mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 11:47:02 +07:00
6a2f59e45a
A reasonably common operation is to pin the map of the vma alongside the vma itself for the lifetime of the vma, and so release both pins at the same time as destroying the vma. It is common enough to pull into the release function, making that central function more attractive to a couple of other callsites. The continual ulterior motive is to sweep over errors on module load aborting... Testcase: igt/drv_module_reload/basic-reload-inject Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Michał Winiarski <michal.winiarski@intel.com> Cc: Michal Wajdeczko <michal.wajdeczko@intel.com> Reviewed-by: Michał Winiarski <michal.winiarski@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180721125037.20127-1-chris@chris-wilson.co.uk
635 lines
17 KiB
C
635 lines
17 KiB
C
/*
|
|
* Copyright © 2014-2017 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/debugfs.h>
|
|
|
|
#include "intel_guc_log.h"
|
|
#include "i915_drv.h"
|
|
|
|
static void guc_log_capture_logs(struct intel_guc_log *log);
|
|
|
|
/**
|
|
* DOC: GuC firmware log
|
|
*
|
|
* Firmware log is enabled by setting i915.guc_log_level to the positive level.
|
|
* Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
|
|
* i915_guc_load_status will print out firmware loading status and scratch
|
|
* registers value.
|
|
*/
|
|
|
|
static int guc_action_flush_log_complete(struct intel_guc *guc)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static int guc_action_flush_log(struct intel_guc *guc)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
|
|
0
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static int guc_action_control_log(struct intel_guc *guc, bool enable,
|
|
bool default_logging, u32 verbosity)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
|
|
(enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
|
|
(verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
|
|
(default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
|
|
};
|
|
|
|
GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
|
|
{
|
|
return container_of(log, struct intel_guc, log);
|
|
}
|
|
|
|
static void guc_log_enable_flush_events(struct intel_guc_log *log)
|
|
{
|
|
intel_guc_enable_msg(log_to_guc(log),
|
|
INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
|
|
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
|
|
}
|
|
|
|
static void guc_log_disable_flush_events(struct intel_guc_log *log)
|
|
{
|
|
intel_guc_disable_msg(log_to_guc(log),
|
|
INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
|
|
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
|
|
}
|
|
|
|
/*
|
|
* Sub buffer switch callback. Called whenever relay has to switch to a new
|
|
* sub buffer, relay stays on the same sub buffer if 0 is returned.
|
|
*/
|
|
static int subbuf_start_callback(struct rchan_buf *buf,
|
|
void *subbuf,
|
|
void *prev_subbuf,
|
|
size_t prev_padding)
|
|
{
|
|
/*
|
|
* Use no-overwrite mode by default, where relay will stop accepting
|
|
* new data if there are no empty sub buffers left.
|
|
* There is no strict synchronization enforced by relay between Consumer
|
|
* and Producer. In overwrite mode, there is a possibility of getting
|
|
* inconsistent/garbled data, the producer could be writing on to the
|
|
* same sub buffer from which Consumer is reading. This can't be avoided
|
|
* unless Consumer is fast enough and can always run in tandem with
|
|
* Producer.
|
|
*/
|
|
if (relay_buf_full(buf))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* file_create() callback. Creates relay file in debugfs.
|
|
*/
|
|
static struct dentry *create_buf_file_callback(const char *filename,
|
|
struct dentry *parent,
|
|
umode_t mode,
|
|
struct rchan_buf *buf,
|
|
int *is_global)
|
|
{
|
|
struct dentry *buf_file;
|
|
|
|
/*
|
|
* This to enable the use of a single buffer for the relay channel and
|
|
* correspondingly have a single file exposed to User, through which
|
|
* it can collect the logs in order without any post-processing.
|
|
* Need to set 'is_global' even if parent is NULL for early logging.
|
|
*/
|
|
*is_global = 1;
|
|
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
buf_file = debugfs_create_file(filename, mode,
|
|
parent, buf, &relay_file_operations);
|
|
return buf_file;
|
|
}
|
|
|
|
/*
|
|
* file_remove() default callback. Removes relay file in debugfs.
|
|
*/
|
|
static int remove_buf_file_callback(struct dentry *dentry)
|
|
{
|
|
debugfs_remove(dentry);
|
|
return 0;
|
|
}
|
|
|
|
/* relay channel callbacks */
|
|
static struct rchan_callbacks relay_callbacks = {
|
|
.subbuf_start = subbuf_start_callback,
|
|
.create_buf_file = create_buf_file_callback,
|
|
.remove_buf_file = remove_buf_file_callback,
|
|
};
|
|
|
|
static void guc_move_to_next_buf(struct intel_guc_log *log)
|
|
{
|
|
/*
|
|
* Make sure the updates made in the sub buffer are visible when
|
|
* Consumer sees the following update to offset inside the sub buffer.
