mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-26 20:30:54 +07:00
cdfbabfb2f
Lockdep issues a circular dependency warning when AFS issues an operation through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem. The theory lockdep comes up with is as follows: (1) If the pagefault handler decides it needs to read pages from AFS, it calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but creating a call requires the socket lock: mmap_sem must be taken before sk_lock-AF_RXRPC (2) afs_open_socket() opens an AF_RXRPC socket and binds it. rxrpc_bind() binds the underlying UDP socket whilst holding its socket lock. inet_bind() takes its own socket lock: sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET (3) Reading from a TCP socket into a userspace buffer might cause a fault and thus cause the kernel to take the mmap_sem, but the TCP socket is locked whilst doing this: sk_lock-AF_INET must be taken before mmap_sem However, lockdep's theory is wrong in this instance because it deals only with lock classes and not individual locks. The AF_INET lock in (2) isn't really equivalent to the AF_INET lock in (3) as the former deals with a socket entirely internal to the kernel that never sees userspace. This is a limitation in the design of lockdep. Fix the general case by: (1) Double up all the locking keys used in sockets so that one set are used if the socket is created by userspace and the other set is used if the socket is created by the kernel. (2) Store the kern parameter passed to sk_alloc() in a variable in the sock struct (sk_kern_sock). This informs sock_lock_init(), sock_init_data() and sk_clone_lock() as to the lock keys to be used. Note that the child created by sk_clone_lock() inherits the parent's kern setting. (3) Add a 'kern' parameter to ->accept() that is analogous to the one passed in to ->create() that distinguishes whether kernel_accept() or sys_accept4() was the caller and can be passed to sk_alloc(). Note that a lot of accept functions merely dequeue an already allocated socket. I haven't touched these as the new socket already exists before we get the parameter. Note also that there are a couple of places where I've made the accepted socket unconditionally kernel-based: irda_accept() rds_rcp_accept_one() tcp_accept_from_sock() because they follow a sock_create_kern() and accept off of that. Whilst creating this, I noticed that lustre and ocfs don't create sockets through sock_create_kern() and thus they aren't marked as for-kernel, though they appear to be internal. I wonder if these should do that so that they use the new set of lock keys. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1733 lines
42 KiB
C
1733 lines
42 KiB
C
/******************************************************************************
|
|
*******************************************************************************
|
|
**
|
|
** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
|
|
** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
|
|
**
|
|
** This copyrighted material is made available to anyone wishing to use,
|
|
** modify, copy, or redistribute it subject to the terms and conditions
|
|
** of the GNU General Public License v.2.
|
|
**
|
|
*******************************************************************************
|
|
******************************************************************************/
|
|
|
|
/*
|
|
* lowcomms.c
|
|
*
|
|
* This is the "low-level" comms layer.
|
|
*
|
|
* It is responsible for sending/receiving messages
|
|
* from other nodes in the cluster.
|
|
*
|
|
* Cluster nodes are referred to by their nodeids. nodeids are
|
|
* simply 32 bit numbers to the locking module - if they need to
|
|
* be expanded for the cluster infrastructure then that is its
|
|
* responsibility. It is this layer's
|
|
* responsibility to resolve these into IP address or
|
|
* whatever it needs for inter-node communication.
|
|
*
|
|
* The comms level is two kernel threads that deal mainly with
|
|
* the receiving of messages from other nodes and passing them
|
|
* up to the mid-level comms layer (which understands the
|
|
* message format) for execution by the locking core, and
|
|
* a send thread which does all the setting up of connections
|
|
* to remote nodes and the sending of data. Threads are not allowed
|
|
* to send their own data because it may cause them to wait in times
|
|
* of high load. Also, this way, the sending thread can collect together
|
|
* messages bound for one node and send them in one block.
|
|
*
|
|
* lowcomms will choose to use either TCP or SCTP as its transport layer
|
|
* depending on the configuration variable 'protocol'. This should be set
|
|
* to 0 (default) for TCP or 1 for SCTP. It should be configured using a
|
|
* cluster-wide mechanism as it must be the same on all nodes of the cluster
|
|
* for the DLM to function.
|
|
*
|
|
*/
|
|
|
|
#include <asm/ioctls.h>
|
|
#include <net/sock.h>
|
|
#include <net/tcp.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/file.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/slab.h>
|
|
#include <net/sctp/sctp.h>
|
|
#include <net/ipv6.h>
|
|
|
|
#include "dlm_internal.h"
|
|
#include "lowcomms.h"
|
|
#include "midcomms.h"
|
|
#include "config.h"
|
|
|
|
#define NEEDED_RMEM (4*1024*1024)
|
|
#define CONN_HASH_SIZE 32
|
|
|
|
/* Number of messages to send before rescheduling */
|
|
#define MAX_SEND_MSG_COUNT 25
|
|
|
|
struct cbuf {
|
|
unsigned int base;
|
|
unsigned int len;
|
|
unsigned int mask;
|
|
};
|
|
|
|
static void cbuf_add(struct cbuf *cb, int n)
|
|
{
|
|
cb->len += n;
|
|
}
|
|
|
|
static int cbuf_data(struct cbuf *cb)
|
|
{
|
|
return ((cb->base + cb->len) & cb->mask);
|
|
}
|
|
|
|
static void cbuf_init(struct cbuf *cb, int size)
|
|
{
|
|
cb->base = cb->len = 0;
|
|
cb->mask = size-1;
|
|
}
|
|
|
|
static void cbuf_eat(struct cbuf *cb, int n)
|
|
{
|
|
cb->len -= n;
|
|
cb->base += n;
|
|
cb->base &= cb->mask;
|
|
}
|
|
|
|
static bool cbuf_empty(struct cbuf *cb)
|
|
{
|
|
return cb->len == 0;
|
|
}
|
|
|
|
struct connection {
|
|
struct socket *sock; /* NULL if not connected */
|
|
uint32_t nodeid; /* So we know who we are in the list */
|
|
struct mutex sock_mutex;
|
|
unsigned long flags;
|
|
#define CF_READ_PENDING 1
|
|
#define CF_WRITE_PENDING 2
|
|
#define CF_CONNECT_PENDING 3
|
|
#define CF_INIT_PENDING 4
|
|
#define CF_IS_OTHERCON 5
|
|
#define CF_CLOSE 6
|
|
#define CF_APP_LIMITED 7
|
|
struct list_head writequeue; /* List of outgoing writequeue_entries */
|
|
spinlock_t writequeue_lock;
|
|
int (*rx_action) (struct connection *); /* What to do when active */
|
|
void (*connect_action) (struct connection *); /* What to do to connect */
|
|
struct page *rx_page;
|
|
struct cbuf cb;
|
|
int retries;
|
|
#define MAX_CONNECT_RETRIES 3
|
|
struct hlist_node list;
|
|
struct connection *othercon;
|
|
struct work_struct rwork; /* Receive workqueue */
|
|
struct work_struct swork; /* Send workqueue */
|
|
void (*orig_error_report)(struct sock *);
|
|
void (*orig_data_ready)(struct sock *);
|
|
void (*orig_state_change)(struct sock *);
|
|
void (*orig_write_space)(struct sock *);
|
|
};
|
|
#define sock2con(x) ((struct connection *)(x)->sk_user_data)
|
|
|
|
/* An entry waiting to be sent */
|
|
struct writequeue_entry {
|
|
struct list_head list;
|
|
struct page *page;
|
|
int offset;
|
|
int len;
|
|
int end;
|
|
int users;
|
|
struct connection *con;
|
|
};
|
|
|
|
struct dlm_node_addr {
|
|
struct list_head list;
|
|
int nodeid;
|
|
int addr_count;
|
|
int curr_addr_index;
|
|
struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
|
|
};
|
|
|
|
static LIST_HEAD(dlm_node_addrs);
|
|
static DEFINE_SPINLOCK(dlm_node_addrs_spin);
|
|
|
|
static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
|
|
static int dlm_local_count;
|
|
static int dlm_allow_conn;
|
|
|
|
/* Work queues */
|
|
static struct workqueue_struct *recv_workqueue;
|
|
static struct workqueue_struct *send_workqueue;
|
|
|
|
static struct hlist_head connection_hash[CONN_HASH_SIZE];
|
|
static DEFINE_MUTEX(connections_lock);
|
|
static struct kmem_cache *con_cache;
|
|
|
|
static void process_recv_sockets(struct work_struct *work);
|
|
static void process_send_sockets(struct work_struct *work);
|
|
|
|
|
|
/* This is deliberately very simple because most clusters have simple
|
|
sequential nodeids, so we should be able to go straight to a connection
|
|
struct in the array */
|
|
static inline int nodeid_hash(int nodeid)
|
|
{
|
|
return nodeid & (CONN_HASH_SIZE-1);
|
|
}
|
|
|
|
static struct connection *__find_con(int nodeid)
|
|
{
|
|
int r;
|
|
struct connection *con;
|
|
|
|
r = nodeid_hash(nodeid);
|
|
|
|
hlist_for_each_entry(con, &connection_hash[r], list) {
|
|
if (con->nodeid == nodeid)
|
|
return con;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If 'allocation' is zero then we don't attempt to create a new
|
|
* connection structure for this node.
