linux_dsm_epyc7002/drivers/pci/hotplug/pciehp_ctrl.c
Kristen Accardi 8cf4c19523 [PATCH] PCI Hotplug: new contact info
Signed-off-by: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-16 21:06:24 -07:00

2707 lines
71 KiB
C

/*
* PCI Express Hot Plug Controller Driver
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001 IBM Corp.
* Copyright (C) 2003-2004 Intel Corporation
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to <greg@kroah.com>, <kristen.c.accardi@intel.com>
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/smp_lock.h>
#include <linux/pci.h>
#include "../pci.h"
#include "pciehp.h"
#include "pciehprm.h"
static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev);
static int configure_new_function( struct controller *ctrl, struct pci_func *func,
u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev);
static void interrupt_event_handler(struct controller *ctrl);
static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */
static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */
static int event_finished;
static unsigned long pushbutton_pending; /* = 0 */
static unsigned long surprise_rm_pending; /* = 0 */
u8 pciehp_handle_attention_button(u8 hp_slot, void *inst_id)
{
struct controller *ctrl = (struct controller *) inst_id;
struct slot *p_slot;
u8 rc = 0;
u8 getstatus;
struct pci_func *func;
struct event_info *taskInfo;
/* Attention Button Change */
dbg("pciehp: Attention button interrupt received.\n");
func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0);
/* This is the structure that tells the worker thread what to do */
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save));
p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
ctrl->next_event = (ctrl->next_event + 1) % 10;
taskInfo->hp_slot = hp_slot;
rc++;
/*
* Button pressed - See if need to TAKE ACTION!!!
*/
info("Button pressed on Slot(%d)\n", ctrl->first_slot + hp_slot);
taskInfo->event_type = INT_BUTTON_PRESS;
if ((p_slot->state == BLINKINGON_STATE)
|| (p_slot->state == BLINKINGOFF_STATE)) {
/* Cancel if we are still blinking; this means that we press the
* attention again before the 5 sec. limit expires to cancel hot-add
* or hot-remove
*/
taskInfo->event_type = INT_BUTTON_CANCEL;
info("Button cancel on Slot(%d)\n", ctrl->first_slot + hp_slot);
} else if ((p_slot->state == POWERON_STATE)
|| (p_slot->state == POWEROFF_STATE)) {
/* Ignore if the slot is on power-on or power-off state; this
* means that the previous attention button action to hot-add or
* hot-remove is undergoing
*/
taskInfo->event_type = INT_BUTTON_IGNORE;
info("Button ignore on Slot(%d)\n", ctrl->first_slot + hp_slot);
}
if (rc)
up(&event_semaphore); /* signal event thread that new event is posted */
return 0;
}
u8 pciehp_handle_switch_change(u8 hp_slot, void *inst_id)
{
struct controller *ctrl = (struct controller *) inst_id;
struct slot *p_slot;
u8 rc = 0;
u8 getstatus;
struct pci_func *func;
struct event_info *taskInfo;
/* Switch Change */
dbg("pciehp: Switch interrupt received.\n");
func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0);
/* This is the structure that tells the worker thread
* what to do
*/
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
ctrl->next_event = (ctrl->next_event + 1) % 10;
taskInfo->hp_slot = hp_slot;
rc++;
p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save));
p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
if (getstatus) {
/*
* Switch opened
*/
info("Latch open on Slot(%d)\n", ctrl->first_slot + hp_slot);
func->switch_save = 0;
taskInfo->event_type = INT_SWITCH_OPEN;
} else {
/*
* Switch closed
*/
info("Latch close on Slot(%d)\n", ctrl->first_slot + hp_slot);
func->switch_save = 0x10;
taskInfo->event_type = INT_SWITCH_CLOSE;
}
if (rc)
up(&event_semaphore); /* signal event thread that new event is posted */
return rc;
}
u8 pciehp_handle_presence_change(u8 hp_slot, void *inst_id)
{
struct controller *ctrl = (struct controller *) inst_id;
struct slot *p_slot;
u8 rc = 0;
struct pci_func *func;
struct event_info *taskInfo;
/* Presence Change */
dbg("pciehp: Presence/Notify input change.\n");
func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0);
/* This is the structure that tells the worker thread
* what to do
*/
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
ctrl->next_event = (ctrl->next_event + 1) % 10;
taskInfo->hp_slot = hp_slot;
rc++;
p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
/* Switch is open, assume a presence change
* Save the presence state
*/
p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save));
if (func->presence_save) {
/*
* Card Present
*/
info("Card present on Slot(%d)\n", ctrl->first_slot + hp_slot);
taskInfo->event_type = INT_PRESENCE_ON;
} else {
/*
* Not Present
*/
info("Card not present on Slot(%d)\n", ctrl->first_slot + hp_slot);
taskInfo->event_type = INT_PRESENCE_OFF;
}
if (rc)
up(&event_semaphore); /* signal event thread that new event is posted */
return rc;
}
u8 pciehp_handle_power_fault(u8 hp_slot, void *inst_id)
{
struct controller *ctrl = (struct controller *) inst_id;
struct slot *p_slot;
u8 rc = 0;
struct pci_func *func;
struct event_info *taskInfo;
/* power fault */
dbg("pciehp: Power fault interrupt received.\n");
func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0);
/* this is the structure that tells the worker thread
* what to do
*/
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
ctrl->next_event = (ctrl->next_event + 1) % 10;
taskInfo->hp_slot = hp_slot;
rc++;
p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
if ( !(p_slot->hpc_ops->query_power_fault(p_slot))) {
/*
* power fault Cleared
*/
info("Power fault cleared on Slot(%d)\n", ctrl->first_slot + hp_slot);
func->status = 0x00;
taskInfo->event_type = INT_POWER_FAULT_CLEAR;
} else {
/*
* power fault
*/
info("Power fault on Slot(%d)\n", ctrl->first_slot + hp_slot);
taskInfo->event_type = INT_POWER_FAULT;
/* set power fault status for this board */
func->status = 0xFF;
info("power fault bit %x set\n", hp_slot);
}
if (rc)
up(&event_semaphore); /* signal event thread that new event is posted */
return rc;
}
/**
* sort_by_size: sort nodes by their length, smallest first.
*
* @head: list to sort
*/
static int sort_by_size(struct pci_resource **head)
{
struct pci_resource *current_res;
struct pci_resource *next_res;
int out_of_order = 1;
if (!(*head))
return 1;
if (!((*head)->next))
return 0;
while (out_of_order) {
out_of_order = 0;
/* Special case for swapping list head */
if (((*head)->next) &&
((*head)->length > (*head)->next->length)) {
out_of_order++;
current_res = *head;
*head = (*head)->next;
current_res->next = (*head)->next;
(*head)->next = current_res;
}
current_res = *head;
while (current_res->next && current_res->next->next) {
if (current_res->next->length > current_res->next->next->length) {
out_of_order++;
next_res = current_res->next;
current_res->next = current_res->next->next;
current_res = current_res->next;
next_res->next = current_res->next;
current_res->next = next_res;
} else
current_res = current_res->next;
}
} /* End of out_of_order loop */
return 0;
}
/*
* sort_by_max_size
*
* Sorts nodes on the list by their length.
* Largest first.
*
*/
static int sort_by_max_size(struct pci_resource **head)
{
struct pci_resource *current_res;
struct pci_resource *next_res;
int out_of_order = 1;
if (!(*head))
return 1;
if (!((*head)->next))
return 0;
while (out_of_order) {
out_of_order = 0;
/* Special case for swapping list head */
if (((*head)->next) &&
((*head)->length < (*head)->next->length)) {
out_of_order++;
current_res = *head;
*head = (*head)->next;
current_res->next = (*head)->next;
(*head)->next = current_res;
}
current_res = *head;
while (current_res->next && current_res->next->next) {
if (current_res->next->length < current_res->next->next->length) {
out_of_order++;
next_res = current_res->next;
current_res->next = current_res->next->next;
current_res = current_res->next;
next_res->next = current_res->next;
current_res->next = next_res;
} else
current_res = current_res->next;
}
} /* End of out_of_order loop */
return 0;
}
/**
* do_pre_bridge_resource_split: return one unused resource node
* @head: list to scan
*
*/
static struct pci_resource *
do_pre_bridge_resource_split(struct pci_resource **head,
struct pci_resource **orig_head, u32 alignment)
{
struct pci_resource *prevnode = NULL;
struct pci_resource *node;
struct pci_resource *split_node;
u32 rc;
u32 temp_dword;
dbg("do_pre_bridge_resource_split\n");
if (!(*head) || !(*orig_head))
return NULL;
rc = pciehp_resource_sort_and_combine(head);
if (rc)
return NULL;
if ((*head)->base != (*orig_head)->base)
return NULL;
if ((*head)->length == (*orig_head)->length)
return NULL;
/* If we got here, there the bridge requires some of the resource, but
* we may be able to split some off of the front
*/
node = *head;
if (node->length & (alignment -1)) {
/* this one isn't an aligned length, so we'll make a new entry
* and split it up.
