and num */
|
|
if (pddcb == NULL) {
|
|
int rc;
|
|
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
|
|
if (f_flags & O_NONBLOCK) {
|
|
queue->return_on_busy++;
|
|
return -EBUSY;
|
|
}
|
|
|
|
queue->wait_on_busy++;
|
|
rc = wait_event_interruptible(queue->busy_waitq,
|
|
queue_free_ddcbs(queue) != 0);
|
|
dev_dbg(&pci_dev->dev, "[%s] waiting for free DDCB: rc=%d\n",
|
|
__func__, rc);
|
|
if (rc == -ERESTARTSYS)
|
|
return rc; /* interrupted by a signal */
|
|
|
|
goto retry;
|
|
}
|
|
|
|
if (queue->ddcb_req[req->num] != NULL) {
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] picked DDCB %d with req=%p still in use!!\n",
|
|
__func__, req->num, req);
|
|
return -EFAULT;
|
|
}
|
|
ddcb_requ_set_state(req, GENWQE_REQU_ENQUEUED);
|
|
queue->ddcb_req[req->num] = req;
|
|
|
|
pddcb->cmdopts_16 = cpu_to_be16(req->cmd.cmdopts);
|
|
pddcb->cmd = req->cmd.cmd;
|
|
pddcb->acfunc = req->cmd.acfunc; /* functional unit */
|
|
|
|
/*
|
|
* We know that we can get retc 0x104 with CRC error, do not
|
|
* stop the queue in those cases for this command. XDIR = 1
|
|
* does not work for old SLU versions.
|
|
*
|
|
* Last bitstream with the old XDIR behavior had SLU_ID
|
|
* 0x34199.
|
|
*/
|
|
if ((cd->slu_unitcfg & 0xFFFF0ull) > 0x34199ull)
|
|
pddcb->xdir = 0x1;
|
|
else
|
|
pddcb->xdir = 0x0;
|
|
|
|
|
|
pddcb->psp = (((req->cmd.asiv_length / 8) << 4) |
|
|
((req->cmd.asv_length / 8)));
|
|
pddcb->disp_ts_64 = cpu_to_be64(req->cmd.disp_ts);
|
|
|
|
/*
|
|
* If copying the whole DDCB_ASIV_LENGTH is impacting
|
|
* performance we need to change it to
|
|
* req->cmd.asiv_length. But simulation benefits from some
|
|
* non-architectured bits behind the architectured content.
|
|
*
|
|
* How much data is copied depends on the availability of the
|
|
* ATS field, which was introduced late. If the ATS field is
|
|
* supported ASIV is 8 bytes shorter than it used to be. Since
|
|
* the ATS field is copied too, the code should do exactly
|
|
* what it did before, but I wanted to make copying of the ATS
|
|
* field very explicit.
|
|
*/
|
|
if (genwqe_get_slu_id(cd) <= 0x2) {
|
|
memcpy(&pddcb->__asiv[0], /* destination */
|
|
&req->cmd.__asiv[0], /* source */
|
|
DDCB_ASIV_LENGTH); /* req->cmd.asiv_length */
|
|
} else {
|
|
pddcb->n.ats_64 = cpu_to_be64(req->cmd.ats);
|
|
memcpy(&pddcb->n.asiv[0], /* destination */
|
|
&req->cmd.asiv[0], /* source */
|
|
DDCB_ASIV_LENGTH_ATS); /* req->cmd.asiv_length */
|
|
}
|
|
|
|
pddcb->icrc_hsi_shi_32 = cpu_to_be32(0x00000000); /* for crc */
|
|
|
|
/*
|
|
* Calculate CRC_16 for corresponding range PSP(7:4). Include
|
|
* empty 4 bytes prior to the data.
