mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 12:50:52 +07:00
de53fd7aed
It has been observed, that highly-threaded, non-cpu-bound applications running under cpu.cfs_quota_us constraints can hit a high percentage of periods throttled while simultaneously not consuming the allocated amount of quota. This use case is typical of user-interactive non-cpu bound applications, such as those running in kubernetes or mesos when run on multiple cpu cores. This has been root caused to cpu-local run queue being allocated per cpu bandwidth slices, and then not fully using that slice within the period. At which point the slice and quota expires. This expiration of unused slice results in applications not being able to utilize the quota for which they are allocated. The non-expiration of per-cpu slices was recently fixed by 'commit512ac999d2
("sched/fair: Fix bandwidth timer clock drift condition")'. Prior to that it appears that this had been broken since at least 'commit51f2176d74
("sched/fair: Fix unlocked reads of some cfs_b->quota/period")' which was introduced in v3.16-rc1 in 2014. That added the following conditional which resulted in slices never being expired. if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { /* extend local deadline, drift is bounded above by 2 ticks */ cfs_rq->runtime_expires += TICK_NSEC; Because this was broken for nearly 5 years, and has recently been fixed and is now being noticed by many users running kubernetes (https://github.com/kubernetes/kubernetes/issues/67577) it is my opinion that the mechanisms around expiring runtime should be removed altogether. This allows quota already allocated to per-cpu run-queues to live longer than the period boundary. This allows threads on runqueues that do not use much CPU to continue to use their remaining slice over a longer period of time than cpu.cfs_period_us. However, this helps prevent the above condition of hitting throttling while also not fully utilizing your cpu quota. This theoretically allows a machine to use slightly more than its allotted quota in some periods. This overflow would be bounded by the remaining quota left on each per-cpu runqueueu. This is typically no more than min_cfs_rq_runtime=1ms per cpu. For CPU bound tasks this will change nothing, as they should theoretically fully utilize all of their quota in each period. For user-interactive tasks as described above this provides a much better user/application experience as their cpu utilization will more closely match the amount they requested when they hit throttling. This means that cpu limits no longer strictly apply per period for non-cpu bound applications, but that they are still accurate over longer timeframes. This greatly improves performance of high-thread-count, non-cpu bound applications with low cfs_quota_us allocation on high-core-count machines. In the case of an artificial testcase (10ms/100ms of quota on 80 CPU machine), this commit resulted in almost 30x performance improvement, while still maintaining correct cpu quota restrictions. That testcase is available at https://github.com/indeedeng/fibtest. Fixes:512ac999d2
("sched/fair: Fix bandwidth timer clock drift condition") Signed-off-by: Dave Chiluk <chiluk+linux@indeed.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Reviewed-by: Ben Segall <bsegall@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: John Hammond <jhammond@indeed.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kyle Anderson <kwa@yelp.com> Cc: Gabriel Munos <gmunoz@netflix.com> Cc: Peter Oskolkov <posk@posk.io> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Brendan Gregg <bgregg@netflix.com> Link: https://lkml.kernel.org/r/1563900266-19734-2-git-send-email-chiluk+linux@indeed.com
175 lines
7.5 KiB
ReStructuredText
175 lines
7.5 KiB
ReStructuredText
=====================
|
|
CFS Bandwidth Control
|
|
=====================
|
|
|
|
[ This document only discusses CPU bandwidth control for SCHED_NORMAL.
|
|
The SCHED_RT case is covered in Documentation/scheduler/sched-rt-group.rst ]
|
|
|
|
CFS bandwidth control is a CONFIG_FAIR_GROUP_SCHED extension which allows the
|
|
specification of the maximum CPU bandwidth available to a group or hierarchy.