*/
split_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!split_node)
return NULL;
temp_dword = (node->length | (alignment-1)) + 1 - alignment;
split_node->base = node->base;
split_node->length = temp_dword;
node->length -= temp_dword;
node->base += split_node->length;
/* Put it in the list */
*head = split_node;
split_node->next = node;
}
if (node->length < alignment)
return NULL;
/* Now unlink it */
if (*head == node) {
*head = node->next;
} else {
prevnode = *head;
while (prevnode->next != node)
prevnode = prevnode->next;
prevnode->next = node->next;
}
node->next = NULL;
return node;
}
/**
* do_bridge_resource_split: return one unused resource node
* @head: list to scan
*
*/
static struct pci_resource *
do_bridge_resource_split(struct pci_resource **head, u32 alignment)
{
struct pci_resource *prevnode = NULL;
struct pci_resource *node;
u32 rc;
u32 temp_dword;
if (!(*head))
return NULL;
rc = pciehp_resource_sort_and_combine(head);
if (rc)
return NULL;
node = *head;
while (node->next) {
prevnode = node;
node = node->next;
kfree(prevnode);
}
if (node->length < alignment) {
kfree(node);
return NULL;
}
if (node->base & (alignment - 1)) {
/* Short circuit if adjusted size is too small */
temp_dword = (node->base | (alignment-1)) + 1;
if ((node->length - (temp_dword - node->base)) < alignment) {
kfree(node);
return NULL;
}
node->length -= (temp_dword - node->base);
node->base = temp_dword;
}
if (node->length & (alignment - 1)) {
/* There's stuff in use after this node */
kfree(node);
return NULL;
}
return node;
}
/*
* get_io_resource
*
* this function sorts the resource list by size and then
* returns the first node of "size" length that is not in the
* ISA aliasing window. If it finds a node larger than "size"
* it will split it up.
*
* size must be a power of two.
*/
static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
{
struct pci_resource *prevnode;
struct pci_resource *node;
struct pci_resource *split_node = NULL;
u32 temp_dword;
if (!(*head))
return NULL;
if ( pciehp_resource_sort_and_combine(head) )
return NULL;
if ( sort_by_size(head) )
return NULL;
for (node = *head; node; node = node->next) {
if (node->length < size)
continue;
if (node->base & (size - 1)) {
/* this one isn't base aligned properly
so we'll make a new entry and split it up */
temp_dword = (node->base | (size-1)) + 1;
/*/ Short circuit if adjusted size is too small */
if ((node->length - (temp_dword - node->base)) < size)
continue;
split_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base;
split_node->length = temp_dword - node->base;
node->base = temp_dword;
node->length -= split_node->length;
/* Put it in the list */
split_node->next = node->next;
node->next = split_node;
} /* End of non-aligned base */
/* Don't need to check if too small since we already did */
if (node->length > size) {
/* this one is longer than we need
so we'll make a new entry and split it up */
split_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base + size;
split_node->length = node->length - size;
node->length = size;
/* Put it in the list */
split_node->next = node->next;
node->next = split_node;
} /* End of too big on top end */
/* For IO make sure it's not in the ISA aliasing space */
if (node->base & 0x300L)
continue;
/* If we got here, then it is the right size
Now take it out of the list */
if (*head == node) {
*head = node->next;
} else {
prevnode = *head;
while (prevnode->next != node)
prevnode = prevnode->next;
prevnode->next = node->next;
}
node->next = NULL;
/* Stop looping */
break;
}
return node;
}
/*
* get_max_resource
*
* Gets the largest node that is at least "size" big from the
* list pointed to by head. It aligns the node on top and bottom
* to "size" alignment before returning it.
* J.I. modified to put max size limits of; 64M->32M->16M->8M->4M->1M
* This is needed to avoid allocating entire ACPI _CRS res to one child bridge/slot.
*/
static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
{
struct pci_resource *max;
struct pci_resource *temp;
struct pci_resource *split_node;
u32 temp_dword;
u32 max_size[] = { 0x4000000, 0x2000000, 0x1000000, 0x0800000, 0x0400000, 0x0200000, 0x0100000, 0x00 };
int i;
if (!(*head))
return NULL;
if (pciehp_resource_sort_and_combine(head))
return NULL;
if (sort_by_max_size(head))
return NULL;
for (max = *head;max; max = max->next) {
/* If not big enough we could probably just bail,
instead we'll continue to the next. */
if (max->length < size)
continue;
if (max->base & (size - 1)) {
/* this one isn't base aligned properly
so we'll make a new entry and split it up */
temp_dword = (max->base | (size-1)) + 1;
/* Short circuit if adjusted size is too small */
if ((max->length - (temp_dword - max->base)) < size)
continue;
split_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = max->base;
split_node->length = temp_dword - max->base;
max->base = temp_dword;
max->length -= split_node->length;
/* Put it next in the list */
split_node->next = max->next;
max->next = split_node;
}
if ((max->base + max->length) & (size - 1)) {
/* this one isn't end aligned properly at the top
so we'll make a new entry and split it up */
split_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!split_node)
return NULL;
temp_dword = ((max->base + max->length) & ~(size - 1));
split_node->base = temp_dword;
split_node->length = max->length + max->base
- split_node->base;
max->length -= split_node->length;
/* Put it in the list */
split_node->next = max->next;
max->next = split_node;
}
/* Make sure it didn't shrink too much when we aligned it */
if (max->length < size)
continue;
for ( i = 0; max_size[i] > size; i++) {
if (max->length > max_size[i]) {
split_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!split_node)
break; /* return NULL; */
split_node->base = max->base + max_size[i];
split_node->length = max->length - max_size[i];
max->length = max_size[i];
/* Put it next in the list */
split_node->next = max->next;
max->next = split_node;
break;
}
}
/* Now take it out of the list */
temp = (struct pci_resource*) *head;
if (temp == max) {
*head = max->next;
} else {
while (temp && temp->next != max) {
temp = temp->next;
}
temp->next = max->next;
}
max->next = NULL;
return max;
}
/* If we get here, we couldn't find one */
return NULL;
}
/*
* get_resource
*
* this function sorts the resource list by size and then
* returns the first node of "size" length. If it finds a node
* larger than "size" it will split it up.
*
* size must be a power of two.
*/
static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
{
struct pci_resource *prevnode;
struct pci_resource *node;
struct pci_resource *split_node;
u32 temp_dword;
if (!(*head))
return NULL;
if ( pciehp_resource_sort_and_combine(head) )
return NULL;
if ( sort_by_size(head) )
return NULL;
for (node = *head; node; node = node->next) {
dbg("%s: req_size =0x%x node=%p, base=0x%x, length=0x%x\n",
__FUNCTION__, size, node, node->base, node->length);
if (node->length < size)
continue;
if (node->base & (size - 1)) {
dbg("%s: not aligned\n", __FUNCTION__);
/* this one isn't base aligned properly
so we'll make a new entry and split it up */
temp_dword = (node->base | (size-1)) + 1;
/* Short circuit if adjusted size is too small */
if ((node->length - (temp_dword - node->base)) < size)
continue;
split_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base;
split_node->length = temp_dword - node->base;
node->base = temp_dword;
node->length -= split_node->length;
/* Put it in the list */
split_node->next = node->next;
node->next = split_node;
} /* End of non-aligned base */
/* Don't need to check if too small since we already did */
if (node->length > size) {
dbg("%s: too big\n", __FUNCTION__);
/* this one is longer than we need
so we'll make a new entry and split it up */
split_node = kmalloc(sizeof(struct pci_resource),
GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base + size;
split_node->length = node->length - size;
node->length = size;
/* Put it in the list */
split_node->next = node->next;
node->next = split_node;
} /* End of too big on top end */
dbg("%s: got one!!!\n", __FUNCTION__);
/* If we got here, then it is the right size
Now take it out of the list */
if (*head == node) {
*head = node->next;
} else {
prevnode = *head;
while (prevnode->next != node)
prevnode = prevnode->next;
prevnode->next = node->next;
}
node->next = NULL;
/* Stop looping */
break;
}
return node;
}
/*
* pciehp_resource_sort_and_combine
*
* Sorts all of the nodes in the list in ascending order by
* their base addresses. Also does garbage collection by
* combining adjacent nodes.
