mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-14 02:16:09 +07:00
674f368a95
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to make the ->setkey() functions provide more information about errors. However, no one actually checks for this flag, which makes it pointless. Also, many algorithms fail to set this flag when given a bad length key. Reviewing just the generic implementations, this is the case for aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309, rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably many more in arch/*/crypto/ and drivers/crypto/. Some algorithms can even set this flag when the key is the correct length. For example, authenc and authencesn set it when the key payload is malformed in any way (not just a bad length), the atmel-sha and ccree drivers can set it if a memory allocation fails, and the chelsio driver sets it for bad auth tag lengths, not just bad key lengths. So even if someone actually wanted to start checking this flag (which seems unlikely, since it's been unused for a long time), there would be a lot of work needed to get it working correctly. But it would probably be much better to go back to the drawing board and just define different return values, like -EINVAL if the key is invalid for the algorithm vs. -EKEYREJECTED if the key was rejected by a policy like "no weak keys". That would be much simpler, less error-prone, and easier to test. So just remove this flag. Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
382 lines
10 KiB
C
382 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* amlogic-cipher.c - hardware cryptographic offloader for Amlogic GXL SoC
|
|
*
|
|
* Copyright (C) 2018-2019 Corentin LABBE <clabbe@baylibre.com>
|
|
*
|
|
* This file add support for AES cipher with 128,192,256 bits keysize in
|
|
* CBC and ECB mode.
|
|
*/
|
|
|
|
#include <linux/crypto.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include "amlogic-gxl.h"
|
|
|
|
static int get_engine_number(struct meson_dev *mc)
|
|
{
|
|
return atomic_inc_return(&mc->flow) % MAXFLOW;
|
|
}
|
|
|
|
static bool meson_cipher_need_fallback(struct skcipher_request *areq)
|
|
{
|
|
struct scatterlist *src_sg = areq->src;
|
|
struct scatterlist *dst_sg = areq->dst;
|
|
|
|
if (areq->cryptlen == 0)
|
|
return true;
|
|
|
|
if (sg_nents(src_sg) != sg_nents(dst_sg))
|
|
return true;
|
|
|
|
/* KEY/IV descriptors use 3 desc */
|
|
if (sg_nents(src_sg) > MAXDESC - 3 || sg_nents(dst_sg) > MAXDESC - 3)
|
|
return true;
|
|
|
|
while (src_sg && dst_sg) {
|
|
if ((src_sg->length % 16) != 0)
|
|
return true;
|
|
if ((dst_sg->length % 16) != 0)
|
|
return true;
|
|
if (src_sg->length != dst_sg->length)
|
|
return true;
|
|
if (!IS_ALIGNED(src_sg->offset, sizeof(u32)))
|
|
return true;
|
|
if (!IS_ALIGNED(dst_sg->offset, sizeof(u32)))
|
|
return true;
|
|
src_sg = sg_next(src_sg);
|
|
dst_sg = sg_next(dst_sg);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int meson_cipher_do_fallback(struct skcipher_request *areq)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
|
|
struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
|
|
struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