|
|
*/
|
|
icrc = genwqe_crc16((const u8 *)pddcb,
|
|
ICRC_LENGTH(req->cmd.asiv_length), 0xffff);
|
|
pddcb->icrc_hsi_shi_32 = cpu_to_be32((u32)icrc << 16);
|
|
|
|
/* enable DDCB completion irq */
|
|
if (!genwqe_polling_enabled)
|
|
pddcb->icrc_hsi_shi_32 |= DDCB_INTR_BE32;
|
|
|
|
dev_dbg(&pci_dev->dev, "INPUT DDCB#%d\n", req->num);
|
|
genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
|
|
|
|
if (ddcb_requ_collect_debug_data(req)) {
|
|
/* use the kernel copy of debug data. copying back to
|
|
user buffer happens later */
|
|
|
|
genwqe_init_debug_data(cd, &req->debug_data);
|
|
memcpy(&req->debug_data.ddcb_before, pddcb,
|
|
sizeof(req->debug_data.ddcb_before));
|
|
}
|
|
|
|
enqueue_ddcb(cd, queue, pddcb, req->num);
|
|
queue->ddcbs_in_flight++;
|
|
|
|
if (queue->ddcbs_in_flight > queue->ddcbs_max_in_flight)
|
|
queue->ddcbs_max_in_flight = queue->ddcbs_in_flight;
|
|
|
|
ddcb_requ_set_state(req, GENWQE_REQU_TAPPED);
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
wake_up_interruptible(&cd->queue_waitq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __genwqe_execute_raw_ddcb() - Setup and execute DDCB
|
|
* @cd: pointer to genwqe device descriptor
|
|
* @req: user provided DDCB request
|
|
* @f_flags: file mode: blocking, non-blocking
|
|
*/
|
|
int __genwqe_execute_raw_ddcb(struct genwqe_dev *cd,
|
|
struct genwqe_ddcb_cmd *cmd,
|
|
unsigned int f_flags)
|
|
{
|
|
int rc = 0;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd);
|
|
|
|
if (cmd->asiv_length > DDCB_ASIV_LENGTH) {
|
|
dev_err(&pci_dev->dev, "[%s] err: wrong asiv_length of %d\n",
|
|
__func__, cmd->asiv_length);
|
|
return -EINVAL;
|
|
}
|
|
if (cmd->asv_length > DDCB_ASV_LENGTH) {
|
|
dev_err(&pci_dev->dev, "[%s] err: wrong asv_length of %d\n",
|
|
__func__, cmd->asiv_length);
|
|
return -EINVAL;
|
|
}
|
|
rc = __genwqe_enqueue_ddcb(cd, req, f_flags);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
rc = __genwqe_wait_ddcb(cd, req);
|
|
if (rc < 0) /* error or signal interrupt */
|
|
goto err_exit;
|
|
|
|
if (ddcb_requ_collect_debug_data(req)) {
|
|
if (copy_to_user((struct genwqe_debug_data __user *)
|
|
(unsigned long)cmd->ddata_addr,
|
|
&req->debug_data,
|
|
sizeof(struct genwqe_debug_data)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* Higher values than 0x102 indicate completion with faults,
|
|
* lower values than 0x102 indicate processing faults. Note
|
|
* that DDCB might have been purged. E.g. Cntl+C.
|
|
*/
|
|
if (cmd->retc != DDCB_RETC_COMPLETE) {
|
|
/* This might happen e.g. flash read, and needs to be
|
|
handled by the upper layer code. */
|
|
rc = -EBADMSG; /* not processed/error retc */
|
|
}
|
|
|
|
return rc;
|
|
|
|
err_exit:
|
|
__genwqe_purge_ddcb(cd, req);
|
|
|
|
if (ddcb_requ_collect_debug_data(req)) {
|
|
if (copy_to_user((struct genwqe_debug_data __user *)
|
|
(unsigned long)cmd->ddata_addr,
|
|
&req->debug_data,
|
|
sizeof(struct genwqe_debug_data)))
|
|
return -EFAULT;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* genwqe_next_ddcb_ready() - Figure out if the next DDCB is already finished
|
|
*
|
|
* We use this as condition for our wait-queue code.