*
* returns 0 if success
*/
int pciehp_resource_sort_and_combine(struct pci_resource **head)
{
struct pci_resource *node1;
struct pci_resource *node2;
int out_of_order = 1;
dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
if (!(*head))
return 1;
dbg("*head->next = %p\n",(*head)->next);
if (!(*head)->next)
return 0; /* only one item on the list, already sorted! */
dbg("*head->base = 0x%x\n",(*head)->base);
dbg("*head->next->base = 0x%x\n",(*head)->next->base);
while (out_of_order) {
out_of_order = 0;
/* Special case for swapping list head */
if (((*head)->next) &&
((*head)->base > (*head)->next->base)) {
node1 = *head;
(*head) = (*head)->next;
node1->next = (*head)->next;
(*head)->next = node1;
out_of_order++;
}
node1 = (*head);
while (node1->next && node1->next->next) {
if (node1->next->base > node1->next->next->base) {
out_of_order++;
node2 = node1->next;
node1->next = node1->next->next;
node1 = node1->next;
node2->next = node1->next;
node1->next = node2;
} else
node1 = node1->next;
}
} /* End of out_of_order loop */
node1 = *head;
while (node1 && node1->next) {
if ((node1->base + node1->length) == node1->next->base) {
/* Combine */
dbg("8..\n");
node1->length += node1->next->length;
node2 = node1->next;
node1->next = node1->next->next;
kfree(node2);
} else
node1 = node1->next;
}
return 0;
}
/**
* pciehp_slot_create - Creates a node and adds it to the proper bus.
* @busnumber - bus where new node is to be located
*
* Returns pointer to the new node or NULL if unsuccessful
*/
struct pci_func *pciehp_slot_create(u8 busnumber)
{
struct pci_func *new_slot;
struct pci_func *next;
dbg("%s: busnumber %x\n", __FUNCTION__, busnumber);
new_slot = kmalloc(sizeof(struct pci_func), GFP_KERNEL);
if (new_slot == NULL)
return new_slot;
memset(new_slot, 0, sizeof(struct pci_func));
new_slot->next = NULL;
new_slot->configured = 1;
if (pciehp_slot_list[busnumber] == NULL) {
pciehp_slot_list[busnumber] = new_slot;
} else {
next = pciehp_slot_list[busnumber];
while (next->next != NULL)
next = next->next;
next->next = new_slot;
}
return new_slot;
}
/**
* slot_remove - Removes a node from the linked list of slots.
* @old_slot: slot to remove
*
* Returns 0 if successful, !0 otherwise.
*/
static int slot_remove(struct pci_func * old_slot)
{
struct pci_func *next;
if (old_slot == NULL)
return 1;
next = pciehp_slot_list[old_slot->bus];
if (next == NULL)
return 1;
if (next == old_slot) {
pciehp_slot_list[old_slot->bus] = old_slot->next;
pciehp_destroy_board_resources(old_slot);
kfree(old_slot);
return 0;
}
while ((next->next != old_slot) && (next->next != NULL)) {
next = next->next;
}
if (next->next == old_slot) {
next->next = old_slot->next;
pciehp_destroy_board_resources(old_slot);
kfree(old_slot);
return 0;
} else
return 2;
}
/**
* bridge_slot_remove - Removes a node from the linked list of slots.
* @bridge: bridge to remove
*
* Returns 0 if successful, !0 otherwise.
*/
static int bridge_slot_remove(struct pci_func *bridge)
{
u8 subordinateBus, secondaryBus;
u8 tempBus;
struct pci_func *next;
if (bridge == NULL)
return 1;
secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
next = pciehp_slot_list[tempBus];
while (!slot_remove(next)) {
next = pciehp_slot_list[tempBus];
}
}
next = pciehp_slot_list[bridge->bus];
if (next == NULL) {
return 1;
}
if (next == bridge) {
pciehp_slot_list[bridge->bus] = bridge->next;
kfree(bridge);
return 0;
}
while ((next->next != bridge) && (next->next != NULL)) {
next = next->next;
}
if (next->next == bridge) {
next->next = bridge->next;
kfree(bridge);
return 0;
} else
return 2;
}
/**
* pciehp_slot_find - Looks for a node by bus, and device, multiple functions accessed
* @bus: bus to find
* @device: device to find
* @index: is 0 for first function found, 1 for the second...
*
* Returns pointer to the node if successful, %NULL otherwise.
*/
struct pci_func *pciehp_slot_find(u8 bus, u8 device, u8 index)
{
int found = -1;
struct pci_func *func;
func = pciehp_slot_list[bus];
dbg("%s: bus %x device %x index %x\n",
__FUNCTION__, bus, device, index);
if (func != NULL) {
dbg("%s: func-> bus %x device %x function %x pci_dev %p\n",
__FUNCTION__, func->bus, func->device, func->function,
func->pci_dev);
} else
dbg("%s: func == NULL\n", __FUNCTION__);
if ((func == NULL) || ((func->device == device) && (index == 0)))
return func;
if (func->device == device)
found++;
while (func->next != NULL) {
func = func->next;
dbg("%s: In while loop, func-> bus %x device %x function %x pci_dev %p\n",
__FUNCTION__, func->bus, func->device, func->function,
func->pci_dev);
if (func->device == device)
found++;
dbg("%s: while loop, found %d, index %d\n", __FUNCTION__,
found, index);
if ((found == index) || (func->function == index)) {
dbg("%s: Found bus %x dev %x func %x\n", __FUNCTION__,
func->bus, func->device, func->function);
return func;
}
}
return NULL;
}
static int is_bridge(struct pci_func * func)
{
/* Check the header type */
if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
return 1;
else
return 0;
}
/* The following routines constitute the bulk of the
hotplug controller logic
*/
static void set_slot_off(struct controller *ctrl, struct slot * pslot)
{
/* Wait for exclusive access to hardware */
down(&ctrl->crit_sect);
/* turn off slot, turn on Amber LED, turn off Green LED if supported*/
if (POWER_CTRL(ctrl->ctrlcap)) {
if (pslot->hpc_ops->power_off_slot(pslot)) {
err("%s: Issue of Slot Power Off command failed\n", __FUNCTION__);
up(&ctrl->crit_sect);
return;
}
wait_for_ctrl_irq (ctrl);
}
if (PWR_LED(ctrl->ctrlcap)) {
pslot->hpc_ops->green_led_off(pslot);
wait_for_ctrl_irq (ctrl);
}
if (ATTN_LED(ctrl->ctrlcap)) {
if (pslot->hpc_ops->set_attention_status(pslot, 1)) {
err("%s: Issue of Set Attention Led command failed\n", __FUNCTION__);
up(&ctrl->crit_sect);
return;
}
wait_for_ctrl_irq (ctrl);
}
/* Done with exclusive hardware access */
up(&ctrl->crit_sect);
}
/**
* board_added - Called after a board has been added to the system.