|
|
*/
|
|
static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
|
|
{
|
|
struct connection *con = NULL;
|
|
int r;
|
|
|
|
con = __find_con(nodeid);
|
|
if (con || !alloc)
|
|
return con;
|
|
|
|
con = kmem_cache_zalloc(con_cache, alloc);
|
|
if (!con)
|
|
return NULL;
|
|
|
|
r = nodeid_hash(nodeid);
|
|
hlist_add_head(&con->list, &connection_hash[r]);
|
|
|
|
con->nodeid = nodeid;
|
|
mutex_init(&con->sock_mutex);
|
|
INIT_LIST_HEAD(&con->writequeue);
|
|
spin_lock_init(&con->writequeue_lock);
|
|
INIT_WORK(&con->swork, process_send_sockets);
|
|
INIT_WORK(&con->rwork, process_recv_sockets);
|
|
|
|
/* Setup action pointers for child sockets */
|
|
if (con->nodeid) {
|
|
struct connection *zerocon = __find_con(0);
|
|
|
|
con->connect_action = zerocon->connect_action;
|
|
if (!con->rx_action)
|
|
con->rx_action = zerocon->rx_action;
|
|
}
|
|
|
|
return con;
|
|
}
|
|
|
|
/* Loop round all connections */
|
|
static void foreach_conn(void (*conn_func)(struct connection *c))
|
|
{
|
|
int i;
|
|
struct hlist_node *n;
|
|
struct connection *con;
|
|
|
|
for (i = 0; i < CONN_HASH_SIZE; i++) {
|
|
hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
|
|
conn_func(con);
|
|
}
|
|
}
|
|
|
|
static struct connection *nodeid2con(int nodeid, gfp_t allocation)
|
|
{
|
|
struct connection *con;
|
|
|
|
mutex_lock(&connections_lock);
|
|
con = __nodeid2con(nodeid, allocation);
|
|
mutex_unlock(&connections_lock);
|
|
|
|
return con;
|
|
}
|
|
|
|
static struct dlm_node_addr *find_node_addr(int nodeid)
|
|
{
|
|
struct dlm_node_addr *na;
|
|
|
|
list_for_each_entry(na, &dlm_node_addrs, list) {
|
|
if (na->nodeid == nodeid)
|
|
return na;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
|
|
{
|
|
switch (x->ss_family) {
|
|
case AF_INET: {
|
|
struct sockaddr_in *sinx = (struct sockaddr_in *)x;
|
|
struct sockaddr_in *siny = (struct sockaddr_in *)y;
|
|
if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
|
|
return 0;
|
|
if (sinx->sin_port != siny->sin_port)
|
|
return 0;
|
|
break;
|
|
}
|
|
case AF_INET6: {
|
|
struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
|
|
struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
|
|
if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
|
|
return 0;
|
|
if (sinx->sin6_port != siny->sin6_port)
|
|
return 0;
|
|
break;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
|
|
struct sockaddr *sa_out, bool try_new_addr)
|
|
{
|
|
struct sockaddr_storage sas;
|
|
struct dlm_node_addr *na;
|
|
|
|
if (!dlm_local_count)
|
|
return -1;
|
|
|
|
spin_lock(&dlm_node_addrs_spin);
|
|
na = find_node_addr(nodeid);
|
|
if (na && na->addr_count) {
|
|
memcpy(&sas, na->addr[na->curr_addr_index],
|
|
sizeof(struct sockaddr_storage));
|
|
|
|
if (try_new_addr) {
|
|
na->curr_addr_index++;
|
|
if (na->curr_addr_index == na->addr_count)
|
|
na->curr_addr_index = 0;
|
|
}
|
|
}
|
|
spin_unlock(&dlm_node_addrs_spin);
|
|
|
|
if (!na)
|
|
return -EEXIST;
|
|
|
|
if (!na->addr_count)
|
|
return -ENOENT;
|
|
|
|
if (sas_out)
|
|
memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
|
|
|
|
if (!sa_out)
|
|
return 0;
|
|
|
|
if (dlm_local_addr[0]->ss_family == AF_INET) {
|
|
struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
|
|
struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
|
|
ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
|
|
} else {
|
|
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
|
|
struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
|
|
ret6->sin6_addr = in6->sin6_addr;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
|
|
{
|
|
struct dlm_node_addr *na;
|
|
int rv = -EEXIST;
|
|
int addr_i;
|
|
|
|
spin_lock(&dlm_node_addrs_spin);
|
|
list_for_each_entry(na, &dlm_node_addrs, list) {
|
|
if (!na->addr_count)
|
|
continue;
|
|
|
|
for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
|
|
if (addr_compare(na->addr[addr_i], addr)) {
|
|
*nodeid = na->nodeid;
|
|
rv = 0;
|
|
goto unlock;
|
|
}
|
|
}
|
|
}
|
|
unlock:
|
|
spin_unlock(&dlm_node_addrs_spin);
|
|
return rv;
|
|
}
|
|
|
|
int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
|
|
{
|
|
struct sockaddr_storage *new_addr;
|
|
struct dlm_node_addr *new_node, *na;
|
|
|
|
new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
|
|
if (!new_node)
|
|
return -ENOMEM;
|
|
|
|
new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
|
|
if (!new_addr) {
|
|
kfree(new_node);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(new_addr, addr, len);
|
|
|
|
spin_lock(&dlm_node_addrs_spin);
|
|
na = find_node_addr(nodeid);
|
|
if (!na) {
|
|
new_node->nodeid = nodeid;
|
|
new_node->addr[0] = new_addr;
|
|
new_node->addr_count = 1;
|
|
list_add(&new_node->list, &dlm_node_addrs);
|
|
spin_unlock(&dlm_node_addrs_spin);
|
|
return 0;
|
|
}
|
|
|
|
if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
|
|
spin_unlock(&dlm_node_addrs_spin);
|
|
kfree(new_addr);
|
|
kfree(new_node);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
na->addr[na->addr_count++] = new_addr;
|
|
spin_unlock(&dlm_node_addrs_spin);
|
|
kfree(new_node);
|
|
return 0;
|
|
}
|
|
|
|
/* Data available on socket or listen socket received a connect */
|
|
static void lowcomms_data_ready(struct sock *sk)
|
|
{
|
|
struct connection *con = sock2con(sk);
|
|
if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
|
|
queue_work(recv_workqueue, &con->rwork);
|
|
}
|
|
|
|
static void lowcomms_write_space(struct sock *sk)
|
|
{
|
|
struct connection *con = sock2con(sk);
|
|
|
|
if (!con)
|
|
return;
|
|
|
|
clear_bit(SOCK_NOSPACE, &con->sock->flags);
|
|
|
|
if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
|
|
con->sock->sk->sk_write_pending--;
|
|
clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
|
|
}
|
|
|
|
if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
|
|
queue_work(send_workqueue, &con->swork);
|
|
}
|
|
|
|
static inline void lowcomms_connect_sock(struct connection *con)
|
|
{
|
|
if (test_bit(CF_CLOSE, &con->flags))
|
|
return;
|
|
if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
|
|
queue_work(send_workqueue, &con->swork);
|
|
}
|
|
|
|
static void lowcomms_state_change(struct sock *sk)
|
|
{
|
|
/* SCTP layer is not calling sk_data_ready when the connection
|
|
* is done, so we catch the signal through here. Also, it
|
|
* doesn't switch socket state when entering shutdown, so we
|
|
* skip the write in that case.