|
|
*/
|
|
smp_wmb();
|
|
|
|
/* All data has been written, so now move the offset of sub buffer. */
|
|
relay_reserve(log->relay.channel, log->vma->obj->base.size);
|
|
|
|
/* Switch to the next sub buffer */
|
|
relay_flush(log->relay.channel);
|
|
}
|
|
|
|
static void *guc_get_write_buffer(struct intel_guc_log *log)
|
|
{
|
|
/*
|
|
* Just get the base address of a new sub buffer and copy data into it
|
|
* ourselves. NULL will be returned in no-overwrite mode, if all sub
|
|
* buffers are full. Could have used the relay_write() to indirectly
|
|
* copy the data, but that would have been bit convoluted, as we need to
|
|
* write to only certain locations inside a sub buffer which cannot be
|
|
* done without using relay_reserve() along with relay_write(). So its
|
|
* better to use relay_reserve() alone.
|
|
*/
|
|
return relay_reserve(log->relay.channel, 0);
|
|
}
|
|
|
|
static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
|
|
enum guc_log_buffer_type type,
|
|
unsigned int full_cnt)
|
|
{
|
|
unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
|
|
bool overflow = false;
|
|
|
|
if (full_cnt != prev_full_cnt) {
|
|
overflow = true;
|
|
|
|
log->stats[type].overflow = full_cnt;
|
|
log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
|
|
|
|
if (full_cnt < prev_full_cnt) {
|
|
/* buffer_full_cnt is a 4 bit counter */
|
|
log->stats[type].sampled_overflow += 16;
|
|
}
|
|
DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
|
|
}
|
|
|
|
return overflow;
|
|
}
|
|
|
|
static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
|
|
{
|
|
switch (type) {
|
|
case GUC_ISR_LOG_BUFFER:
|
|
return ISR_BUFFER_SIZE;
|
|
case GUC_DPC_LOG_BUFFER:
|
|
return DPC_BUFFER_SIZE;
|
|
case GUC_CRASH_DUMP_LOG_BUFFER:
|
|
return CRASH_BUFFER_SIZE;
|
|
default:
|
|
MISSING_CASE(type);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_read_update_log_buffer(struct intel_guc_log *log)
|
|
{
|
|
unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
|
|
struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
|
|
struct guc_log_buffer_state log_buf_state_local;
|
|
enum guc_log_buffer_type type;
|
|
void *src_data, *dst_data;
|
|
bool new_overflow;
|
|
|
|
mutex_lock(&log->relay.lock);
|
|
|
|
if (WARN_ON(!intel_guc_log_relay_enabled(log)))
|
|
goto out_unlock;
|
|
|
|
/* Get the pointer to shared GuC log buffer */
|
|
log_buf_state = src_data = log->relay.buf_addr;
|
|
|
|
/* Get the pointer to local buffer to store the logs */
|
|
log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
|
|
|
|
if (unlikely(!log_buf_snapshot_state)) {
|
|
/*
|
|
* Used rate limited to avoid deluge of messages, logs might be
|
|
* getting consumed by User at a slow rate.
|
|
*/
|
|
DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
|
|
log->relay.full_count++;
|
|
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Actual logs are present from the 2nd page */
|
|
src_data += PAGE_SIZE;
|
|
dst_data += PAGE_SIZE;
|
|
|
|
for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
|
|
/*
|
|
* Make a copy of the state structure, inside GuC log buffer
|
|
* (which is uncached mapped), on the stack to avoid reading
|
|
* from it multiple times.
|
|
*/
|
|
memcpy(&log_buf_state_local, log_buf_state,
|
|
sizeof(struct guc_log_buffer_state));
|
|
buffer_size = guc_get_log_buffer_size(type);
|
|
read_offset = log_buf_state_local.read_ptr;
|
|
write_offset = log_buf_state_local.sampled_write_ptr;
|
|
full_cnt = log_buf_state_local.buffer_full_cnt;
|
|
|
|
/* Bookkeeping stuff */
|
|
log->stats[type].flush += log_buf_state_local.flush_to_file;
|
|
new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
|
|
|
|
/* Update the state of shared log buffer */
|
|
log_buf_state->read_ptr = write_offset;
|
|
log_buf_state->flush_to_file = 0;
|
|
log_buf_state++;
|
|
|
|
/* First copy the state structure in snapshot buffer */
|
|
memcpy(log_buf_snapshot_state, &log_buf_state_local,
|
|
sizeof(struct guc_log_buffer_state));
|
|
|
|
/*
|
|
* The write pointer could have been updated by GuC firmware,
|
|
* after sending the flush interrupt to Host, for consistency
|
|
* set write pointer value to same value of sampled_write_ptr
|
|
* in the snapshot buffer.