*
* Turns power on for the board
* Configures board
*
*/
static u32 board_added(struct pci_func * func, struct controller * ctrl)
{
u8 hp_slot;
int index;
u32 temp_register = 0xFFFFFFFF;
u32 rc = 0;
struct pci_func *new_func = NULL;
struct slot *p_slot;
struct resource_lists res_lists;
p_slot = pciehp_find_slot(ctrl, func->device);
hp_slot = func->device - ctrl->slot_device_offset;
dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
/* Wait for exclusive access to hardware */
down(&ctrl->crit_sect);
if (POWER_CTRL(ctrl->ctrlcap)) {
/* Power on slot */
rc = p_slot->hpc_ops->power_on_slot(p_slot);
if (rc) {
up(&ctrl->crit_sect);
return -1;
}
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
}
if (PWR_LED(ctrl->ctrlcap)) {
p_slot->hpc_ops->green_led_blink(p_slot);
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
}
/* Done with exclusive hardware access */
up(&ctrl->crit_sect);
/* Wait for ~1 second */
dbg("%s: before long_delay\n", __FUNCTION__);
wait_for_ctrl_irq (ctrl);
dbg("%s: afterlong_delay\n", __FUNCTION__);
/* Check link training status */
rc = p_slot->hpc_ops->check_lnk_status(ctrl);
if (rc) {
err("%s: Failed to check link status\n", __FUNCTION__);
set_slot_off(ctrl, p_slot);
return rc;
}
dbg("%s: func status = %x\n", __FUNCTION__, func->status);
/* Check for a power fault */
if (func->status == 0xFF) {
/* power fault occurred, but it was benign */
temp_register = 0xFFFFFFFF;
dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
rc = POWER_FAILURE;
func->status = 0;
} else {
/* Get vendor/device ID u32 */
rc = pci_bus_read_config_dword (ctrl->pci_dev->subordinate, PCI_DEVFN(func->device, func->function),
PCI_VENDOR_ID, &temp_register);
dbg("%s: pci_bus_read_config_dword returns %d\n", __FUNCTION__, rc);
dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
if (rc != 0) {
/* Something's wrong here */
temp_register = 0xFFFFFFFF;
dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
}
/* Preset return code. It will be changed later if things go okay. */
rc = NO_ADAPTER_PRESENT;
}
/* All F's is an empty slot or an invalid board */
if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */
res_lists.io_head = ctrl->io_head;
res_lists.mem_head = ctrl->mem_head;
res_lists.p_mem_head = ctrl->p_mem_head;
res_lists.bus_head = ctrl->bus_head;
res_lists.irqs = NULL;
rc = configure_new_device(ctrl, func, 0, &res_lists, 0, 0);
dbg("%s: back from configure_new_device\n", __FUNCTION__);
ctrl->io_head = res_lists.io_head;
ctrl->mem_head = res_lists.mem_head;
ctrl->p_mem_head = res_lists.p_mem_head;
ctrl->bus_head = res_lists.bus_head;
pciehp_resource_sort_and_combine(&(ctrl->mem_head));
pciehp_resource_sort_and_combine(&(ctrl->p_mem_head));
pciehp_resource_sort_and_combine(&(ctrl->io_head));
pciehp_resource_sort_and_combine(&(ctrl->bus_head));
if (rc) {
set_slot_off(ctrl, p_slot);
return rc;
}
pciehp_save_slot_config(ctrl, func);
func->status = 0;
func->switch_save = 0x10;
func->is_a_board = 0x01;
/* next, we will instantiate the linux pci_dev structures
* (with appropriate driver notification, if already present)
*/
index = 0;
do {
new_func = pciehp_slot_find(ctrl->slot_bus, func->device, index++);
if (new_func && !new_func->pci_dev) {
dbg("%s:call pci_hp_configure_dev, func %x\n",
__FUNCTION__, index);
pciehp_configure_device(ctrl, new_func);
}
} while (new_func);
/*
* Some PCI Express root ports require fixup after hot-plug operation.
*/
if (pcie_mch_quirk)
pci_fixup_device(pci_fixup_final, ctrl->pci_dev);
if (PWR_LED(ctrl->ctrlcap)) {
/* Wait for exclusive access to hardware */
down(&ctrl->crit_sect);
p_slot->hpc_ops->green_led_on(p_slot);
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
/* Done with exclusive hardware access */
up(&ctrl->crit_sect);
}
} else {
set_slot_off(ctrl, p_slot);
return -1;
}
return 0;
}
/**
* remove_board - Turns off slot and LED's
*
*/
static u32 remove_board(struct pci_func *func, struct controller *ctrl)
{
int index;
u8 skip = 0;
u8 device;
u8 hp_slot;
u32 rc;
struct resource_lists res_lists;
struct pci_func *temp_func;
struct slot *p_slot;
if (func == NULL)
return 1;
if (pciehp_unconfigure_device(func))
return 1;
device = func->device;
hp_slot = func->device - ctrl->slot_device_offset;
p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
if ((ctrl->add_support) &&
!(func->bus_head || func->mem_head || func->p_mem_head || func->io_head)) {
/* Here we check to see if we've saved any of the board's
* resources already. If so, we'll skip the attempt to
* determine what's being used.
*/
index = 0;
temp_func = func;
while ((temp_func = pciehp_slot_find(temp_func->bus, temp_func->device, index++))) {
if (temp_func->bus_head || temp_func->mem_head
|| temp_func->p_mem_head || temp_func->io_head) {
skip = 1;
break;
}
}
if (!skip)
rc = pciehp_save_used_resources(ctrl, func, DISABLE_CARD);
}
/* Change status to shutdown */
if (func->is_a_board)
func->status = 0x01;
func->configured = 0;
/* Wait for exclusive access to hardware */
down(&ctrl->crit_sect);
if (POWER_CTRL(ctrl->ctrlcap)) {
/* power off slot */
rc = p_slot->hpc_ops->power_off_slot(p_slot);
if (rc) {
err("%s: Issue of Slot Disable command failed\n", __FUNCTION__);
up(&ctrl->crit_sect);
return rc;
}
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
}
if (PWR_LED(ctrl->ctrlcap)) {
/* turn off Green LED */
p_slot->hpc_ops->green_led_off(p_slot);
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
}
/* Done with exclusive hardware access */
up(&ctrl->crit_sect);
if (ctrl->add_support) {
while (func) {
res_lists.io_head = ctrl->io_head;
res_lists.mem_head = ctrl->mem_head;
res_lists.p_mem_head = ctrl->p_mem_head;
res_lists.bus_head = ctrl->bus_head;
dbg("Returning resources to ctlr lists for (B/D/F) = (%#x/%#x/%#x)\n",
func->bus, func->device, func->function);
pciehp_return_board_resources(func, &res_lists);
ctrl->io_head = res_lists.io_head;
ctrl->mem_head = res_lists.mem_head;
ctrl->p_mem_head = res_lists.p_mem_head;
ctrl->bus_head = res_lists.bus_head;
pciehp_resource_sort_and_combine(&(ctrl->mem_head));
pciehp_resource_sort_and_combine(&(ctrl->p_mem_head));
pciehp_resource_sort_and_combine(&(ctrl->io_head));
pciehp_resource_sort_and_combine(&(ctrl->bus_head));
if (is_bridge(func)) {
dbg("PCI Bridge Hot-Remove s:b:d:f(%02x:%02x:%02x:%02x)\n",
ctrl->seg, func->bus, func->device, func->function);
bridge_slot_remove(func);
} else {
dbg("PCI Function Hot-Remove s:b:d:f(%02x:%02x:%02x:%02x)\n",
ctrl->seg, func->bus, func->device, func->function);
slot_remove(func);
}
func = pciehp_slot_find(ctrl->slot_bus, device, 0);
}
/* Setup slot structure with entry for empty slot */
func = pciehp_slot_create(ctrl->slot_bus);
if (func == NULL) {
return 1;
}
func->bus = ctrl->slot_bus;
func->device = device;
func->function = 0;
func->configured = 0;
func->switch_save = 0x10;
func->is_a_board = 0;
}
return 0;
}
static void pushbutton_helper_thread(unsigned long data)
{
pushbutton_pending = data;
up(&event_semaphore);
}
/**
* pciehp_pushbutton_thread
*
* Scheduled procedure to handle blocking stuff for the pushbuttons
* Handles all pending events and exits.
*
*/
static void pciehp_pushbutton_thread(unsigned long slot)
{
struct slot *p_slot = (struct slot *) slot;
u8 getstatus;
pushbutton_pending = 0;
if (!p_slot) {
dbg("%s: Error! slot NULL\n", __FUNCTION__);
return;
}
p_slot->hpc_ops->get_power_status(p_slot, &getstatus);
if (getstatus) {
p_slot->state = POWEROFF_STATE;
dbg("In power_down_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device);
pciehp_disable_slot(p_slot);
p_slot->state = STATIC_STATE;
} else {
p_slot->state = POWERON_STATE;
dbg("In add_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device);
if (pciehp_enable_slot(p_slot) && PWR_LED(p_slot->ctrl->ctrlcap)) {
/* Wait for exclusive access to hardware */
down(&p_slot->ctrl->crit_sect);
p_slot->hpc_ops->green_led_off(p_slot);
/* Wait for the command to complete */
wait_for_ctrl_irq (p_slot->ctrl);
/* Done with exclusive hardware access */
up(&p_slot->ctrl->crit_sect);
}
p_slot->state = STATIC_STATE;
}
return;
}
/**
* pciehp_surprise_rm_thread
*
* Scheduled procedure to handle blocking stuff for the surprise removal
* Handles all pending events and exits.