|
|
*/
|
|
if (sk->sk_shutdown) {
|
|
if (sk->sk_shutdown == RCV_SHUTDOWN)
|
|
lowcomms_data_ready(sk);
|
|
} else if (sk->sk_state == TCP_ESTABLISHED) {
|
|
lowcomms_write_space(sk);
|
|
}
|
|
}
|
|
|
|
int dlm_lowcomms_connect_node(int nodeid)
|
|
{
|
|
struct connection *con;
|
|
|
|
if (nodeid == dlm_our_nodeid())
|
|
return 0;
|
|
|
|
con = nodeid2con(nodeid, GFP_NOFS);
|
|
if (!con)
|
|
return -ENOMEM;
|
|
lowcomms_connect_sock(con);
|
|
return 0;
|
|
}
|
|
|
|
static void lowcomms_error_report(struct sock *sk)
|
|
{
|
|
struct connection *con;
|
|
struct sockaddr_storage saddr;
|
|
int buflen;
|
|
void (*orig_report)(struct sock *) = NULL;
|
|
|
|
read_lock_bh(&sk->sk_callback_lock);
|
|
con = sock2con(sk);
|
|
if (con == NULL)
|
|
goto out;
|
|
|
|
orig_report = con->orig_error_report;
|
|
if (con->sock == NULL ||
|
|
kernel_getpeername(con->sock, (struct sockaddr *)&saddr, &buflen)) {
|
|
printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
|
|
"sending to node %d, port %d, "
|
|
"sk_err=%d/%d\n", dlm_our_nodeid(),
|
|
con->nodeid, dlm_config.ci_tcp_port,
|
|
sk->sk_err, sk->sk_err_soft);
|
|
} else if (saddr.ss_family == AF_INET) {
|
|
struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
|
|
|
|
printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
|
|
"sending to node %d at %pI4, port %d, "
|
|
"sk_err=%d/%d\n", dlm_our_nodeid(),
|
|
con->nodeid, &sin4->sin_addr.s_addr,
|
|
dlm_config.ci_tcp_port, sk->sk_err,
|
|
sk->sk_err_soft);
|
|
} else {
|
|
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
|
|
|
|
printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
|
|
"sending to node %d at %u.%u.%u.%u, "
|
|
"port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
|
|
con->nodeid, sin6->sin6_addr.s6_addr32[0],
|
|
sin6->sin6_addr.s6_addr32[1],
|
|
sin6->sin6_addr.s6_addr32[2],
|
|
sin6->sin6_addr.s6_addr32[3],
|
|
dlm_config.ci_tcp_port, sk->sk_err,
|
|
sk->sk_err_soft);
|
|
}
|
|
out:
|
|
read_unlock_bh(&sk->sk_callback_lock);
|
|
if (orig_report)
|
|
orig_report(sk);
|
|
}
|
|
|
|
/* Note: sk_callback_lock must be locked before calling this function. */
|
|
static void save_callbacks(struct connection *con, struct sock *sk)
|
|
{
|
|
con->orig_data_ready = sk->sk_data_ready;
|
|
con->orig_state_change = sk->sk_state_change;
|
|
con->orig_write_space = sk->sk_write_space;
|
|
con->orig_error_report = sk->sk_error_report;
|
|
}
|
|
|
|
static void restore_callbacks(struct connection *con, struct sock *sk)
|
|
{
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sk->sk_user_data = NULL;
|
|
sk->sk_data_ready = con->orig_data_ready;
|
|
sk->sk_state_change = con->orig_state_change;
|
|
sk->sk_write_space = con->orig_write_space;
|
|
sk->sk_error_report = con->orig_error_report;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
|
|
/* Make a socket active */
|
|
static void add_sock(struct socket *sock, struct connection *con, bool save_cb)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
con->sock = sock;
|
|
|
|
sk->sk_user_data = con;
|
|
if (save_cb)
|
|
save_callbacks(con, sk);
|
|
/* Install a data_ready callback */
|
|
sk->sk_data_ready = lowcomms_data_ready;
|
|
sk->sk_write_space = lowcomms_write_space;
|
|
sk->sk_state_change = lowcomms_state_change;
|
|
sk->sk_allocation = GFP_NOFS;
|
|
sk->sk_error_report = lowcomms_error_report;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
|
|
/* Add the port number to an IPv6 or 4 sockaddr and return the address
|
|
length */
|
|
static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
|
|
int *addr_len)
|
|
{
|
|
saddr->ss_family = dlm_local_addr[0]->ss_family;
|
|
if (saddr->ss_family == AF_INET) {
|
|
struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
|
|
in4_addr->sin_port = cpu_to_be16(port);
|
|
*addr_len = sizeof(struct sockaddr_in);
|
|
memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
|
|
} else {
|
|
struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
|
|
in6_addr->sin6_port = cpu_to_be16(port);
|
|
*addr_len = sizeof(struct sockaddr_in6);
|
|
}
|
|
memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
|
|
}
|
|
|
|
/* Close a remote connection and tidy up */
|
|
static void close_connection(struct connection *con, bool and_other,
|
|
bool tx, bool rx)
|
|
{
|
|
clear_bit(CF_CONNECT_PENDING, &con->flags);
|
|
clear_bit(CF_WRITE_PENDING, &con->flags);
|
|
if (tx && cancel_work_sync(&con->swork))
|
|
log_print("canceled swork for node %d", con->nodeid);
|
|
if (rx && cancel_work_sync(&con->rwork))
|
|
log_print("canceled rwork for node %d", con->nodeid);
|
|
|
|
mutex_lock(&con->sock_mutex);
|
|
if (con->sock) {
|
|
if (!test_bit(CF_IS_OTHERCON, &con->flags))
|
|
restore_callbacks(con, con->sock->sk);
|
|
sock_release(con->sock);
|
|
con->sock = NULL;
|
|
}
|
|
if (con->othercon && and_other) {
|
|
/* Will only re-enter once. */
|
|
close_connection(con->othercon, false, true, true);
|
|
}
|
|
if (con->rx_page) {
|
|
__free_page(con->rx_page);
|
|
con->rx_page = NULL;
|
|
}
|
|
|
|
con->retries = 0;
|
|
mutex_unlock(&con->sock_mutex);
|
|
}
|
|
|
|
/* Data received from remote end */
|
|
static int receive_from_sock(struct connection *con)
|
|
{
|
|
int ret = 0;
|
|
struct msghdr msg = {};
|
|
struct kvec iov[2];
|
|
unsigned len;
|
|
int r;
|
|
int call_again_soon = 0;
|
|
int nvec;
|
|
|
|
mutex_lock(&con->sock_mutex);
|
|
|
|
if (con->sock == NULL) {
|
|
ret = -EAGAIN;
|
|
goto out_close;
|
|
}
|
|
if (con->nodeid == 0) {
|
|
ret = -EINVAL;
|
|
goto out_close;
|
|
}
|
|
|
|
if (con->rx_page == NULL) {
|
|
/*
|
|
* This doesn't need to be atomic, but I think it should
|
|
* improve performance if it is.