|
|
*/
|
|
static int genwqe_next_ddcb_ready(struct genwqe_dev *cd)
|
|
{
|
|
unsigned long flags;
|
|
struct ddcb *pddcb;
|
|
struct ddcb_queue *queue = &cd->queue;
|
|
|
|
spin_lock_irqsave(&queue->ddcb_lock, flags);
|
|
|
|
if (queue_empty(queue)) { /* emtpy queue */
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
pddcb = &queue->ddcb_vaddr[queue->ddcb_act];
|
|
if (pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) { /* ddcb ready */
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
return 1;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* genwqe_ddcbs_in_flight() - Check how many DDCBs are in flight
|
|
*
|
|
* Keep track on the number of DDCBs which ware currently in the
|
|
* queue. This is needed for statistics as well as conditon if we want
|
|
* to wait or better do polling in case of no interrupts available.
|
|
*/
|
|
int genwqe_ddcbs_in_flight(struct genwqe_dev *cd)
|
|
{
|
|
unsigned long flags;
|
|
int ddcbs_in_flight = 0;
|
|
struct ddcb_queue *queue = &cd->queue;
|
|
|
|
spin_lock_irqsave(&queue->ddcb_lock, flags);
|
|
ddcbs_in_flight += queue->ddcbs_in_flight;
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
|
|
return ddcbs_in_flight;
|
|
}
|
|
|
|
static int setup_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue)
|
|
{
|
|
int rc, i;
|
|
struct ddcb *pddcb;
|
|
u64 val64;
|
|
unsigned int queue_size;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
|
|
if (genwqe_ddcb_max < 2)
|
|
return -EINVAL;
|
|
|
|
queue_size = roundup(genwqe_ddcb_max * sizeof(struct ddcb), PAGE_SIZE);
|
|
|
|
queue->ddcbs_in_flight = 0; /* statistics */
|
|
queue->ddcbs_max_in_flight = 0;
|
|
queue->ddcbs_completed = 0;
|
|
queue->return_on_busy = 0;
|
|
queue->wait_on_busy = 0;
|
|
|
|
queue->ddcb_seq = 0x100; /* start sequence number */
|
|
queue->ddcb_max = genwqe_ddcb_max; /* module parameter */
|
|
queue->ddcb_vaddr = __genwqe_alloc_consistent(cd, queue_size,
|
|
&queue->ddcb_daddr);
|
|
if (queue->ddcb_vaddr == NULL) {
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] **err: could not allocate DDCB **\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
queue->ddcb_req = kzalloc(sizeof(struct ddcb_requ *) *
|
|
queue->ddcb_max, GFP_KERNEL);
|
|
if (!queue->ddcb_req) {
|
|
rc = -ENOMEM;
|
|
goto free_ddcbs;
|
|
}
|
|
|
|
queue->ddcb_waitqs = kzalloc(sizeof(wait_queue_head_t) *
|
|
queue->ddcb_max, GFP_KERNEL);
|
|
if (!queue->ddcb_waitqs) {
|
|
rc = -ENOMEM;
|
|
goto free_requs;
|
|
}
|
|
|
|
for (i = 0; i < queue->ddcb_max; i++) {
|
|
pddcb = &queue->ddcb_vaddr[i]; /* DDCBs */
|
|
pddcb->icrc_hsi_shi_32 = DDCB_COMPLETED_BE32;
|
|
pddcb->retc_16 = cpu_to_be16(0xfff);
|
|
|
|
queue->ddcb_req[i] = NULL; /* requests */
|
|
init_waitqueue_head(&queue->ddcb_waitqs[i]); /* waitqueues */
|
|
}
|
|
|
|
queue->ddcb_act = 0;
|
|
queue->ddcb_next = 0; /* queue is empty */
|
|
|
|
spin_lock_init(&queue->ddcb_lock);
|
|
init_waitqueue_head(&queue->busy_waitq);
|
|
|
|
val64 = ((u64)(queue->ddcb_max - 1) << 8); /* lastptr */
|
|
__genwqe_writeq(cd, queue->IO_QUEUE_CONFIG, 0x07); /* iCRC/vCRC */
|
|
__genwqe_writeq(cd, queue->IO_QUEUE_SEGMENT, queue->ddcb_daddr);
|
|
__genwqe_writeq(cd, queue->IO_QUEUE_INITSQN, queue->ddcb_seq);
|
|
__genwqe_writeq(cd, queue->IO_QUEUE_WRAP, val64);
|
|
return 0;
|
|
|
|
free_requs:
|
|
kfree(queue->ddcb_req);
|
|
queue->ddcb_req = NULL;
|
|