*
*/
static void pciehp_surprise_rm_thread(unsigned long slot)
{
struct slot *p_slot = (struct slot *) slot;
u8 getstatus;
surprise_rm_pending = 0;
if (!p_slot) {
dbg("%s: Error! slot NULL\n", __FUNCTION__);
return;
}
p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus);
if (!getstatus) {
p_slot->state = POWEROFF_STATE;
dbg("In removing board, b:d(%x:%x)\n", p_slot->bus, p_slot->device);
pciehp_disable_slot(p_slot);
p_slot->state = STATIC_STATE;
} else {
p_slot->state = POWERON_STATE;
dbg("In add_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device);
if (pciehp_enable_slot(p_slot) && PWR_LED(p_slot->ctrl->ctrlcap)) {
/* Wait for exclusive access to hardware */
down(&p_slot->ctrl->crit_sect);
p_slot->hpc_ops->green_led_off(p_slot);
/* Wait for the command to complete */
wait_for_ctrl_irq (p_slot->ctrl);
/* Done with exclusive hardware access */
up(&p_slot->ctrl->crit_sect);
}
p_slot->state = STATIC_STATE;
}
return;
}
/* this is the main worker thread */
static int event_thread(void* data)
{
struct controller *ctrl;
lock_kernel();
daemonize("pciehpd_event");
unlock_kernel();
while (1) {
dbg("!!!!event_thread sleeping\n");
down_interruptible (&event_semaphore);
dbg("event_thread woken finished = %d\n", event_finished);
if (event_finished || signal_pending(current))
break;
/* Do stuff here */
if (pushbutton_pending)
pciehp_pushbutton_thread(pushbutton_pending);
else if (surprise_rm_pending)
pciehp_surprise_rm_thread(surprise_rm_pending);
else
for (ctrl = pciehp_ctrl_list; ctrl; ctrl=ctrl->next)
interrupt_event_handler(ctrl);
}
dbg("event_thread signals exit\n");
up(&event_exit);
return 0;
}
int pciehp_event_start_thread(void)
{
int pid;
/* initialize our semaphores */
init_MUTEX_LOCKED(&event_exit);
event_finished=0;
init_MUTEX_LOCKED(&event_semaphore);
pid = kernel_thread(event_thread, NULL, 0);
if (pid < 0) {
err ("Can't start up our event thread\n");
return -1;
}
dbg("Our event thread pid = %d\n", pid);
return 0;
}
void pciehp_event_stop_thread(void)
{
event_finished = 1;
dbg("event_thread finish command given\n");
up(&event_semaphore);
dbg("wait for event_thread to exit\n");
down(&event_exit);
}
static int update_slot_info(struct slot *slot)
{
struct hotplug_slot_info *info;
/* char buffer[SLOT_NAME_SIZE]; */
int result;
info = kmalloc(sizeof(struct hotplug_slot_info), GFP_KERNEL);
if (!info)
return -ENOMEM;
/* make_slot_name (&buffer[0], SLOT_NAME_SIZE, slot); */
slot->hpc_ops->get_power_status(slot, &(info->power_status));
slot->hpc_ops->get_attention_status(slot, &(info->attention_status));
slot->hpc_ops->get_latch_status(slot, &(info->latch_status));
slot->hpc_ops->get_adapter_status(slot, &(info->adapter_status));
/* result = pci_hp_change_slot_info(buffer, info); */
result = pci_hp_change_slot_info(slot->hotplug_slot, info);
kfree (info);
return result;
}
static void interrupt_event_handler(struct controller *ctrl)
{
int loop = 0;
int change = 1;
struct pci_func *func;
u8 hp_slot;
u8 getstatus;
struct slot *p_slot;
while (change) {
change = 0;
for (loop = 0; loop < 10; loop++) {
if (ctrl->event_queue[loop].event_type != 0) {
hp_slot = ctrl->event_queue[loop].hp_slot;
func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0);
p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
dbg("hp_slot %d, func %p, p_slot %p\n", hp_slot, func, p_slot);
if (ctrl->event_queue[loop].event_type == INT_BUTTON_CANCEL) {
dbg("button cancel\n");
del_timer(&p_slot->task_event);
switch (p_slot->state) {
case BLINKINGOFF_STATE:
/* Wait for exclusive access to hardware */
down(&ctrl->crit_sect);
if (PWR_LED(ctrl->ctrlcap)) {
p_slot->hpc_ops->green_led_on(p_slot);
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
}
if (ATTN_LED(ctrl->ctrlcap)) {
p_slot->hpc_ops->set_attention_status(p_slot, 0);
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
}
/* Done with exclusive hardware access */
up(&ctrl->crit_sect);
break;
case BLINKINGON_STATE:
/* Wait for exclusive access to hardware */
down(&ctrl->crit_sect);
if (PWR_LED(ctrl->ctrlcap)) {
p_slot->hpc_ops->green_led_off(p_slot);
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
}
if (ATTN_LED(ctrl->ctrlcap)){
p_slot->hpc_ops->set_attention_status(p_slot, 0);
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
}
/* Done with exclusive hardware access */
up(&ctrl->crit_sect);
break;
default:
warn("Not a valid state\n");
return;
}
info(msg_button_cancel, p_slot->number);
p_slot->state = STATIC_STATE;
}
/* ***********Button Pressed (No action on 1st press...) */
else if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
if (ATTN_BUTTN(ctrl->ctrlcap)) {
dbg("Button pressed\n");
p_slot->hpc_ops->get_power_status(p_slot, &getstatus);
if (getstatus) {
/* slot is on */
dbg("slot is on\n");
p_slot->state = BLINKINGOFF_STATE;
info(msg_button_off, p_slot->number);
} else {
/* slot is off */
dbg("slot is off\n");
p_slot->state = BLINKINGON_STATE;
info(msg_button_on, p_slot->number);
}
/* Wait for exclusive access to hardware */
down(&ctrl->crit_sect);
/* blink green LED and turn off amber */
if (PWR_LED(ctrl->ctrlcap)) {
p_slot->hpc_ops->green_led_blink(p_slot);
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
}
if (ATTN_LED(ctrl->ctrlcap)) {
p_slot->hpc_ops->set_attention_status(p_slot, 0);
/* Wait for the command to complete */
wait_for_ctrl_irq (ctrl);
}
/* Done with exclusive hardware access */
up(&ctrl->crit_sect);
init_timer(&p_slot->task_event);
p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
p_slot->task_event.function = (void (*)(unsigned long)) pushbutton_helper_thread;
p_slot->task_event.data = (unsigned long) p_slot;
dbg("add_timer p_slot = %p\n", (void *) p_slot);
add_timer(&p_slot->task_event);
}
}
/***********POWER FAULT********************/
else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
if (POWER_CTRL(ctrl->ctrlcap)) {
dbg("power fault\n");
/* Wait for exclusive access to hardware */
down(&ctrl->crit_sect);
if (ATTN_LED(ctrl->ctrlcap)) {
p_slot->hpc_ops->set_attention_status(p_slot, 1);
wait_for_ctrl_irq (ctrl);
}
if (PWR_LED(ctrl->ctrlcap)) {
p_slot->hpc_ops->green_led_off(p_slot);
wait_for_ctrl_irq (ctrl);
}
/* Done with exclusive hardware access */
up(&ctrl->crit_sect);
}
}
/***********SURPRISE REMOVAL********************/
else if ((ctrl->event_queue[loop].event_type == INT_PRESENCE_ON) ||
(ctrl->event_queue[loop].event_type == INT_PRESENCE_OFF)) {
if (HP_SUPR_RM(ctrl->ctrlcap)) {
dbg("Surprise Removal\n");
if (p_slot) {
surprise_rm_pending = (unsigned long) p_slot;
up(&event_semaphore);
update_slot_info(p_slot);
}
}
} else {
/* refresh notification */
if (p_slot)
update_slot_info(p_slot);
}
ctrl->event_queue[loop].event_type = 0;
change = 1;
}
} /* End of FOR loop */
}
}
int pciehp_enable_slot(struct slot *p_slot)
{
u8 getstatus = 0;
int rc;
struct pci_func *func;
func = pciehp_slot_find(p_slot->bus, p_slot->device, 0);
if (!func) {
dbg("%s: Error! slot NULL\n", __FUNCTION__);
return 1;
}
/* Check to see if (latch closed, card present, power off) */
down(&p_slot->ctrl->crit_sect);
rc = p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus);
if (rc || !getstatus) {
info("%s: no adapter on slot(%x)\n", __FUNCTION__, p_slot->number);
up(&p_slot->ctrl->crit_sect);
return 1;
}
if (MRL_SENS(p_slot->ctrl->ctrlcap)) {
rc = p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
if (rc || getstatus) {
info("%s: latch open on slot(%x)\n", __FUNCTION__, p_slot->number);
up(&p_slot->ctrl->crit_sect);
return 1;
}
}
if (POWER_CTRL(p_slot->ctrl->ctrlcap)) {
rc = p_slot->hpc_ops->get_power_status(p_slot, &getstatus);
if (rc || getstatus) {
info("%s: already enabled on slot(%x)\n", __FUNCTION__, p_slot->number);
up(&p_slot->ctrl->crit_sect);
return 1;
}
}
up(&p_slot->ctrl->crit_sect);
slot_remove(func);
func = pciehp_slot_create(p_slot->bus);
if (func == NULL)
return 1;
func->bus = p_slot->bus;
func->device = p_slot->device;
func->function = 0;
func->configured = 0;
func->is_a_board = 1;
/* We have to save the presence info for these slots */
p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save));
p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
func->switch_save = !getstatus? 0x10:0;
rc = board_added(func, p_slot->ctrl);
if (rc) {
if (is_bridge(func))