|
|
*/
|
|
con->rx_page = alloc_page(GFP_ATOMIC);
|
|
if (con->rx_page == NULL)
|
|
goto out_resched;
|
|
cbuf_init(&con->cb, PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* iov[0] is the bit of the circular buffer between the current end
|
|
* point (cb.base + cb.len) and the end of the buffer.
|
|
*/
|
|
iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
|
|
iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
|
|
iov[1].iov_len = 0;
|
|
nvec = 1;
|
|
|
|
/*
|
|
* iov[1] is the bit of the circular buffer between the start of the
|
|
* buffer and the start of the currently used section (cb.base)
|
|
*/
|
|
if (cbuf_data(&con->cb) >= con->cb.base) {
|
|
iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
|
|
iov[1].iov_len = con->cb.base;
|
|
iov[1].iov_base = page_address(con->rx_page);
|
|
nvec = 2;
|
|
}
|
|
len = iov[0].iov_len + iov[1].iov_len;
|
|
|
|
r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
|
|
MSG_DONTWAIT | MSG_NOSIGNAL);
|
|
if (ret <= 0)
|
|
goto out_close;
|
|
else if (ret == len)
|
|
call_again_soon = 1;
|
|
|
|
cbuf_add(&con->cb, ret);
|
|
ret = dlm_process_incoming_buffer(con->nodeid,
|
|
page_address(con->rx_page),
|
|
con->cb.base, con->cb.len,
|
|
PAGE_SIZE);
|
|
if (ret == -EBADMSG) {
|
|
log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
|
|
page_address(con->rx_page), con->cb.base,
|
|
con->cb.len, r);
|
|
}
|
|
if (ret < 0)
|
|
goto out_close;
|
|
cbuf_eat(&con->cb, ret);
|
|
|
|
if (cbuf_empty(&con->cb) && !call_again_soon) {
|
|
__free_page(con->rx_page);
|
|
con->rx_page = NULL;
|
|
}
|
|
|
|
if (call_again_soon)
|
|
goto out_resched;
|
|
mutex_unlock(&con->sock_mutex);
|
|
return 0;
|
|
|
|
out_resched:
|
|
if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
|
|
queue_work(recv_workqueue, &con->rwork);
|
|
mutex_unlock(&con->sock_mutex);
|
|
return -EAGAIN;
|
|
|
|
out_close:
|
|
mutex_unlock(&con->sock_mutex);
|
|
if (ret != -EAGAIN) {
|
|
close_connection(con, false, true, false);
|
|
/* Reconnect when there is something to send */
|
|
}
|
|
/* Don't return success if we really got EOF */
|
|
if (ret == 0)
|
|
ret = -EAGAIN;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Listening socket is busy, accept a connection */
|
|
static int tcp_accept_from_sock(struct connection *con)
|
|
{
|
|
int result;
|
|
struct sockaddr_storage peeraddr;
|
|
struct socket *newsock;
|
|
int len;
|
|
int nodeid;
|
|
struct connection *newcon;
|
|
struct connection *addcon;
|
|
|
|
mutex_lock(&connections_lock);
|
|
if (!dlm_allow_conn) {
|
|
mutex_unlock(&connections_lock);
|
|
return -1;
|
|
}
|
|
mutex_unlock(&connections_lock);
|
|
|
|
memset(&peeraddr, 0, sizeof(peeraddr));
|
|
result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
|
|
SOCK_STREAM, IPPROTO_TCP, &newsock);
|
|
if (result < 0)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock_nested(&con->sock_mutex, 0);
|
|
|
|
result = -ENOTCONN;
|
|
if (con->sock == NULL)
|
|
goto accept_err;
|
|
|
|
newsock->type = con->sock->type;
|
|
newsock->ops = con->sock->ops;
|
|
|
|
result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK, true);
|
|
if (result < 0)
|
|
goto accept_err;
|
|
|
|
/* Get the connected socket's peer */
|
|
memset(&peeraddr, 0, sizeof(peeraddr));
|
|
if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
|
|
&len, 2)) {
|
|
result = -ECONNABORTED;
|
|
goto accept_err;
|
|
}
|
|
|
|
/* Get the new node's NODEID */
|
|
make_sockaddr(&peeraddr, 0, &len);
|
|
if (addr_to_nodeid(&peeraddr, &nodeid)) {
|
|
unsigned char *b=(unsigned char *)&peeraddr;
|
|
log_print("connect from non cluster node");
|
|
print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
|
|
b, sizeof(struct sockaddr_storage));
|
|
sock_release(newsock);
|
|
mutex_unlock(&con->sock_mutex);
|
|
return -1;
|
|
}
|
|
|
|
log_print("got connection from %d", nodeid);
|
|
|
|
/* Check to see if we already have a connection to this node. This
|
|
* could happen if the two nodes initiate a connection at roughly
|
|
* the same time and the connections cross on the wire.