|
|
int err;
|
|
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
|
|
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
|
|
struct meson_alg_template *algt;
|
|
#endif
|
|
SYNC_SKCIPHER_REQUEST_ON_STACK(req, op->fallback_tfm);
|
|
|
|
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
|
|
algt = container_of(alg, struct meson_alg_template, alg.skcipher);
|
|
algt->stat_fb++;
|
|
#endif
|
|
skcipher_request_set_sync_tfm(req, op->fallback_tfm);
|
|
skcipher_request_set_callback(req, areq->base.flags, NULL, NULL);
|
|
skcipher_request_set_crypt(req, areq->src, areq->dst,
|
|
areq->cryptlen, areq->iv);
|
|
if (rctx->op_dir == MESON_DECRYPT)
|
|
err = crypto_skcipher_decrypt(req);
|
|
else
|
|
err = crypto_skcipher_encrypt(req);
|
|
skcipher_request_zero(req);
|
|
return err;
|
|
}
|
|
|
|
static int meson_cipher(struct skcipher_request *areq)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
|
|
struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
|
|
struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
|
|
struct meson_dev *mc = op->mc;
|
|
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
|
|
struct meson_alg_template *algt;
|
|
int flow = rctx->flow;
|
|
unsigned int todo, eat, len;
|
|
struct scatterlist *src_sg = areq->src;
|
|
struct scatterlist *dst_sg = areq->dst;
|
|
struct meson_desc *desc;
|
|
int nr_sgs, nr_sgd;
|
|
int i, err = 0;
|
|
unsigned int keyivlen, ivsize, offset, tloffset;
|
|
dma_addr_t phykeyiv;
|
|
void *backup_iv = NULL, *bkeyiv;
|
|
__le32 v;
|
|
|
|
algt = container_of(alg, struct meson_alg_template, alg.skcipher);
|
|
|
|
dev_dbg(mc->dev, "%s %s %u %x IV(%u) key=%u flow=%d\n", __func__,
|
|
crypto_tfm_alg_name(areq->base.tfm),
|
|
areq->cryptlen,
|
|
rctx->op_dir, crypto_skcipher_ivsize(tfm),
|
|
op->keylen, flow);
|
|
|
|
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
|
|
algt->stat_req++;
|
|
mc->chanlist[flow].stat_req++;
|
|
#endif
|
|
|
|
/*
|
|
* The hardware expect a list of meson_desc structures.
|
|
* The 2 first structures store key
|
|
* The third stores IV
|
|
*/
|
|
bkeyiv = kzalloc(48, GFP_KERNEL | GFP_DMA);
|
|
if (!bkeyiv)
|
|
return -ENOMEM;
|
|
|
|
memcpy(bkeyiv, op->key, op->keylen);
|
|
keyivlen = op->keylen;
|
|
|
|
ivsize = crypto_skcipher_ivsize(tfm);
|
|
if (areq->iv && ivsize > 0) {
|
|
if (ivsize > areq->cryptlen) {
|
|
dev_err(mc->dev, "invalid ivsize=%d vs len=%d\n", ivsize, areq->cryptlen);
|
|
err = -EINVAL;
|
|
goto theend;
|
|
}
|
|
memcpy(bkeyiv + 32, areq->iv, ivsize);
|
|
keyivlen = 48;
|
|
if (rctx->op_dir == MESON_DECRYPT) {
|
|
backup_iv = kzalloc(ivsize, GFP_KERNEL);
|
|
if (!backup_iv) {
|
|
err = -ENOMEM;
|
|
goto theend;
|
|
}
|
|
offset = areq->cryptlen - ivsize;
|
|
scatterwalk_map_and_copy(backup_iv, areq->src, offset,
|
|
ivsize, 0);
|
|
}
|
|
}
|
|
if (keyivlen == 24)
|
|
keyivlen = 32;
|
|
|
|
phykeyiv = dma_map_single(mc->dev, bkeyiv, keyivlen,
|
|
DMA_TO_DEVICE);
|
|
err = dma_mapping_error(mc->dev, phykeyiv);
|
|
if (err) {
|
|
dev_err(mc->dev, "Cannot DMA MAP KEY IV\n");
|
|
goto theend;
|
|
}
|
|
|
|
tloffset = 0;
|
|
eat = 0;
|
|
i = 0;
|
|
while (keyivlen > eat) {