|
|
*/
|
|
log_buf_snapshot_state->write_ptr = write_offset;
|
|
log_buf_snapshot_state++;
|
|
|
|
/* Now copy the actual logs. */
|
|
if (unlikely(new_overflow)) {
|
|
/* copy the whole buffer in case of overflow */
|
|
read_offset = 0;
|
|
write_offset = buffer_size;
|
|
} else if (unlikely((read_offset > buffer_size) ||
|
|
(write_offset > buffer_size))) {
|
|
DRM_ERROR("invalid log buffer state\n");
|
|
/* copy whole buffer as offsets are unreliable */
|
|
read_offset = 0;
|
|
write_offset = buffer_size;
|
|
}
|
|
|
|
/* Just copy the newly written data */
|
|
if (read_offset > write_offset) {
|
|
i915_memcpy_from_wc(dst_data, src_data, write_offset);
|
|
bytes_to_copy = buffer_size - read_offset;
|
|
} else {
|
|
bytes_to_copy = write_offset - read_offset;
|
|
}
|
|
i915_memcpy_from_wc(dst_data + read_offset,
|
|
src_data + read_offset, bytes_to_copy);
|
|
|
|
src_data += buffer_size;
|
|
dst_data += buffer_size;
|
|
}
|
|
|
|
guc_move_to_next_buf(log);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&log->relay.lock);
|
|
}
|
|
|
|
static void capture_logs_work(struct work_struct *work)
|
|
{
|
|
struct intel_guc_log *log =
|
|
container_of(work, struct intel_guc_log, relay.flush_work);
|
|
|
|
guc_log_capture_logs(log);
|
|
}
|
|
|
|
static int guc_log_map(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
void *vaddr;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&log->relay.lock);
|
|
|
|
if (!log->vma)
|
|
return -ENODEV;
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
ret = i915_gem_object_set_to_wc_domain(log->vma->obj, true);
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Create a WC (Uncached for read) vmalloc mapping of log
|
|
* buffer pages, so that we can directly get the data
|
|
* (up-to-date) from memory.
|
|
*/
|
|
vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
|
|
if (IS_ERR(vaddr)) {
|
|
DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
|
|
return PTR_ERR(vaddr);
|
|
}
|
|
|
|
log->relay.buf_addr = vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_log_unmap(struct intel_guc_log *log)
|
|
{
|
|
lockdep_assert_held(&log->relay.lock);
|
|
|
|
i915_gem_object_unpin_map(log->vma->obj);
|
|
log->relay.buf_addr = NULL;
|
|
}
|
|
|
|
void intel_guc_log_init_early(struct intel_guc_log *log)
|
|
{
|
|
mutex_init(&log->relay.lock);
|
|
INIT_WORK(&log->relay.flush_work, capture_logs_work);
|
|
}
|
|
|
|
static int guc_log_relay_create(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
struct rchan *guc_log_relay_chan;
|
|
size_t n_subbufs, subbuf_size;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&log->relay.lock);
|
|
|
|
/* Keep the size of sub buffers same as shared log buffer */
|
|
subbuf_size = log->vma->size;
|
|
|
|
/*
|
|
* Store up to 8 snapshots, which is large enough to buffer sufficient
|
|
* boot time logs and provides enough leeway to User, in terms of
|
|
* latency, for consuming the logs from relay. Also doesn't take
|
|
* up too much memory.
|
|
*/
|
|
n_subbufs = 8;
|
|
|
|
guc_log_relay_chan = relay_open("guc_log",
|
|
dev_priv->drm.primary->debugfs_root,
|
|
subbuf_size, n_subbufs,
|
|
&relay_callbacks, dev_priv);
|
|
if (!guc_log_relay_chan) {
|
|
DRM_ERROR("Couldn't create relay chan for GuC logging\n");
|
|
|
|
ret = -ENOMEM;
|
|
return ret;
|
|
}
|
|
|
|
GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
|
|
log->relay.channel = guc_log_relay_chan;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_log_relay_destroy(struct intel_guc_log *log)
|
|
{
|
|
lockdep_assert_held(&log->relay.lock);
|
|
|
|
relay_close(log->relay.channel);
|
|
log->relay.channel = NULL;
|
|
}
|
|
|
|
static void guc_log_capture_logs(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
|
|
guc_read_update_log_buffer(log);
|
|
|
|
/*
|
|
* Generally device is expected to be active only at this
|
|
* time, so get/put should be really quick.