|
|
* In this case we store the incoming one in "othercon"
|
|
*/
|
|
newcon = nodeid2con(nodeid, GFP_NOFS);
|
|
if (!newcon) {
|
|
result = -ENOMEM;
|
|
goto accept_err;
|
|
}
|
|
mutex_lock_nested(&newcon->sock_mutex, 1);
|
|
if (newcon->sock) {
|
|
struct connection *othercon = newcon->othercon;
|
|
|
|
if (!othercon) {
|
|
othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
|
|
if (!othercon) {
|
|
log_print("failed to allocate incoming socket");
|
|
mutex_unlock(&newcon->sock_mutex);
|
|
result = -ENOMEM;
|
|
goto accept_err;
|
|
}
|
|
othercon->nodeid = nodeid;
|
|
othercon->rx_action = receive_from_sock;
|
|
mutex_init(&othercon->sock_mutex);
|
|
INIT_WORK(&othercon->swork, process_send_sockets);
|
|
INIT_WORK(&othercon->rwork, process_recv_sockets);
|
|
set_bit(CF_IS_OTHERCON, &othercon->flags);
|
|
}
|
|
if (!othercon->sock) {
|
|
newcon->othercon = othercon;
|
|
othercon->sock = newsock;
|
|
newsock->sk->sk_user_data = othercon;
|
|
add_sock(newsock, othercon, false);
|
|
addcon = othercon;
|
|
}
|
|
else {
|
|
printk("Extra connection from node %d attempted\n", nodeid);
|
|
result = -EAGAIN;
|
|
mutex_unlock(&newcon->sock_mutex);
|
|
goto accept_err;
|
|
}
|
|
}
|
|
else {
|
|
newsock->sk->sk_user_data = newcon;
|
|
newcon->rx_action = receive_from_sock;
|
|
/* accept copies the sk after we've saved the callbacks, so we
|
|
don't want to save them a second time or comm errors will
|
|
result in calling sk_error_report recursively. */
|
|
add_sock(newsock, newcon, false);
|
|
addcon = newcon;
|
|
}
|
|
|
|
mutex_unlock(&newcon->sock_mutex);
|
|
|
|
/*
|
|
* Add it to the active queue in case we got data
|
|
* between processing the accept adding the socket
|
|
* to the read_sockets list
|
|
*/
|
|
if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
|
|
queue_work(recv_workqueue, &addcon->rwork);
|
|
mutex_unlock(&con->sock_mutex);
|
|
|
|
return 0;
|
|
|
|
accept_err:
|
|
mutex_unlock(&con->sock_mutex);
|
|
sock_release(newsock);
|
|
|
|
if (result != -EAGAIN)
|
|
log_print("error accepting connection from node: %d", result);
|
|
return result;
|
|
}
|
|
|
|
static int sctp_accept_from_sock(struct connection *con)
|
|
{
|
|
/* Check that the new node is in the lockspace */
|
|
struct sctp_prim prim;
|
|
int nodeid;
|
|
int prim_len, ret;
|
|
int addr_len;
|
|
struct connection *newcon;
|
|
struct connection *addcon;
|
|
struct socket *newsock;
|
|
|
|
mutex_lock(&connections_lock);
|
|
if (!dlm_allow_conn) {
|
|
mutex_unlock(&connections_lock);
|
|
return -1;
|
|
}
|
|
mutex_unlock(&connections_lock);
|
|
|
|
mutex_lock_nested(&con->sock_mutex, 0);
|
|
|
|
ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
|
|
if (ret < 0)
|
|
goto accept_err;
|
|
|
|
memset(&prim, 0, sizeof(struct sctp_prim));
|
|
prim_len = sizeof(struct sctp_prim);
|
|
|
|
ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
|
|
(char *)&prim, &prim_len);
|
|
if (ret < 0) {
|
|
log_print("getsockopt/sctp_primary_addr failed: %d", ret);
|
|
goto accept_err;
|
|
}
|
|
|
|
make_sockaddr(&prim.ssp_addr, 0, &addr_len);
|
|
ret = addr_to_nodeid(&prim.ssp_addr, &nodeid);
|
|
if (ret) {
|
|
unsigned char *b = (unsigned char *)&prim.ssp_addr;
|
|
|
|
log_print("reject connect from unknown addr");
|
|
print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
|
|
b, sizeof(struct sockaddr_storage));
|
|
goto accept_err;
|
|
}
|
|
|
|
newcon = nodeid2con(nodeid, GFP_NOFS);
|
|
if (!newcon) {
|
|
ret = -ENOMEM;
|
|
goto accept_err;
|
|
}
|
|
|
|
mutex_lock_nested(&newcon->sock_mutex, 1);
|
|
|
|
if (newcon->sock) {
|
|
struct connection *othercon = newcon->othercon;
|
|
|
|
if (!othercon) {
|
|
othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
|
|
if (!othercon) {
|
|
log_print("failed to allocate incoming socket");
|
|
mutex_unlock(&newcon->sock_mutex);
|
|
ret = -ENOMEM;
|
|
goto accept_err;
|
|
}
|
|
othercon->nodeid = nodeid;
|
|
othercon->rx_action = receive_from_sock;
|
|
mutex_init(&othercon->sock_mutex);
|
|
INIT_WORK(&othercon->swork, process_send_sockets);
|
|
INIT_WORK(&othercon->rwork, process_recv_sockets);
|
|
set_bit(CF_IS_OTHERCON, &othercon->flags);
|
|
}
|
|
if (!othercon->sock) {
|
|
newcon->othercon = othercon;
|
|
othercon->sock = newsock;
|
|
newsock->sk->sk_user_data = othercon;
|
|
add_sock(newsock, othercon, false);
|
|
addcon = othercon;
|
|
} else {
|
|
printk("Extra connection from node %d attempted\n", nodeid);
|
|
ret = -EAGAIN;
|
|
mutex_unlock(&newcon->sock_mutex);
|
|
goto accept_err;
|
|
}
|
|
} else {
|
|
newsock->sk->sk_user_data = newcon;
|
|
newcon->rx_action = receive_from_sock;
|
|
add_sock(newsock, newcon, false);
|
|
addcon = newcon;
|
|
}
|
|
|
|
log_print("connected to %d", nodeid);
|
|
|
|
mutex_unlock(&newcon->sock_mutex);
|
|
|
|
/*
|
|
* Add it to the active queue in case we got data
|
|
* between processing the accept adding the socket
|
|
* to the read_sockets list
|
|
*/
|
|
if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
|
|
queue_work(recv_workqueue, &addcon->rwork);
|
|
mutex_unlock(&con->sock_mutex);
|
|
|
|
return 0;
|
|
|
|
accept_err:
|
|
mutex_unlock(&con->sock_mutex);
|
|
if (newsock)
|
|
sock_release(newsock);
|
|
if (ret != -EAGAIN)
|
|
log_print("error accepting connection from node: %d", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_entry(struct writequeue_entry *e)
|
|
{
|
|
__free_page(e->page);
|
|
kfree(e);
|
|
}
|
|
|
|
/*
|
|
* writequeue_entry_complete - try to delete and free write queue entry
|
|
* @e: write queue entry to try to delete
|
|
* @completed: bytes completed
|
|
*
|
|
* writequeue_lock must be held.
|
|
*/
|
|
static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
|
|
{
|
|
e->offset += completed;
|
|
e->len -= completed;
|
|
|
|
if (e->len == 0 && e->users == 0) {
|
|
list_del(&e->list);
|
|
free_entry(e);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sctp_bind_addrs - bind a SCTP socket to all our addresses
|
|
*/
|
|
static int sctp_bind_addrs(struct connection *con, uint16_t port)
|
|
{
|
|
struct sockaddr_storage localaddr;
|
|
int i, addr_len, result = 0;
|
|
|
|
for (i = 0; i < dlm_local_count; i++) {
|
|
memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
|
|
make_sockaddr(&localaddr, port, &addr_len);
|
|
|
|
if (!i)
|
|
result = kernel_bind(con->sock,
|
|
(struct sockaddr *)&localaddr,
|
|
addr_len);
|
|
else
|
|
result = kernel_setsockopt(con->sock, SOL_SCTP,
|
|
SCTP_SOCKOPT_BINDX_ADD,
|
|
(char *)&localaddr, addr_len);
|
|
|
|
if (result < 0) {
|
|
log_print("Can't bind to %d addr number %d, %d.\n",
|
|
port, i + 1, result);
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Initiate an SCTP association.
|
|
This is a special case of send_to_sock() in that we don't yet have a
|
|
peeled-off socket for this association, so we use the listening socket
|
|
and add the primary IP address of the remote node.