|
|
|
|
The bandwidth allowed for a group is specified using a quota and period. Within
|
|
each given "period" (microseconds), a task group is allocated up to "quota"
|
|
microseconds of CPU time. That quota is assigned to per-cpu run queues in
|
|
slices as threads in the cgroup become runnable. Once all quota has been
|
|
assigned any additional requests for quota will result in those threads being
|
|
throttled. Throttled threads will not be able to run again until the next
|
|
period when the quota is replenished.
|
|
|
|
A group's unassigned quota is globally tracked, being refreshed back to
|
|
cfs_quota units at each period boundary. As threads consume this bandwidth it
|
|
is transferred to cpu-local "silos" on a demand basis. The amount transferred
|
|
within each of these updates is tunable and described as the "slice".
|
|
|
|
Management
|
|
----------
|
|
Quota and period are managed within the cpu subsystem via cgroupfs.
|
|
|
|
cpu.cfs_quota_us: the total available run-time within a period (in microseconds)
|
|
cpu.cfs_period_us: the length of a period (in microseconds)
|
|
cpu.stat: exports throttling statistics [explained further below]
|
|
|
|
The default values are::
|
|
|
|
cpu.cfs_period_us=100ms
|
|
cpu.cfs_quota=-1
|
|
|
|
A value of -1 for cpu.cfs_quota_us indicates that the group does not have any
|
|
bandwidth restriction in place, such a group is described as an unconstrained
|
|
bandwidth group. This represents the traditional work-conserving behavior for
|
|
CFS.
|
|
|
|
Writing any (valid) positive value(s) will enact the specified bandwidth limit.
|
|
The minimum quota allowed for the quota or period is 1ms. There is also an
|
|
upper bound on the period length of 1s. Additional restrictions exist when
|
|
bandwidth limits are used in a hierarchical fashion, these are explained in
|
|
more detail below.
|
|
|
|
Writing any negative value to cpu.cfs_quota_us will remove the bandwidth limit
|
|
and return the group to an unconstrained state once more.
|
|
|
|
Any updates to a group's bandwidth specification will result in it becoming
|
|
unthrottled if it is in a constrained state.
|
|
|
|
System wide settings
|
|
--------------------
|
|
For efficiency run-time is transferred between the global pool and CPU local
|
|
"silos" in a batch fashion. This greatly reduces global accounting pressure
|
|
on large systems. The amount transferred each time such an update is required
|
|
is described as the "slice".
|
|
|
|
This is tunable via procfs::
|
|
|
|
/proc/sys/kernel/sched_cfs_bandwidth_slice_us (default=5ms)
|
|
|
|
Larger slice values will reduce transfer overheads, while smaller values allow
|
|
for more fine-grained consumption.
|
|
|
|
Statistics
|
|
----------
|
|
A group's bandwidth statistics are exported via 3 fields in cpu.stat.
|
|
|
|
cpu.stat:
|
|
|
|
- nr_periods: Number of enforcement intervals that have elapsed.
|
|
- nr_throttled: Number of times the group has been throttled/limited.
|
|
- throttled_time: The total time duration (in nanoseconds) for which entities
|
|
of the group have been throttled.
|
|
|
|
This interface is read-only.
|
|
|
|
Hierarchical considerations
|
|
---------------------------
|
|
The interface enforces that an individual entity's bandwidth is always
|
|
attainable, that is: max(c_i) <= C. However, over-subscription in the
|
|
aggregate case is explicitly allowed to enable work-conserving semantics
|
|
within a hierarchy:
|
|
|
|
e.g. \Sum (c_i) may exceed C
|
|
|
|
[ Where C is the parent's bandwidth, and c_i its children ]
|
|
|
|
|
|
There are two ways in which a group may become throttled:
|
|
|
|
a. it fully consumes its own quota within a period
|
|
b. a parent's quota is fully consumed within its period
|
|
|
|
In case b) above, even though the child may have runtime remaining it will not
|
|
be allowed to until the parent's runtime is refreshed.