|
|
*/
|
|
intel_runtime_pm_get(dev_priv);
|
|
guc_action_flush_log_complete(guc);
|
|
intel_runtime_pm_put(dev_priv);
|
|
}
|
|
|
|
int intel_guc_log_create(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct i915_vma *vma;
|
|
u32 guc_log_size;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(log->vma);
|
|
|
|
/*
|
|
* GuC Log buffer Layout
|
|
*
|
|
* +===============================+ 00B
|
|
* | Crash dump state header |
|
|
* +-------------------------------+ 32B
|
|
* | DPC state header |
|
|
* +-------------------------------+ 64B
|
|
* | ISR state header |
|
|
* +-------------------------------+ 96B
|
|
* | |
|
|
* +===============================+ PAGE_SIZE (4KB)
|
|
* | Crash Dump logs |
|
|
* +===============================+ + CRASH_SIZE
|
|
* | DPC logs |
|
|
* +===============================+ + DPC_SIZE
|
|
* | ISR logs |
|
|
* +===============================+ + ISR_SIZE
|
|
*/
|
|
guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE +
|
|
ISR_BUFFER_SIZE;
|
|
|
|
vma = intel_guc_allocate_vma(guc, guc_log_size);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto err;
|
|
}
|
|
|
|
log->vma = vma;
|
|
|
|
log->level = i915_modparams.guc_log_level;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
void intel_guc_log_destroy(struct intel_guc_log *log)
|
|
{
|
|
i915_vma_unpin_and_release(&log->vma, 0);
|
|
}
|
|
|
|
int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *dev_priv = guc_to_i915(guc);
|
|
int ret;
|
|
|
|
BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
|
|
GEM_BUG_ON(!log->vma);
|
|
|
|
/*
|
|
* GuC is recognizing log levels starting from 0 to max, we're using 0
|
|
* as indication that logging should be disabled.
|
|
*/
|
|
if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
|
|
if (log->level == level) {
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
ret = guc_action_control_log(guc, GUC_LOG_LEVEL_IS_VERBOSE(level),
|
|
GUC_LOG_LEVEL_IS_ENABLED(level),
|
|
GUC_LOG_LEVEL_TO_VERBOSITY(level));
|
|
intel_runtime_pm_put(dev_priv);
|
|
if (ret) {
|
|
DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
|
|
goto out_unlock;
|
|
}
|
|
|
|
log->level = level;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool intel_guc_log_relay_enabled(const struct intel_guc_log *log)
|
|
{
|
|
return log->relay.buf_addr;
|
|
}
|
|
|
|
int intel_guc_log_relay_open(struct intel_guc_log *log)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&log->relay.lock);
|
|
|
|
if (intel_guc_log_relay_enabled(log)) {
|
|
ret = -EEXIST;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* We require SSE 4.1 for fast reads from the GuC log buffer and
|
|
* it should be present on the chipsets supporting GuC based
|
|
* submisssions.
|
|
*/
|
|
if (!i915_has_memcpy_from_wc()) {
|
|
ret = -ENXIO;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = guc_log_relay_create(log);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = guc_log_map(log);
|
|
if (ret)
|
|
goto out_relay;
|
|
|
|
mutex_unlock(&log->relay.lock);
|
|
|
|
guc_log_enable_flush_events(log);
|
|
|
|
/*
|
|
* When GuC is logging without us relaying to userspace, we're ignoring
|
|
* the flush notification. This means that we need to unconditionally
|
|
* flush on relay enabling, since GuC only notifies us once.
|
|
*/
|
|
queue_work(log->relay.flush_wq, &log->relay.flush_work);
|
|
|
|
return 0;
|
|
|
|
out_relay:
|
|
guc_log_relay_destroy(log);
|
|
out_unlock:
|
|
mutex_unlock(&log->relay.lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void intel_guc_log_relay_flush(struct intel_guc_log *log)
|
|
{
|
|
struct intel_guc *guc = log_to_guc(log);
|
|
struct drm_i915_private *i915 = guc_to_i915(guc);
|
|
|
|
/*
|
|
* Before initiating the forceful flush, wait for any pending/ongoing
|
|
* flush to complete otherwise forceful flush may not actually happen.
|
|
*/
|
|
flush_work(&log->relay.flush_work);
|
|
|
|
intel_runtime_pm_get(i915);
|
|
guc_action_flush_log(guc);
|
|
intel_runtime_pm_put(i915);
|
|
|
|
/* GuC would have updated log buffer by now, so capture it */
|
|
guc_log_capture_logs(log);
|
|
}
|
|
|
|
void intel_guc_log_relay_close(struct intel_guc_log *log)
|
|
{
|
|
guc_log_disable_flush_events(log);
|
|
flush_work(&log->relay.flush_work);
|
|
|
|
mutex_lock(&log->relay.lock);
|
|
GEM_BUG_ON(!intel_guc_log_relay_enabled(log));
|
|
guc_log_unmap(log);
|
|
guc_log_relay_destroy(log);
|
|
mutex_unlock(&log->relay.lock);
|
|
}
|
|
|
|
void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
|
|
{
|
|
queue_work(log->relay.flush_wq, &log->relay.flush_work);
|
|
}
|