|
|
*/
|
|
static void sctp_connect_to_sock(struct connection *con)
|
|
{
|
|
struct sockaddr_storage daddr;
|
|
int one = 1;
|
|
int result;
|
|
int addr_len;
|
|
struct socket *sock;
|
|
|
|
if (con->nodeid == 0) {
|
|
log_print("attempt to connect sock 0 foiled");
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&con->sock_mutex);
|
|
|
|
/* Some odd races can cause double-connects, ignore them */
|
|
if (con->retries++ > MAX_CONNECT_RETRIES)
|
|
goto out;
|
|
|
|
if (con->sock) {
|
|
log_print("node %d already connected.", con->nodeid);
|
|
goto out;
|
|
}
|
|
|
|
memset(&daddr, 0, sizeof(daddr));
|
|
result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
|
|
if (result < 0) {
|
|
log_print("no address for nodeid %d", con->nodeid);
|
|
goto out;
|
|
}
|
|
|
|
/* Create a socket to communicate with */
|
|
result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
|
|
SOCK_STREAM, IPPROTO_SCTP, &sock);
|
|
if (result < 0)
|
|
goto socket_err;
|
|
|
|
sock->sk->sk_user_data = con;
|
|
con->rx_action = receive_from_sock;
|
|
con->connect_action = sctp_connect_to_sock;
|
|
add_sock(sock, con, true);
|
|
|
|
/* Bind to all addresses. */
|
|
if (sctp_bind_addrs(con, 0))
|
|
goto bind_err;
|
|
|
|
make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
|
|
|
|
log_print("connecting to %d", con->nodeid);
|
|
|
|
/* Turn off Nagle's algorithm */
|
|
kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
|
|
sizeof(one));
|
|
|
|
result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
|
|
O_NONBLOCK);
|
|
if (result == -EINPROGRESS)
|
|
result = 0;
|
|
if (result == 0)
|
|
goto out;
|
|
|
|
|
|
bind_err:
|
|
con->sock = NULL;
|
|
sock_release(sock);
|
|
|
|
socket_err:
|
|
/*
|
|
* Some errors are fatal and this list might need adjusting. For other
|
|
* errors we try again until the max number of retries is reached.
|
|
*/
|
|
if (result != -EHOSTUNREACH &&
|
|
result != -ENETUNREACH &&
|
|
result != -ENETDOWN &&
|
|
result != -EINVAL &&
|
|
result != -EPROTONOSUPPORT) {
|
|
log_print("connect %d try %d error %d", con->nodeid,
|
|
con->retries, result);
|
|
mutex_unlock(&con->sock_mutex);
|
|
msleep(1000);
|
|
clear_bit(CF_CONNECT_PENDING, &con->flags);
|
|
lowcomms_connect_sock(con);
|
|
return;
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&con->sock_mutex);
|
|
set_bit(CF_WRITE_PENDING, &con->flags);
|
|
}
|
|
|
|
/* Connect a new socket to its peer */
|
|
static void tcp_connect_to_sock(struct connection *con)
|
|
{
|
|
struct sockaddr_storage saddr, src_addr;
|
|
int addr_len;
|
|
struct socket *sock = NULL;
|
|
int one = 1;
|
|
int result;
|
|
|
|
if (con->nodeid == 0) {
|
|
log_print("attempt to connect sock 0 foiled");
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&con->sock_mutex);
|
|
if (con->retries++ > MAX_CONNECT_RETRIES)
|
|
goto out;
|
|
|
|
/* Some odd races can cause double-connects, ignore them */
|
|
if (con->sock)
|
|
goto out;
|
|
|
|
/* Create a socket to communicate with */
|
|
result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
|
|
SOCK_STREAM, IPPROTO_TCP, &sock);
|
|
if (result < 0)
|
|
goto out_err;
|
|
|
|
memset(&saddr, 0, sizeof(saddr));
|
|
result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
|
|
if (result < 0) {
|
|
log_print("no address for nodeid %d", con->nodeid);
|
|
goto out_err;
|
|
}
|
|
|
|
sock->sk->sk_user_data = con;
|
|
con->rx_action = receive_from_sock;
|
|
con->connect_action = tcp_connect_to_sock;
|
|
add_sock(sock, con, true);
|
|
|
|
/* Bind to our cluster-known address connecting to avoid
|
|
routing problems */
|
|
memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
|
|
make_sockaddr(&src_addr, 0, &addr_len);
|
|
result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
|
|
addr_len);
|
|
if (result < 0) {
|
|
log_print("could not bind for connect: %d", result);
|
|
/* This *may* not indicate a critical error */
|
|
}
|
|
|
|
make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
|
|
|
|
log_print("connecting to %d", con->nodeid);
|
|
|
|
/* Turn off Nagle's algorithm */
|
|
kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
|
|
sizeof(one));
|
|
|
|
result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
|
|
O_NONBLOCK);
|
|
if (result == -EINPROGRESS)
|
|
result = 0;
|
|
if (result == 0)
|
|
goto out;
|
|
|
|
out_err:
|
|
if (con->sock) {
|
|
sock_release(con->sock);
|
|
con->sock = NULL;
|
|
} else if (sock) {
|
|
sock_release(sock);
|
|
}
|
|
/*
|
|
* Some errors are fatal and this list might need adjusting. For other
|
|
* errors we try again until the max number of retries is reached.