|
|
desc = &mc->chanlist[flow].tl[tloffset];
|
|
memset(desc, 0, sizeof(struct meson_desc));
|
|
todo = min(keyivlen - eat, 16u);
|
|
desc->t_src = cpu_to_le32(phykeyiv + i * 16);
|
|
desc->t_dst = cpu_to_le32(i * 16);
|
|
v = (MODE_KEY << 20) | DESC_OWN | 16;
|
|
desc->t_status = cpu_to_le32(v);
|
|
|
|
eat += todo;
|
|
i++;
|
|
tloffset++;
|
|
}
|
|
|
|
if (areq->src == areq->dst) {
|
|
nr_sgs = dma_map_sg(mc->dev, areq->src, sg_nents(areq->src),
|
|
DMA_BIDIRECTIONAL);
|
|
if (nr_sgs < 0) {
|
|
dev_err(mc->dev, "Invalid SG count %d\n", nr_sgs);
|
|
err = -EINVAL;
|
|
goto theend;
|
|
}
|
|
nr_sgd = nr_sgs;
|
|
} else {
|
|
nr_sgs = dma_map_sg(mc->dev, areq->src, sg_nents(areq->src),
|
|
DMA_TO_DEVICE);
|
|
if (nr_sgs < 0 || nr_sgs > MAXDESC - 3) {
|
|
dev_err(mc->dev, "Invalid SG count %d\n", nr_sgs);
|
|
err = -EINVAL;
|
|
goto theend;
|
|
}
|
|
nr_sgd = dma_map_sg(mc->dev, areq->dst, sg_nents(areq->dst),
|
|
DMA_FROM_DEVICE);
|
|
if (nr_sgd < 0 || nr_sgd > MAXDESC - 3) {
|
|
dev_err(mc->dev, "Invalid SG count %d\n", nr_sgd);
|
|
err = -EINVAL;
|
|
goto theend;
|
|
}
|
|
}
|
|
|
|
src_sg = areq->src;
|
|
dst_sg = areq->dst;
|
|
len = areq->cryptlen;
|
|
while (src_sg) {
|
|
desc = &mc->chanlist[flow].tl[tloffset];
|
|
memset(desc, 0, sizeof(struct meson_desc));
|
|
|
|
desc->t_src = cpu_to_le32(sg_dma_address(src_sg));
|
|
desc->t_dst = cpu_to_le32(sg_dma_address(dst_sg));
|
|
todo = min(len, sg_dma_len(src_sg));
|
|
v = (op->keymode << 20) | DESC_OWN | todo | (algt->blockmode << 26);
|
|
if (rctx->op_dir)
|
|
v |= DESC_ENCRYPTION;
|
|
len -= todo;
|
|
|
|
if (!sg_next(src_sg))
|
|
v |= DESC_LAST;
|
|
desc->t_status = cpu_to_le32(v);
|
|
tloffset++;
|
|
src_sg = sg_next(src_sg);
|
|
dst_sg = sg_next(dst_sg);
|
|
}
|
|
|
|
reinit_completion(&mc->chanlist[flow].complete);
|
|
mc->chanlist[flow].status = 0;
|
|
writel(mc->chanlist[flow].t_phy | 2, mc->base + (flow << 2));
|
|
wait_for_completion_interruptible_timeout(&mc->chanlist[flow].complete,
|
|
msecs_to_jiffies(500));
|
|
if (mc->chanlist[flow].status == 0) {
|
|
dev_err(mc->dev, "DMA timeout for flow %d\n", flow);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
dma_unmap_single(mc->dev, phykeyiv, keyivlen, DMA_TO_DEVICE);
|
|
|
|
if (areq->src == areq->dst) {
|
|
dma_unmap_sg(mc->dev, areq->src, nr_sgs, DMA_BIDIRECTIONAL);
|
|
} else {
|
|
dma_unmap_sg(mc->dev, areq->src, nr_sgs, DMA_TO_DEVICE);
|
|
dma_unmap_sg(mc->dev, areq->dst, nr_sgd, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
if (areq->iv && ivsize > 0) {
|
|
if (rctx->op_dir == MESON_DECRYPT) {
|
|
memcpy(areq->iv, backup_iv, ivsize);
|
|
} else {
|
|
scatterwalk_map_and_copy(areq->iv, areq->dst,
|
|
areq->cryptlen - ivsize,
|
|
ivsize, 0);
|
|
}
|
|
}
|
|
theend:
|
|
kzfree(bkeyiv);
|
|
kzfree(backup_iv);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int meson_handle_cipher_request(struct crypto_engine *engine,
|
|
void *areq)
|
|
{
|
|
int err;
|
|
struct skcipher_request *breq = container_of(areq, struct skcipher_request, base);
|
|
|
|
err = meson_cipher(breq);
|
|