|
|
|
|
CFS Bandwidth Quota Caveats
|
|
---------------------------
|
|
Once a slice is assigned to a cpu it does not expire. However all but 1ms of
|
|
the slice may be returned to the global pool if all threads on that cpu become
|
|
unrunnable. This is configured at compile time by the min_cfs_rq_runtime
|
|
variable. This is a performance tweak that helps prevent added contention on
|
|
the global lock.
|
|
|
|
The fact that cpu-local slices do not expire results in some interesting corner
|
|
cases that should be understood.
|
|
|
|
For cgroup cpu constrained applications that are cpu limited this is a
|
|
relatively moot point because they will naturally consume the entirety of their
|
|
quota as well as the entirety of each cpu-local slice in each period. As a
|
|
result it is expected that nr_periods roughly equal nr_throttled, and that
|
|
cpuacct.usage will increase roughly equal to cfs_quota_us in each period.
|
|
|
|
For highly-threaded, non-cpu bound applications this non-expiration nuance
|
|
allows applications to briefly burst past their quota limits by the amount of
|
|
unused slice on each cpu that the task group is running on (typically at most
|
|
1ms per cpu or as defined by min_cfs_rq_runtime). This slight burst only
|
|
applies if quota had been assigned to a cpu and then not fully used or returned
|
|
in previous periods. This burst amount will not be transferred between cores.
|
|
As a result, this mechanism still strictly limits the task group to quota
|
|
average usage, albeit over a longer time window than a single period. This
|
|
also limits the burst ability to no more than 1ms per cpu. This provides
|
|
better more predictable user experience for highly threaded applications with
|
|
small quota limits on high core count machines. It also eliminates the
|
|
propensity to throttle these applications while simultanously using less than
|
|
quota amounts of cpu. Another way to say this, is that by allowing the unused
|
|
portion of a slice to remain valid across periods we have decreased the
|
|
possibility of wastefully expiring quota on cpu-local silos that don't need a
|
|
full slice's amount of cpu time.
|
|
|
|
The interaction between cpu-bound and non-cpu-bound-interactive applications
|
|
should also be considered, especially when single core usage hits 100%. If you
|
|
gave each of these applications half of a cpu-core and they both got scheduled
|
|
on the same CPU it is theoretically possible that the non-cpu bound application
|
|
will use up to 1ms additional quota in some periods, thereby preventing the
|
|
cpu-bound application from fully using its quota by that same amount. In these
|
|
instances it will be up to the CFS algorithm (see sched-design-CFS.rst) to
|
|
decide which application is chosen to run, as they will both be runnable and
|
|
have remaining quota. This runtime discrepancy will be made up in the following
|
|
periods when the interactive application idles.
|
|
|
|
Examples
|
|
--------
|
|
1. Limit a group to 1 CPU worth of runtime::
|
|
|
|
If period is 250ms and quota is also 250ms, the group will get
|
|
1 CPU worth of runtime every 250ms.
|
|
|
|
# echo 250000 > cpu.cfs_quota_us /* quota = 250ms */
|
|
# echo 250000 > cpu.cfs_period_us /* period = 250ms */
|
|
|
|
2. Limit a group to 2 CPUs worth of runtime on a multi-CPU machine
|
|
|
|
With 500ms period and 1000ms quota, the group can get 2 CPUs worth of
|
|
runtime every 500ms::
|
|
|
|
# echo 1000000 > cpu.cfs_quota_us /* quota = 1000ms */
|
|
# echo 500000 > cpu.cfs_period_us /* period = 500ms */
|
|
|
|
The larger period here allows for increased burst capacity.
|
|
|
|
3. Limit a group to 20% of 1 CPU.
|
|
|
|
With 50ms period, 10ms quota will be equivalent to 20% of 1 CPU::
|
|
|
|
# echo 10000 > cpu.cfs_quota_us /* quota = 10ms */
|
|
# echo 50000 > cpu.cfs_period_us /* period = 50ms */
|
|
|
|
By using a small period here we are ensuring a consistent latency
|
|
response at the expense of burst capacity.
|