bridge_slot_remove(func);
else
slot_remove(func);
/* Setup slot structure with entry for empty slot */
func = pciehp_slot_create(p_slot->bus);
if (func == NULL)
return 1; /* Out of memory */
func->bus = p_slot->bus;
func->device = p_slot->device;
func->function = 0;
func->configured = 0;
func->is_a_board = 1;
/* We have to save the presence info for these slots */
p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save));
p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
func->switch_save = !getstatus? 0x10:0;
}
if (p_slot)
update_slot_info(p_slot);
return rc;
}
int pciehp_disable_slot(struct slot *p_slot)
{
u8 class_code, header_type, BCR;
u8 index = 0;
u8 getstatus = 0;
u32 rc = 0;
int ret = 0;
unsigned int devfn;
struct pci_bus *pci_bus = p_slot->ctrl->pci_dev->subordinate;
struct pci_func *func;
if (!p_slot->ctrl)
return 1;
/* Check to see if (latch closed, card present, power on) */
down(&p_slot->ctrl->crit_sect);
if (!HP_SUPR_RM(p_slot->ctrl->ctrlcap)) {
ret = p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus);
if (ret || !getstatus) {
info("%s: no adapter on slot(%x)\n", __FUNCTION__, p_slot->number);
up(&p_slot->ctrl->crit_sect);
return 1;
}
}
if (MRL_SENS(p_slot->ctrl->ctrlcap)) {
ret = p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
if (ret || getstatus) {
info("%s: latch open on slot(%x)\n", __FUNCTION__, p_slot->number);
up(&p_slot->ctrl->crit_sect);
return 1;
}
}
if (POWER_CTRL(p_slot->ctrl->ctrlcap)) {
ret = p_slot->hpc_ops->get_power_status(p_slot, &getstatus);
if (ret || !getstatus) {
info("%s: already disabled slot(%x)\n", __FUNCTION__, p_slot->number);
up(&p_slot->ctrl->crit_sect);
return 1;
}
}
up(&p_slot->ctrl->crit_sect);
func = pciehp_slot_find(p_slot->bus, p_slot->device, index++);
/* Make sure there are no video controllers here
* for all func of p_slot
*/
while (func && !rc) {
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
/* Check the Class Code */
rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
if (rc)
return rc;
if (class_code == PCI_BASE_CLASS_DISPLAY) {
/* Display/Video adapter (not supported) */
rc = REMOVE_NOT_SUPPORTED;
} else {
/* See if it's a bridge */
rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
if (rc)
return rc;
/* If it's a bridge, check the VGA Enable bit */
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
if (rc)
return rc;
/* If the VGA Enable bit is set, remove isn't supported */
if (BCR & PCI_BRIDGE_CTL_VGA) {
rc = REMOVE_NOT_SUPPORTED;
}
}
}
func = pciehp_slot_find(p_slot->bus, p_slot->device, index++);
}
func = pciehp_slot_find(p_slot->bus, p_slot->device, 0);
if ((func != NULL) && !rc) {
rc = remove_board(func, p_slot->ctrl);
} else if (!rc)
rc = 1;
if (p_slot)
update_slot_info(p_slot);
return rc;
}
/**
* configure_new_device - Configures the PCI header information of one board.
*
* @ctrl: pointer to controller structure
* @func: pointer to function structure
* @behind_bridge: 1 if this is a recursive call, 0 if not
* @resources: pointer to set of resource lists
*
* Returns 0 if success
*
*/
static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
u8 behind_bridge, struct resource_lists * resources, u8 bridge_bus, u8 bridge_dev)
{
u8 temp_byte, function, max_functions, stop_it;
int rc;
u32 ID;
struct pci_func *new_slot;
struct pci_bus lpci_bus, *pci_bus;
int index;
new_slot = func;
dbg("%s\n", __FUNCTION__);
memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus));
pci_bus = &lpci_bus;
pci_bus->number = func->bus;
/* Check for Multi-function device */
rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
if (rc) {
dbg("%s: rc = %d\n", __FUNCTION__, rc);
return rc;
}
if (temp_byte & 0x80) /* Multi-function device */
max_functions = 8;
else
max_functions = 1;
function = 0;
do {
rc = configure_new_function(ctrl, new_slot, behind_bridge,
resources, bridge_bus, bridge_dev);
if (rc) {
dbg("configure_new_function failed: %d\n", rc);
index = 0;
while (new_slot) {
new_slot = pciehp_slot_find(new_slot->bus,
new_slot->device, index++);
if (new_slot)
pciehp_return_board_resources(new_slot,
resources);
}
return rc;
}
function++;
stop_it = 0;
/* The following loop skips to the next present function
* and creates a board structure
*/
while ((function < max_functions) && (!stop_it)) {
pci_bus_read_config_dword(pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
if (ID == 0xFFFFFFFF) { /* There's nothing there. */
function++;
} else { /* There's something there */
/* Setup slot structure. */
new_slot = pciehp_slot_create(func->bus);
if (new_slot == NULL) {
/* Out of memory */
return 1;
}
new_slot->bus = func->bus;
new_slot->device = func->device;
new_slot->function = function;
new_slot->is_a_board = 1;
new_slot->status = 0;
stop_it++;
}
}
} while (function < max_functions);
dbg("returning from %s\n", __FUNCTION__);
return 0;
}
/*
* Configuration logic that involves the hotplug data structures and
* their bookkeeping
*/
/**
* configure_bridge: fill bridge's registers, either configure or disable it.
*/
static int
configure_bridge(struct pci_bus *pci_bus, unsigned int devfn,
struct pci_resource *mem_node,
struct pci_resource **hold_mem_node,
int base_addr, int limit_addr)
{
u16 temp_word;
u32 rc;
if (mem_node) {
memcpy(*hold_mem_node, mem_node, sizeof(struct pci_resource));
mem_node->next = NULL;
/* set Mem base and Limit registers */
RES_CHECK(mem_node->base, 16);
temp_word = (u16)(mem_node->base >> 16);
rc = pci_bus_write_config_word(pci_bus, devfn, base_addr, temp_word);
RES_CHECK(mem_node->base + mem_node->length - 1, 16);
temp_word = (u16)((mem_node->base + mem_node->length - 1) >> 16);
rc = pci_bus_write_config_word(pci_bus, devfn, limit_addr, temp_word);
} else {
temp_word = 0xFFFF;
rc = pci_bus_write_config_word(pci_bus, devfn, base_addr, temp_word);
temp_word = 0x0000;
rc = pci_bus_write_config_word(pci_bus, devfn, limit_addr, temp_word);
kfree(*hold_mem_node);
*hold_mem_node = NULL;
}
return rc;
}
static int
configure_new_bridge(struct controller *ctrl, struct pci_func *func,
u8 behind_bridge, struct resource_lists *resources,
struct pci_bus *pci_bus)
{
int cloop;
u8 temp_byte;
u8 device;
u16 temp_word;
u32 rc;
u32 ID;
unsigned int devfn;
struct pci_resource *mem_node;
struct pci_resource *p_mem_node;
struct pci_resource *io_node;
struct pci_resource *bus_node;
struct pci_resource *hold_mem_node;
struct pci_resource *hold_p_mem_node;
struct pci_resource *hold_IO_node;
struct pci_resource *hold_bus_node;
struct irq_mapping irqs;
struct pci_func *new_slot;
struct resource_lists temp_resources;
devfn = PCI_DEVFN(func->device, func->function);
/* set Primary bus */
dbg("set Primary bus = 0x%x\n", func->bus);
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
if (rc)
return rc;
/* find range of busses to use */
bus_node = get_max_resource(&resources->bus_head, 1L);
/* If we don't have any busses to allocate, we can't continue */
if (!bus_node) {
err("Got NO bus resource to use\n");
return -ENOMEM;
}
dbg("Got ranges of buses to use: base:len=0x%x:%x\n", bus_node->base, bus_node->length);
/* set Secondary bus */
temp_byte = (u8)bus_node->base;
dbg("set Secondary bus = 0x%x\n", temp_byte);
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
if (rc)
return rc;
/* set subordinate bus */
temp_byte = (u8)(bus_node->base + bus_node->length - 1);
dbg("set subordinate bus = 0x%x\n", temp_byte);
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
if (rc)
return rc;
/* Set HP parameters (Cache Line Size, Latency Timer) */
rc = pciehprm_set_hpp(ctrl, func, PCI_HEADER_TYPE_BRIDGE);
if (rc)
return rc;
/* Setup the IO, memory, and prefetchable windows */
io_node = get_max_resource(&(resources->io_head), 0x1000L);
if (io_node) {
dbg("io_node(base, len, next) (%x, %x, %p)\n", io_node->base,
io_node->length, io_node->next);
}
mem_node = get_max_resource(&(resources->mem_head), 0x100000L);
if (mem_node) {
dbg("mem_node(base, len, next) (%x, %x, %p)\n", mem_node->base,
mem_node->length, mem_node->next);
}
if (resources->p_mem_head)
p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000L);
else {
/*
* In some platform implementation, MEM and PMEM are not
* distinguished, and hence ACPI _CRS has only MEM entries
* for both MEM and PMEM.