free_ddcbs:
|
|
__genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr,
|
|
queue->ddcb_daddr);
|
|
queue->ddcb_vaddr = NULL;
|
|
queue->ddcb_daddr = 0ull;
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
static int ddcb_queue_initialized(struct ddcb_queue *queue)
|
|
{
|
|
return queue->ddcb_vaddr != NULL;
|
|
}
|
|
|
|
static void free_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue)
|
|
{
|
|
unsigned int queue_size;
|
|
|
|
queue_size = roundup(queue->ddcb_max * sizeof(struct ddcb), PAGE_SIZE);
|
|
|
|
kfree(queue->ddcb_req);
|
|
queue->ddcb_req = NULL;
|
|
|
|
if (queue->ddcb_vaddr) {
|
|
__genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr,
|
|
queue->ddcb_daddr);
|
|
queue->ddcb_vaddr = NULL;
|
|
queue->ddcb_daddr = 0ull;
|
|
}
|
|
}
|
|
|
|
static irqreturn_t genwqe_pf_isr(int irq, void *dev_id)
|
|
{
|
|
u64 gfir;
|
|
struct genwqe_dev *cd = (struct genwqe_dev *)dev_id;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
|
|
/*
|
|
* In case of fatal FIR error the queue is stopped, such that
|
|
* we can safely check it without risking anything.
|
|
*/
|
|
cd->irqs_processed++;
|
|
wake_up_interruptible(&cd->queue_waitq);
|
|
|
|
/*
|
|
* Checking for errors before kicking the queue might be
|
|
* safer, but slower for the good-case ... See above.
|
|
*/
|
|
gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
|
|
if (((gfir & GFIR_ERR_TRIGGER) != 0x0) &&
|
|
!pci_channel_offline(pci_dev)) {
|
|
|
|
if (cd->use_platform_recovery) {
|
|
/*
|
|
* Since we use raw accessors, EEH errors won't be
|
|
* detected by the platform until we do a non-raw
|
|
* MMIO or config space read
|
|
*/
|
|
readq(cd->mmio + IO_SLC_CFGREG_GFIR);
|
|
|
|
/* Don't do anything if the PCI channel is frozen */
|
|
if (pci_channel_offline(pci_dev))
|
|
goto exit;
|
|
}
|
|
|
|
wake_up_interruptible(&cd->health_waitq);
|
|
|
|
/*
|
|
* By default GFIRs causes recovery actions. This
|
|
* count is just for debug when recovery is masked.
|
|
*/
|
|
dev_err_ratelimited(&pci_dev->dev,
|
|
"[%s] GFIR=%016llx\n",
|
|
__func__, gfir);
|
|
}
|
|
|
|
exit:
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t genwqe_vf_isr(int irq, void *dev_id)
|
|
{
|
|
struct genwqe_dev *cd = (struct genwqe_dev *)dev_id;
|
|
|
|
cd->irqs_processed++;
|
|
wake_up_interruptible(&cd->queue_waitq);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* genwqe_card_thread() - Work thread for the DDCB queue
|
|
*
|
|
* The idea is to check if there are DDCBs in processing. If there are
|
|
* some finished DDCBs, we process them and wakeup the
|
|
* requestors. Otherwise we give other processes time using
|
|
* cond_resched().
|
|
*/
|
|
static int genwqe_card_thread(void *data)
|
|
{
|
|
int should_stop = 0, rc = 0;
|
|
struct genwqe_dev *cd = (struct genwqe_dev *)data;
|
|
|
|
while (!kthread_should_stop()) {
|
|
|
|
genwqe_check_ddcb_queue(cd, &cd->queue);
|
|
|
|
if (genwqe_polling_enabled) {
|
|
rc = wait_event_interruptible_timeout(
|
|
cd->queue_waitq,
|
|
genwqe_ddcbs_in_flight(cd) ||
|
|
(should_stop = kthread_should_stop()), 1);
|
|
} else {
|
|
rc = wait_event_interruptible_timeout(
|
|
cd->queue_waitq,
|
|
genwqe_next_ddcb_ready(cd) ||
|
|
(should_stop = kthread_should_stop()), HZ);
|
|
}
|
|
if (should_stop)
|
|
break;
|
|
|
|
/*
|
|
* Avoid soft lockups on heavy loads; we do not want
|
|
* to disable our interrupts.