|
|
*/
|
|
if (result != -EHOSTUNREACH &&
|
|
result != -ENETUNREACH &&
|
|
result != -ENETDOWN &&
|
|
result != -EINVAL &&
|
|
result != -EPROTONOSUPPORT) {
|
|
log_print("connect %d try %d error %d", con->nodeid,
|
|
con->retries, result);
|
|
mutex_unlock(&con->sock_mutex);
|
|
msleep(1000);
|
|
clear_bit(CF_CONNECT_PENDING, &con->flags);
|
|
lowcomms_connect_sock(con);
|
|
return;
|
|
}
|
|
out:
|
|
mutex_unlock(&con->sock_mutex);
|
|
set_bit(CF_WRITE_PENDING, &con->flags);
|
|
return;
|
|
}
|
|
|
|
static struct socket *tcp_create_listen_sock(struct connection *con,
|
|
struct sockaddr_storage *saddr)
|
|
{
|
|
struct socket *sock = NULL;
|
|
int result = 0;
|
|
int one = 1;
|
|
int addr_len;
|
|
|
|
if (dlm_local_addr[0]->ss_family == AF_INET)
|
|
addr_len = sizeof(struct sockaddr_in);
|
|
else
|
|
addr_len = sizeof(struct sockaddr_in6);
|
|
|
|
/* Create a socket to communicate with */
|
|
result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
|
|
SOCK_STREAM, IPPROTO_TCP, &sock);
|
|
if (result < 0) {
|
|
log_print("Can't create listening comms socket");
|
|
goto create_out;
|
|
}
|
|
|
|
/* Turn off Nagle's algorithm */
|
|
kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
|
|
sizeof(one));
|
|
|
|
result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
|
|
(char *)&one, sizeof(one));
|
|
|
|
if (result < 0) {
|
|
log_print("Failed to set SO_REUSEADDR on socket: %d", result);
|
|
}
|
|
sock->sk->sk_user_data = con;
|
|
|
|
con->rx_action = tcp_accept_from_sock;
|
|
con->connect_action = tcp_connect_to_sock;
|
|
|
|
/* Bind to our port */
|
|
make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
|
|
result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
|
|
if (result < 0) {
|
|
log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
|
|
sock_release(sock);
|
|
sock = NULL;
|
|
con->sock = NULL;
|
|
goto create_out;
|
|
}
|
|
result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
|
|
(char *)&one, sizeof(one));
|
|
if (result < 0) {
|
|
log_print("Set keepalive failed: %d", result);
|
|
}
|
|
|
|
result = sock->ops->listen(sock, 5);
|
|
if (result < 0) {
|
|
log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
|
|
sock_release(sock);
|
|
sock = NULL;
|
|
goto create_out;
|
|
}
|
|
|
|
create_out:
|
|
return sock;
|
|
}
|
|
|
|
/* Get local addresses */
|
|
static void init_local(void)
|
|
{
|
|
struct sockaddr_storage sas, *addr;
|
|
int i;
|
|
|
|
dlm_local_count = 0;
|
|
for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
|
|
if (dlm_our_addr(&sas, i))
|
|
break;
|
|
|
|
addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
|
|
if (!addr)
|
|
break;
|
|
dlm_local_addr[dlm_local_count++] = addr;
|
|
}
|
|
}
|
|
|
|
/* Initialise SCTP socket and bind to all interfaces */
|
|
static int sctp_listen_for_all(void)
|
|
{
|
|
struct socket *sock = NULL;
|
|
int result = -EINVAL;
|
|
struct connection *con = nodeid2con(0, GFP_NOFS);
|
|
int bufsize = NEEDED_RMEM;
|
|
int one = 1;
|
|
|
|
if (!con)
|
|
return -ENOMEM;
|
|
|
|
log_print("Using SCTP for communications");
|
|
|
|
result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
|
|
SOCK_STREAM, IPPROTO_SCTP, &sock);
|
|
if (result < 0) {
|
|
log_print("Can't create comms socket, check SCTP is loaded");
|
|
goto out;
|
|
}
|
|
|
|
result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
|
|
(char *)&bufsize, sizeof(bufsize));
|
|
if (result)
|
|
log_print("Error increasing buffer space on socket %d", result);
|
|
|
|
result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
|
|
sizeof(one));
|
|
if (result < 0)
|
|
log_print("Could not set SCTP NODELAY error %d\n", result);
|
|
|
|
write_lock_bh(&sock->sk->sk_callback_lock);
|
|
/* Init con struct */
|
|
sock->sk->sk_user_data = con;
|
|
con->sock = sock;
|
|
con->sock->sk->sk_data_ready = lowcomms_data_ready;
|
|
con->rx_action = sctp_accept_from_sock;
|
|
con->connect_action = sctp_connect_to_sock;
|
|
|
|
write_unlock_bh(&sock->sk->sk_callback_lock);
|
|
|
|
/* Bind to all addresses. */
|
|
if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
|
|
goto create_delsock;
|
|
|
|
result = sock->ops->listen(sock, 5);
|
|
if (result < 0) {
|
|
log_print("Can't set socket listening");
|
|
goto create_delsock;
|
|
}
|
|
|
|
return 0;
|
|
|
|
create_delsock:
|
|
sock_release(sock);
|
|
con->sock = NULL;
|
|
out:
|
|
return result;
|
|
}
|
|
|
|
static int tcp_listen_for_all(void)
|
|
{
|
|
struct socket *sock = NULL;
|
|
struct connection *con = nodeid2con(0, GFP_NOFS);
|
|
int result = -EINVAL;
|
|
|
|
if (!con)
|
|
return -ENOMEM;
|
|
|
|
/* We don't support multi-homed hosts */
|
|
if (dlm_local_addr[1] != NULL) {
|
|
log_print("TCP protocol can't handle multi-homed hosts, "
|
|
"try SCTP");
|
|
return -EINVAL;
|
|
}
|
|
|
|
log_print("Using TCP for communications");
|
|
|
|
sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
|
|
if (sock) {
|
|
add_sock(sock, con, true);
|
|
result = 0;
|
|
}
|
|
else {
|
|
result = -EADDRINUSE;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
static struct writequeue_entry *new_writequeue_entry(struct connection *con,
|
|
gfp_t allocation)
|
|
{
|
|
struct writequeue_entry *entry;
|
|
|
|
entry = kmalloc(sizeof(struct writequeue_entry), allocation);
|
|
if (!entry)
|
|
return NULL;
|
|
|
|
entry->page = alloc_page(allocation);
|
|
if (!entry->page) {
|
|
kfree(entry);
|
|
return NULL;
|
|
}
|
|
|
|
entry->offset = 0;
|
|
entry->len = 0;
|
|
entry->end = 0;
|
|
entry->users = 0;
|
|
entry->con = con;
|
|
|
|
return entry;
|
|
}
|
|
|
|
void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
|
|
{
|
|
struct connection *con;
|
|
struct writequeue_entry *e;
|
|
int offset = 0;
|
|
|
|
con = nodeid2con(nodeid, allocation);
|
|
if (!con)
|
|
return NULL;
|
|
|
|
spin_lock(&con->writequeue_lock);
|
|
e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
|
|
if ((&e->list == &con->writequeue) ||
|
|
(PAGE_SIZE - e->end < len)) {
|
|
e = NULL;
|
|
} else {
|
|
offset = e->end;
|
|
e->end += len;
|
|
e->users++;
|
|
}
|
|
spin_unlock(&con->writequeue_lock);
|
|
|
|
if (e) {
|
|
got_one:
|
|
*ppc = page_address(e->page) + offset;
|
|
return e;
|
|
}
|
|
|
|
e = new_writequeue_entry(con, allocation);
|
|
if (e) {
|
|
spin_lock(&con->writequeue_lock);
|
|
offset = e->end;
|
|
e->end += len;
|
|
e->users++;
|
|
list_add_tail(&e->list, &con->writequeue);
|
|
spin_unlock(&con->writequeue_lock);
|
|
goto got_one;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void dlm_lowcomms_commit_buffer(void *mh)
|
|
{
|
|
struct writequeue_entry *e = (struct writequeue_entry *)mh;
|
|
struct connection *con = e->con;
|
|
int users;
|
|
|
|
spin_lock(&con->writequeue_lock);
|
|
users = --e->users;
|
|
if (users)
|
|
goto out;
|
|
e->len = e->end - e->offset;
|
|
spin_unlock(&con->writequeue_lock);
|
|
|
|
if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
|
|
queue_work(send_workqueue, &con->swork);
|
|
}
|
|
return;
|
|
|
|
out:
|
|
spin_unlock(&con->writequeue_lock);
|
|
return;
|
|
}
|
|
|
|
/* Send a message */
|
|
static void send_to_sock(struct connection *con)
|
|
{
|
|
int ret = 0;
|
|
const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
|
|
struct writequeue_entry *e;
|
|
int len, offset;
|
|
int count = 0;
|
|
|
|
mutex_lock(&con->sock_mutex);
|
|
if (con->sock == NULL)
|
|
goto out_connect;
|
|
|
|
spin_lock(&con->writequeue_lock);
|
|
for (;;) {
|
|
e = list_entry(con->writequeue.next, struct writequeue_entry,
|
|
list);
|
|
if ((struct list_head *) e == &con->writequeue)
|
|
break;
|
|
|
|
len = e->len;
|
|
offset = e->offset;
|
|
BUG_ON(len == 0 && e->users == 0);
|
|
spin_unlock(&con->writequeue_lock);
|
|
|
|
ret = 0;
|
|
if (len) {
|
|
ret = kernel_sendpage(con->sock, e->page, offset, len,
|
|
msg_flags);
|
|
if (ret == -EAGAIN || ret == 0) {
|
|
if (ret == -EAGAIN &&
|
|
test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
|
|
!test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
|
|
/* Notify TCP that we're limited by the
|
|
* application window size.