crypto_finalize_skcipher_request(engine, breq, err);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int meson_skdecrypt(struct skcipher_request *areq)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
|
|
struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
|
|
struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
|
|
struct crypto_engine *engine;
|
|
int e;
|
|
|
|
rctx->op_dir = MESON_DECRYPT;
|
|
if (meson_cipher_need_fallback(areq))
|
|
return meson_cipher_do_fallback(areq);
|
|
e = get_engine_number(op->mc);
|
|
engine = op->mc->chanlist[e].engine;
|
|
rctx->flow = e;
|
|
|
|
return crypto_transfer_skcipher_request_to_engine(engine, areq);
|
|
}
|
|
|
|
int meson_skencrypt(struct skcipher_request *areq)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
|
|
struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
|
|
struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
|
|
struct crypto_engine *engine;
|
|
int e;
|
|
|
|
rctx->op_dir = MESON_ENCRYPT;
|
|
if (meson_cipher_need_fallback(areq))
|
|
return meson_cipher_do_fallback(areq);
|
|
e = get_engine_number(op->mc);
|
|
engine = op->mc->chanlist[e].engine;
|
|
rctx->flow = e;
|
|
|
|
return crypto_transfer_skcipher_request_to_engine(engine, areq);
|
|
}
|
|
|
|
int meson_cipher_init(struct crypto_tfm *tfm)
|
|
{
|
|
struct meson_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
|
|
struct meson_alg_template *algt;
|
|
const char *name = crypto_tfm_alg_name(tfm);
|
|
struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm);
|
|
struct skcipher_alg *alg = crypto_skcipher_alg(sktfm);
|
|
|
|
memset(op, 0, sizeof(struct meson_cipher_tfm_ctx));
|
|
|
|
algt = container_of(alg, struct meson_alg_template, alg.skcipher);
|
|
op->mc = algt->mc;
|
|
|
|
sktfm->reqsize = sizeof(struct meson_cipher_req_ctx);
|
|
|
|
op->fallback_tfm = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(op->fallback_tfm)) {
|
|
dev_err(op->mc->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
|
|
name, PTR_ERR(op->fallback_tfm));
|
|
return PTR_ERR(op->fallback_tfm);
|
|
}
|
|
|
|
op->enginectx.op.do_one_request = meson_handle_cipher_request;
|
|
op->enginectx.op.prepare_request = NULL;
|
|
op->enginectx.op.unprepare_request = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void meson_cipher_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct meson_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
|
|
|
|
if (op->key) {
|
|
memzero_explicit(op->key, op->keylen);
|
|
kfree(op->key);
|
|
}
|
|
crypto_free_sync_skcipher(op->fallback_tfm);
|
|
}
|
|
|
|
int meson_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
|
|
struct meson_dev *mc = op->mc;
|
|
|
|
switch (keylen) {
|
|
case 128 / 8:
|
|
op->keymode = MODE_AES_128;
|
|
break;
|
|
case 192 / 8:
|
|
op->keymode = MODE_AES_192;
|
|
break;
|
|
case 256 / 8:
|
|
op->keymode = MODE_AES_256;
|
|
break;
|
|
default:
|
|
dev_dbg(mc->dev, "ERROR: Invalid keylen %u\n", keylen);
|
|
return -EINVAL;
|
|
}
|
|
if (op->key) {
|
|
memzero_explicit(op->key, op->keylen);
|
|
kfree(op->key);
|
|
}
|
|
op->keylen = keylen;
|
|
op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
|
|
if (!op->key)
|
|
return -ENOMEM;
|
|
|
|
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
|
|
}
|