|
|
*/
|
|
cond_resched();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* genwqe_setup_service_layer() - Setup DDCB queue
|
|
* @cd: pointer to genwqe device descriptor
|
|
*
|
|
* Allocate DDCBs. Configure Service Layer Controller (SLC).
|
|
*
|
|
* Return: 0 success
|
|
*/
|
|
int genwqe_setup_service_layer(struct genwqe_dev *cd)
|
|
{
|
|
int rc;
|
|
struct ddcb_queue *queue;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
|
|
if (genwqe_is_privileged(cd)) {
|
|
rc = genwqe_card_reset(cd);
|
|
if (rc < 0) {
|
|
dev_err(&pci_dev->dev,
|
|
"[%s] err: reset failed.\n", __func__);
|
|
return rc;
|
|
}
|
|
genwqe_read_softreset(cd);
|
|
}
|
|
|
|
queue = &cd->queue;
|
|
queue->IO_QUEUE_CONFIG = IO_SLC_QUEUE_CONFIG;
|
|
queue->IO_QUEUE_STATUS = IO_SLC_QUEUE_STATUS;
|
|
queue->IO_QUEUE_SEGMENT = IO_SLC_QUEUE_SEGMENT;
|
|
queue->IO_QUEUE_INITSQN = IO_SLC_QUEUE_INITSQN;
|
|
queue->IO_QUEUE_OFFSET = IO_SLC_QUEUE_OFFSET;
|
|
queue->IO_QUEUE_WRAP = IO_SLC_QUEUE_WRAP;
|
|
queue->IO_QUEUE_WTIME = IO_SLC_QUEUE_WTIME;
|
|
queue->IO_QUEUE_ERRCNTS = IO_SLC_QUEUE_ERRCNTS;
|
|
queue->IO_QUEUE_LRW = IO_SLC_QUEUE_LRW;
|
|
|
|
rc = setup_ddcb_queue(cd, queue);
|
|
if (rc != 0) {
|
|
rc = -ENODEV;
|
|
goto err_out;
|
|
}
|
|
|
|
init_waitqueue_head(&cd->queue_waitq);
|
|
cd->card_thread = kthread_run(genwqe_card_thread, cd,
|
|
GENWQE_DEVNAME "%d_thread",
|
|
cd->card_idx);
|
|
if (IS_ERR(cd->card_thread)) {
|
|
rc = PTR_ERR(cd->card_thread);
|
|
cd->card_thread = NULL;
|
|
goto stop_free_queue;
|
|
}
|
|
|
|
rc = genwqe_set_interrupt_capability(cd, GENWQE_MSI_IRQS);
|
|
if (rc)
|
|
goto stop_kthread;
|
|
|
|
/*
|
|
* We must have all wait-queues initialized when we enable the
|
|
* interrupts. Otherwise we might crash if we get an early
|
|
* irq.
|
|
*/
|
|
init_waitqueue_head(&cd->health_waitq);
|
|
|
|
if (genwqe_is_privileged(cd)) {
|
|
rc = request_irq(pci_dev->irq, genwqe_pf_isr, IRQF_SHARED,
|
|
GENWQE_DEVNAME, cd);
|
|
} else {
|
|
rc = request_irq(pci_dev->irq, genwqe_vf_isr, IRQF_SHARED,
|
|
GENWQE_DEVNAME, cd);
|
|
}
|
|
if (rc < 0) {
|
|
dev_err(&pci_dev->dev, "irq %d not free.\n", pci_dev->irq);
|
|
goto stop_irq_cap;
|
|
}
|
|
|
|
cd->card_state = GENWQE_CARD_USED;
|
|
return 0;
|
|
|
|
stop_irq_cap:
|
|
genwqe_reset_interrupt_capability(cd);
|
|
stop_kthread:
|
|
kthread_stop(cd->card_thread);
|
|
cd->card_thread = NULL;
|
|
stop_free_queue:
|
|
free_ddcb_queue(cd, queue);
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* queue_wake_up_all() - Handles fatal error case
|
|
*
|
|
* The PCI device got unusable and we have to stop all pending
|
|
* requests as fast as we can. The code after this must purge the
|
|
* DDCBs in question and ensure that all mappings are freed.