|
|
*/
|
|
set_bit(SOCK_NOSPACE, &con->sock->flags);
|
|
con->sock->sk->sk_write_pending++;
|
|
}
|
|
cond_resched();
|
|
goto out;
|
|
} else if (ret < 0)
|
|
goto send_error;
|
|
}
|
|
|
|
/* Don't starve people filling buffers */
|
|
if (++count >= MAX_SEND_MSG_COUNT) {
|
|
cond_resched();
|
|
count = 0;
|
|
}
|
|
|
|
spin_lock(&con->writequeue_lock);
|
|
writequeue_entry_complete(e, ret);
|
|
}
|
|
spin_unlock(&con->writequeue_lock);
|
|
out:
|
|
mutex_unlock(&con->sock_mutex);
|
|
return;
|
|
|
|
send_error:
|
|
mutex_unlock(&con->sock_mutex);
|
|
close_connection(con, false, false, true);
|
|
lowcomms_connect_sock(con);
|
|
return;
|
|
|
|
out_connect:
|
|
mutex_unlock(&con->sock_mutex);
|
|
lowcomms_connect_sock(con);
|
|
}
|
|
|
|
static void clean_one_writequeue(struct connection *con)
|
|
{
|
|
struct writequeue_entry *e, *safe;
|
|
|
|
spin_lock(&con->writequeue_lock);
|
|
list_for_each_entry_safe(e, safe, &con->writequeue, list) {
|
|
list_del(&e->list);
|
|
free_entry(e);
|
|
}
|
|
spin_unlock(&con->writequeue_lock);
|
|
}
|
|
|
|
/* Called from recovery when it knows that a node has
|
|
left the cluster */
|
|
int dlm_lowcomms_close(int nodeid)
|
|
{
|
|
struct connection *con;
|
|
struct dlm_node_addr *na;
|
|
|
|
log_print("closing connection to node %d", nodeid);
|
|
con = nodeid2con(nodeid, 0);
|
|
if (con) {
|
|
set_bit(CF_CLOSE, &con->flags);
|
|
close_connection(con, true, true, true);
|
|
clean_one_writequeue(con);
|
|
}
|
|
|
|
spin_lock(&dlm_node_addrs_spin);
|
|
na = find_node_addr(nodeid);
|
|
if (na) {
|
|
list_del(&na->list);
|
|
while (na->addr_count--)
|
|
kfree(na->addr[na->addr_count]);
|
|
kfree(na);
|
|
}
|
|
spin_unlock(&dlm_node_addrs_spin);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Receive workqueue function */
|
|
static void process_recv_sockets(struct work_struct *work)
|
|
{
|
|
struct connection *con = container_of(work, struct connection, rwork);
|
|
int err;
|
|
|
|
clear_bit(CF_READ_PENDING, &con->flags);
|
|
do {
|
|
err = con->rx_action(con);
|
|
} while (!err);
|
|
}
|
|
|
|
/* Send workqueue function */
|
|
static void process_send_sockets(struct work_struct *work)
|
|
{
|
|
struct connection *con = container_of(work, struct connection, swork);
|
|
|
|
if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags))
|
|
con->connect_action(con);
|
|
if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
|
|
send_to_sock(con);
|
|
}
|
|
|
|
|
|
/* Discard all entries on the write queues */
|
|
static void clean_writequeues(void)
|
|
{
|
|
foreach_conn(clean_one_writequeue);
|
|
}
|
|
|
|
static void work_stop(void)
|
|
{
|
|
destroy_workqueue(recv_workqueue);
|
|
destroy_workqueue(send_workqueue);
|
|
}
|
|
|
|
static int work_start(void)
|
|
{
|
|
recv_workqueue = alloc_workqueue("dlm_recv",
|
|
WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
|
|
if (!recv_workqueue) {
|
|
log_print("can't start dlm_recv");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
send_workqueue = alloc_workqueue("dlm_send",
|
|
WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
|
|
if (!send_workqueue) {
|
|
log_print("can't start dlm_send");
|
|
destroy_workqueue(recv_workqueue);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stop_conn(struct connection *con)
|
|
{
|
|
con->flags |= 0x0F;
|
|
if (con->sock && con->sock->sk)
|
|
con->sock->sk->sk_user_data = NULL;
|
|
}
|
|
|
|
static void free_conn(struct connection *con)
|
|
{
|
|
close_connection(con, true, true, true);
|
|
if (con->othercon)
|
|
kmem_cache_free(con_cache, con->othercon);
|
|
hlist_del(&con->list);
|
|
kmem_cache_free(con_cache, con);
|
|
}
|
|
|
|
void dlm_lowcomms_stop(void)
|
|
{
|
|
/* Set all the flags to prevent any
|
|
socket activity.
|
|
*/
|
|
mutex_lock(&connections_lock);
|
|
dlm_allow_conn = 0;
|
|
foreach_conn(stop_conn);
|
|
clean_writequeues();
|
|
foreach_conn(free_conn);
|
|
mutex_unlock(&connections_lock);
|
|
|
|
work_stop();
|
|
|
|
kmem_cache_destroy(con_cache);
|
|
}
|
|
|
|
int dlm_lowcomms_start(void)
|
|
{
|
|
int error = -EINVAL;
|
|
struct connection *con;
|
|
int i;
|
|
|
|
for (i = 0; i < CONN_HASH_SIZE; i++)
|
|
INIT_HLIST_HEAD(&connection_hash[i]);
|
|
|
|
init_local();
|
|
if (!dlm_local_count) {
|
|
error = -ENOTCONN;
|
|
log_print("no local IP address has been set");
|
|
goto fail;
|
|
}
|
|
|
|
error = -ENOMEM;
|
|
con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
|
|
__alignof__(struct connection), 0,
|
|
NULL);
|
|
if (!con_cache)
|
|
goto fail;
|
|
|
|
error = work_start();
|
|
if (error)
|
|
goto fail_destroy;
|
|
|
|
dlm_allow_conn = 1;
|
|
|
|
/* Start listening */
|
|
if (dlm_config.ci_protocol == 0)
|
|
error = tcp_listen_for_all();
|
|
else
|
|
error = sctp_listen_for_all();
|
|
if (error)
|
|
goto fail_unlisten;
|
|
|
|
return 0;
|
|
|
|
fail_unlisten:
|
|
dlm_allow_conn = 0;
|
|
con = nodeid2con(0,0);
|
|
if (con) {
|
|
close_connection(con, false, true, true);
|
|
kmem_cache_free(con_cache, con);
|
|
}
|
|
fail_destroy:
|
|
kmem_cache_destroy(con_cache);
|
|
fail:
|
|
return error;
|
|
}
|
|
|
|
void dlm_lowcomms_exit(void)
|
|
{
|
|
struct dlm_node_addr *na, *safe;
|
|
|
|
spin_lock(&dlm_node_addrs_spin);
|
|
list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
|
|
list_del(&na->list);
|
|
while (na->addr_count--)
|
|
kfree(na->addr[na->addr_count]);
|
|
kfree(na);
|
|
}
|
|
spin_unlock(&dlm_node_addrs_spin);
|
|
}
|