*/
dbg("using MEM for PMEM\n");
p_mem_node = get_max_resource(&(resources->mem_head), 0x100000L);
}
if (p_mem_node) {
dbg("p_mem_node(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
p_mem_node->length, p_mem_node->next);
}
/* set up the IRQ info */
if (!resources->irqs) {
irqs.barber_pole = 0;
irqs.interrupt[0] = 0;
irqs.interrupt[1] = 0;
irqs.interrupt[2] = 0;
irqs.interrupt[3] = 0;
irqs.valid_INT = 0;
} else {
irqs.barber_pole = resources->irqs->barber_pole;
irqs.interrupt[0] = resources->irqs->interrupt[0];
irqs.interrupt[1] = resources->irqs->interrupt[1];
irqs.interrupt[2] = resources->irqs->interrupt[2];
irqs.interrupt[3] = resources->irqs->interrupt[3];
irqs.valid_INT = resources->irqs->valid_INT;
}
/* set up resource lists that are now aligned on top and bottom
* for anything behind the bridge.
*/
temp_resources.bus_head = bus_node;
temp_resources.io_head = io_node;
temp_resources.mem_head = mem_node;
temp_resources.p_mem_head = p_mem_node;
temp_resources.irqs = &irqs;
/* Make copies of the nodes we are going to pass down so that
* if there is a problem,we can just use these to free resources
*/
hold_bus_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
hold_IO_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
hold_mem_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
hold_p_mem_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
kfree(hold_bus_node);
kfree(hold_IO_node);
kfree(hold_mem_node);
kfree(hold_p_mem_node);
return 1;
}
memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
bus_node->base += 1;
bus_node->length -= 1;
bus_node->next = NULL;
/* If we have IO resources copy them and fill in the bridge's
* IO range registers
*/
if (io_node) {
memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
io_node->next = NULL;
/* set IO base and Limit registers */
RES_CHECK(io_node->base, 8);
temp_byte = (u8)(io_node->base >> 8);
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_BASE, temp_byte);
RES_CHECK(io_node->base + io_node->length - 1, 8);
temp_byte = (u8)((io_node->base + io_node->length - 1) >> 8);
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
} else {
kfree(hold_IO_node);
hold_IO_node = NULL;
}
/* If we have memory resources copy them and fill in the bridge's
* memory range registers. Otherwise, fill in the range
* registers with values that disable them.
*/
rc = configure_bridge(pci_bus, devfn, mem_node, &hold_mem_node,
PCI_MEMORY_BASE, PCI_MEMORY_LIMIT);
/* If we have prefetchable memory resources copy them and
* fill in the bridge's memory range registers. Otherwise,
* fill in the range registers with values that disable them.
*/
rc = configure_bridge(pci_bus, devfn, p_mem_node, &hold_p_mem_node,
PCI_PREF_MEMORY_BASE, PCI_PREF_MEMORY_LIMIT);
/* Adjust this to compensate for extra adjustment in first loop */
irqs.barber_pole--;
rc = 0;
/* Here we actually find the devices and configure them */
for (device = 0; (device <= 0x1F) && !rc; device++) {
irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
ID = 0xFFFFFFFF;
pci_bus->number = hold_bus_node->base;
pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
pci_bus->number = func->bus;
if (ID != 0xFFFFFFFF) { /* device Present */
/* Setup slot structure. */
new_slot = pciehp_slot_create(hold_bus_node->base);
if (new_slot == NULL) {
/* Out of memory */
rc = -ENOMEM;
continue;
}
new_slot->bus = hold_bus_node->base;
new_slot->device = device;
new_slot->function = 0;
new_slot->is_a_board = 1;
new_slot->status = 0;
rc = configure_new_device(ctrl, new_slot, 1,
&temp_resources, func->bus,
func->device);
dbg("configure_new_device rc=0x%x\n",rc);
} /* End of IF (device in slot?) */
} /* End of FOR loop */
if (rc) {
pciehp_destroy_resource_list(&temp_resources);
return_resource(&(resources->bus_head), hold_bus_node);
return_resource(&(resources->io_head), hold_IO_node);
return_resource(&(resources->mem_head), hold_mem_node);
return_resource(&(resources->p_mem_head), hold_p_mem_node);
return(rc);
}
/* save the interrupt routing information */
if (resources->irqs) {
resources->irqs->interrupt[0] = irqs.interrupt[0];
resources->irqs->interrupt[1] = irqs.interrupt[1];
resources->irqs->interrupt[2] = irqs.interrupt[2];
resources->irqs->interrupt[3] = irqs.interrupt[3];
resources->irqs->valid_INT = irqs.valid_INT;
} else if (!behind_bridge) {
/* We need to hook up the interrupts here */
for (cloop = 0; cloop < 4; cloop++) {
if (irqs.valid_INT & (0x01 << cloop)) {
rc = pciehp_set_irq(func->bus, func->device,
0x0A + cloop, irqs.interrupt[cloop]);
if (rc) {
pciehp_destroy_resource_list (&temp_resources);
return_resource(&(resources->bus_head), hold_bus_node);
return_resource(&(resources->io_head), hold_IO_node);
return_resource(&(resources->mem_head), hold_mem_node);
return_resource(&(resources->p_mem_head), hold_p_mem_node);
return rc;
}
}
} /* end of for loop */
}
/* Return unused bus resources
* First use the temporary node to store information for the board
*/
if (hold_bus_node && bus_node && temp_resources.bus_head) {
hold_bus_node->length = bus_node->base - hold_bus_node->base;
hold_bus_node->next = func->bus_head;
func->bus_head = hold_bus_node;
temp_byte = (u8)(temp_resources.bus_head->base - 1);
/* set subordinate bus */
dbg("re-set subordinate bus = 0x%x\n", temp_byte);
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
if (temp_resources.bus_head->length == 0) {
kfree(temp_resources.bus_head);
temp_resources.bus_head = NULL;
} else {
dbg("return bus res of b:d(0x%x:%x) base:len(0x%x:%x)\n",
func->bus, func->device, temp_resources.bus_head->base, temp_resources.bus_head->length);
return_resource(&(resources->bus_head), temp_resources.bus_head);
}
}
/* If we have IO space available and there is some left,
* return the unused portion
*/
if (hold_IO_node && temp_resources.io_head) {
io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
&hold_IO_node, 0x1000);
/* Check if we were able to split something off */
if (io_node) {
hold_IO_node->base = io_node->base + io_node->length;
RES_CHECK(hold_IO_node->base, 8);
temp_byte = (u8)((hold_IO_node->base) >> 8);
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_BASE, temp_byte);
return_resource(&(resources->io_head), io_node);
}
io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
/* Check if we were able to split something off */
if (io_node) {
/* First use the temporary node to store information for the board */
hold_IO_node->length = io_node->base - hold_IO_node->base;
/* If we used any, add it to the board's list */
if (hold_IO_node->length) {
hold_IO_node->next = func->io_head;
func->io_head = hold_IO_node;
RES_CHECK(io_node->base - 1, 8);
temp_byte = (u8)((io_node->base - 1) >> 8);
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
return_resource(&(resources->io_head), io_node);
} else {
/* it doesn't need any IO */
temp_byte = 0x00;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
return_resource(&(resources->io_head), io_node);
kfree(hold_IO_node);
}
} else {
/* it used most of the range */
hold_IO_node->next = func->io_head;
func->io_head = hold_IO_node;
}
} else if (hold_IO_node) {
/* it used the whole range */
hold_IO_node->next = func->io_head;
func->io_head = hold_IO_node;
}
/* If we have memory space available and there is some left,
* return the unused portion
*/
if (hold_mem_node && temp_resources.mem_head) {
mem_node = do_pre_bridge_resource_split(&(temp_resources.mem_head), &hold_mem_node, 0x100000L);
/* Check if we were able to split something off */
if (mem_node) {
hold_mem_node->base = mem_node->base + mem_node->length;
RES_CHECK(hold_mem_node->base, 16);
temp_word = (u16)((hold_mem_node->base) >> 16);
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
return_resource(&(resources->mem_head), mem_node);
}
mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000L);
/* Check if we were able to split something off */
if (mem_node) {
/* First use the temporary node to store information for the board */
hold_mem_node->length = mem_node->base - hold_mem_node->base;