|
|
*/
|
|
static int queue_wake_up_all(struct genwqe_dev *cd)
|
|
{
|
|
unsigned int i;
|
|
unsigned long flags;
|
|
struct ddcb_queue *queue = &cd->queue;
|
|
|
|
spin_lock_irqsave(&queue->ddcb_lock, flags);
|
|
|
|
for (i = 0; i < queue->ddcb_max; i++)
|
|
wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]);
|
|
|
|
wake_up_interruptible(&queue->busy_waitq);
|
|
spin_unlock_irqrestore(&queue->ddcb_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* genwqe_finish_queue() - Remove any genwqe devices and user-interfaces
|
|
*
|
|
* Relies on the pre-condition that there are no users of the card
|
|
* device anymore e.g. with open file-descriptors.
|
|
*
|
|
* This function must be robust enough to be called twice.
|
|
*/
|
|
int genwqe_finish_queue(struct genwqe_dev *cd)
|
|
{
|
|
int i, rc = 0, in_flight;
|
|
int waitmax = genwqe_ddcb_software_timeout;
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
struct ddcb_queue *queue = &cd->queue;
|
|
|
|
if (!ddcb_queue_initialized(queue))
|
|
return 0;
|
|
|
|
/* Do not wipe out the error state. */
|
|
if (cd->card_state == GENWQE_CARD_USED)
|
|
cd->card_state = GENWQE_CARD_UNUSED;
|
|
|
|
/* Wake up all requests in the DDCB queue such that they
|
|
should be removed nicely. */
|
|
queue_wake_up_all(cd);
|
|
|
|
/* We must wait to get rid of the DDCBs in flight */
|
|
for (i = 0; i < waitmax; i++) {
|
|
in_flight = genwqe_ddcbs_in_flight(cd);
|
|
|
|
if (in_flight == 0)
|
|
break;
|
|
|
|
dev_dbg(&pci_dev->dev,
|
|
" DEBUG [%d/%d] waiting for queue to get empty: %d requests!\n",
|
|
i, waitmax, in_flight);
|
|
|
|
/*
|
|
* Severe severe error situation: The card itself has
|
|
* 16 DDCB queues, each queue has e.g. 32 entries,
|
|
* each DDBC has a hardware timeout of currently 250
|
|
* msec but the PFs have a hardware timeout of 8 sec
|
|
* ... so I take something large.
|
|
*/
|
|
msleep(1000);
|
|
}
|
|
if (i == waitmax) {
|
|
dev_err(&pci_dev->dev, " [%s] err: queue is not empty!!\n",
|
|
__func__);
|
|
rc = -EIO;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* genwqe_release_service_layer() - Shutdown DDCB queue
|
|
* @cd: genwqe device descriptor
|
|
*
|
|
* This function must be robust enough to be called twice.
|
|
*/
|
|
int genwqe_release_service_layer(struct genwqe_dev *cd)
|
|
{
|
|
struct pci_dev *pci_dev = cd->pci_dev;
|
|
|
|
if (!ddcb_queue_initialized(&cd->queue))
|
|
return 1;
|
|
|
|
free_irq(pci_dev->irq, cd);
|
|
genwqe_reset_interrupt_capability(cd);
|
|
|
|
if (cd->card_thread != NULL) {
|
|
kthread_stop(cd->card_thread);
|
|
cd->card_thread = NULL;
|
|
}
|
|
|
|
free_ddcb_queue(cd, &cd->queue);
|
|
return 0;
|
|
}
|