if (hold_mem_node->length) {
hold_mem_node->next = func->mem_head;
func->mem_head = hold_mem_node;
/* configure end address */
RES_CHECK(mem_node->base - 1, 16);
temp_word = (u16)((mem_node->base - 1) >> 16);
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
/* Return unused resources to the pool */
return_resource(&(resources->mem_head), mem_node);
} else {
/* it doesn't need any Mem */
temp_word = 0x0000;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
return_resource(&(resources->mem_head), mem_node);
kfree(hold_mem_node);
}
} else {
/* it used most of the range */
hold_mem_node->next = func->mem_head;
func->mem_head = hold_mem_node;
}
} else if (hold_mem_node) {
/* it used the whole range */
hold_mem_node->next = func->mem_head;
func->mem_head = hold_mem_node;
}
/* If we have prefetchable memory space available and there is some
* left at the end, return the unused portion
*/
if (hold_p_mem_node && temp_resources.p_mem_head) {
p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
&hold_p_mem_node, 0x100000L);
/* Check if we were able to split something off */
if (p_mem_node) {
hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
RES_CHECK(hold_p_mem_node->base, 16);
temp_word = (u16)((hold_p_mem_node->base) >> 16);
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
return_resource(&(resources->p_mem_head), p_mem_node);
}
p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000L);
/* Check if we were able to split something off */
if (p_mem_node) {
/* First use the temporary node to store information for the board */
hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
/* If we used any, add it to the board's list */
if (hold_p_mem_node->length) {
hold_p_mem_node->next = func->p_mem_head;
func->p_mem_head = hold_p_mem_node;
RES_CHECK(p_mem_node->base - 1, 16);
temp_word = (u16)((p_mem_node->base - 1) >> 16);
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
return_resource(&(resources->p_mem_head), p_mem_node);
} else {
/* it doesn't need any PMem */
temp_word = 0x0000;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
return_resource(&(resources->p_mem_head), p_mem_node);
kfree(hold_p_mem_node);
}
} else {
/* it used the most of the range */
hold_p_mem_node->next = func->p_mem_head;
func->p_mem_head = hold_p_mem_node;
}
} else if (hold_p_mem_node) {
/* it used the whole range */
hold_p_mem_node->next = func->p_mem_head;
func->p_mem_head = hold_p_mem_node;
}
/* We should be configuring an IRQ and the bridge's base address
* registers if it needs them. Although we have never seen such
* a device
*/
pciehprm_enable_card(ctrl, func, PCI_HEADER_TYPE_BRIDGE);
dbg("PCI Bridge Hot-Added s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device, func->function);
return rc;
}
/**
* configure_new_function - Configures the PCI header information of one device
*
* @ctrl: pointer to controller structure
* @func: pointer to function structure
* @behind_bridge: 1 if this is a recursive call, 0 if not
* @resources: pointer to set of resource lists
*
* Calls itself recursively for bridged devices.
* Returns 0 if success
*
*/
static int
configure_new_function(struct controller *ctrl, struct pci_func *func,
u8 behind_bridge, struct resource_lists *resources,
u8 bridge_bus, u8 bridge_dev)
{
int cloop;
u8 temp_byte;
u8 class_code;
u16 temp_word;
u32 rc;
u32 temp_register;
u32 base;
unsigned int devfn;
struct pci_resource *mem_node;
struct pci_resource *io_node;
struct pci_bus lpci_bus, *pci_bus;
memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus));
pci_bus = &lpci_bus;
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
/* Check for Bridge */
rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
if (rc)
return rc;
dbg("%s: bus %x dev %x func %x temp_byte = %x\n", __FUNCTION__,
func->bus, func->device, func->function, temp_byte);
if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
rc = configure_new_bridge(ctrl, func, behind_bridge, resources,
pci_bus);
if (rc)
return rc;
} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
/* Standard device */
u64 base64;
rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
if (class_code == PCI_BASE_CLASS_DISPLAY)
return DEVICE_TYPE_NOT_SUPPORTED;
/* Figure out IO and memory needs */
for (cloop = PCI_BASE_ADDRESS_0; cloop <= PCI_BASE_ADDRESS_5; cloop += 4) {
temp_register = 0xFFFFFFFF;
rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
dbg("Bar[%x]=0x%x on bus:dev:func(0x%x:%x:%x)\n", cloop, temp_register,
func->bus, func->device, func->function);
if (!temp_register)
continue;
base64 = 0L;
if (temp_register & PCI_BASE_ADDRESS_SPACE_IO) {
/* Map IO */
/* set base = amount of IO space */
base = temp_register & 0xFFFFFFFC;
base = ~base + 1;
dbg("NEED IO length(0x%x)\n", base);
io_node = get_io_resource(&(resources->io_head),(ulong)base);
/* allocate the resource to the board */
if (io_node) {
dbg("Got IO base=0x%x(length=0x%x)\n", io_node->base, io_node->length);
base = (u32)io_node->base;
io_node->next = func->io_head;
func->io_head = io_node;
} else {
err("Got NO IO resource(length=0x%x)\n", base);
return -ENOMEM;
}
} else { /* map MEM */
int prefetchable = 1;
struct pci_resource **res_node = &func->p_mem_head;
char *res_type_str = "PMEM";
u32 temp_register2;
if (!(temp_register & PCI_BASE_ADDRESS_MEM_PREFETCH)) {
prefetchable = 0;
res_node = &func->mem_head;
res_type_str++;
}
base = temp_register & 0xFFFFFFF0;
base = ~base + 1;
switch (temp_register & PCI_BASE_ADDRESS_MEM_TYPE_MASK) {
case PCI_BASE_ADDRESS_MEM_TYPE_32:
dbg("NEED 32 %s bar=0x%x(length=0x%x)\n", res_type_str, temp_register, base);
if (prefetchable && resources->p_mem_head)
mem_node=get_resource(&(resources->p_mem_head), (ulong)base);
else {
if (prefetchable)
dbg("using MEM for PMEM\n");
mem_node = get_resource(&(resources->mem_head), (ulong)base);
}
/* allocate the resource to the board */
if (mem_node) {
base = (u32)mem_node->base;
mem_node->next = *res_node;
*res_node = mem_node;
dbg("Got 32 %s base=0x%x(length=0x%x)\n", res_type_str, mem_node->base,
mem_node->length);
} else {
err("Got NO 32 %s resource(length=0x%x)\n", res_type_str, base);
return -ENOMEM;
}
break;
case PCI_BASE_ADDRESS_MEM_TYPE_64:
rc = pci_bus_read_config_dword(pci_bus, devfn, cloop+4, &temp_register2);
dbg("NEED 64 %s bar=0x%x:%x(length=0x%x)\n", res_type_str, temp_register2,
temp_register, base);
if (prefetchable && resources->p_mem_head)
mem_node = get_resource(&(resources->p_mem_head), (ulong)base);
else {
if (prefetchable)
dbg("using MEM for PMEM\n");
mem_node = get_resource(&(resources->mem_head), (ulong)base);
}
/* allocate the resource to the board */
if (mem_node) {
base64 = mem_node->base;
mem_node->next = *res_node;
*res_node = mem_node;
dbg("Got 64 %s base=0x%x:%x(length=%x)\n", res_type_str, (u32)(base64 >> 32),
(u32)base64, mem_node->length);
} else {
err("Got NO 64 %s resource(length=0x%x)\n", res_type_str, base);
return -ENOMEM;
}
break;
default:
dbg("reserved BAR type=0x%x\n", temp_register);
break;
}
}
if (base64) {
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, (u32)base64);
cloop += 4;
base64 >>= 32;
if (base64) {
dbg("%s: high dword of base64(0x%x) set to 0\n", __FUNCTION__, (u32)base64);
base64 = 0x0L;
}
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, (u32)base64);
} else {
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
}
} /* End of base register loop */
/* disable ROM base Address */
temp_word = 0x00L;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_ROM_ADDRESS, temp_word);
/* Set HP parameters (Cache Line Size, Latency Timer) */
rc = pciehprm_set_hpp(ctrl, func, PCI_HEADER_TYPE_NORMAL);
if (rc)
return rc;
pciehprm_enable_card(ctrl, func, PCI_HEADER_TYPE_NORMAL);
dbg("PCI function Hot-Added s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device,
func->function);
} /* End of Not-A-Bridge else */
else {
/* It's some strange type of PCI adapter (Cardbus?) */
return DEVICE_TYPE_NOT_SUPPORTED;
}
func->configured = 1;
return 0;
}