mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 20:30:22 +07:00
ead3f26e35
There needs to be a safe method of releasing registered memory resources when an RPC terminates. Safe can mean a number of things: + Doesn't have to sleep + Doesn't rely on having a QP in RTS ro_unmap_safe will be that safe method. It can be used in cases where synchronous memory invalidation can deadlock, or needs to have an active QP. The important case is fencing an RPC's memory regions after it is signaled (^C) and before it exits. If this is not done, there is a window where the server can write an RPC reply into memory that the client has released and re-used for some other purpose. Note that this is a full solution for FRWR, but FMR and physical still have some gaps where a particularly bad server can wreak some havoc on the client. These gaps are not made worse by this patch and are expected to be exceptionally rare and timing-based. They are noted in documenting comments. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Tested-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
1124 lines
32 KiB
C
1124 lines
32 KiB
C
/*
|
|
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the BSD-type
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* Neither the name of the Network Appliance, Inc. nor the names of
|
|
* its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* rpc_rdma.c
|
|
*
|
|
* This file contains the guts of the RPC RDMA protocol, and
|
|
* does marshaling/unmarshaling, etc. It is also where interfacing
|
|
* to the Linux RPC framework lives.
|
|
*/
|
|
|
|
#include "xprt_rdma.h"
|
|
|
|
#include <linux/highmem.h>
|
|
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
# define RPCDBG_FACILITY RPCDBG_TRANS
|
|
#endif
|
|
|
|
enum rpcrdma_chunktype {
|
|
rpcrdma_noch = 0,
|
|
rpcrdma_readch,
|
|
rpcrdma_areadch,
|
|
rpcrdma_writech,
|
|
rpcrdma_replych
|
|
};
|
|
|
|
static const char transfertypes[][12] = {
|
|
"inline", /* no chunks */
|
|
"read list", /* some argument via rdma read */
|
|
"*read list", /* entire request via rdma read */
|
|
"write list", /* some result via rdma write */
|
|
"reply chunk" /* entire reply via rdma write */
|
|
};
|
|
|
|
/* Returns size of largest RPC-over-RDMA header in a Call message
|
|
*
|
|
* The largest Call header contains a full-size Read list and a
|
|
* minimal Reply chunk.
|
|
*/
|
|
static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
|
|
{
|
|
unsigned int size;
|
|
|
|
/* Fixed header fields and list discriminators */
|
|
size = RPCRDMA_HDRLEN_MIN;
|
|
|
|
/* Maximum Read list size */
|
|
maxsegs += 2; /* segment for head and tail buffers */
|
|
size = maxsegs * sizeof(struct rpcrdma_read_chunk);
|
|
|
|
/* Minimal Read chunk size */
|
|
size += sizeof(__be32); /* segment count */
|
|
size += sizeof(struct rpcrdma_segment);
|
|
size += sizeof(__be32); /* list discriminator */
|
|
|
|
dprintk("RPC: %s: max call header size = %u\n",
|
|
__func__, size);
|
|
return size;
|
|
}
|
|
|
|
/* Returns size of largest RPC-over-RDMA header in a Reply message
|
|
*
|
|
* There is only one Write list or one Reply chunk per Reply
|
|
* message. The larger list is the Write list.
|
|
*/
|
|
static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
|
|
{
|
|
unsigned int size;
|
|
|
|
/* Fixed header fields and list discriminators */
|
|
size = RPCRDMA_HDRLEN_MIN;
|
|
|
|
/* Maximum Write list size */
|
|
maxsegs += 2; /* segment for head and tail buffers */
|
|
size = sizeof(__be32); /* segment count */
|
|
size += maxsegs * sizeof(struct rpcrdma_segment);
|
|
size += sizeof(__be32); /* list discriminator */
|
|
|
|
dprintk("RPC: %s: max reply header size = %u\n",
|
|
__func__, size);
|
|
return size;
|
|
}
|
|
|
|
void rpcrdma_set_max_header_sizes(struct rpcrdma_ia *ia,
|
|
struct rpcrdma_create_data_internal *cdata,
|
|
unsigned int maxsegs)
|
|
{
|
|
ia->ri_max_inline_write = cdata->inline_wsize -
|
|
rpcrdma_max_call_header_size(maxsegs);
|
|
ia->ri_max_inline_read = cdata->inline_rsize -
|
|
rpcrdma_max_reply_header_size(maxsegs);
|
|
}
|
|
|
|
/* The client can send a request inline as long as the RPCRDMA header
|
|
* plus the RPC call fit under the transport's inline limit. If the
|
|
* combined call message size exceeds that limit, the client must use
|
|
* the read chunk list for this operation.
|
|
*/
|
|
static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
|
|
struct rpc_rqst *rqst)
|
|
{
|
|
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
|
|
|
|
return rqst->rq_snd_buf.len <= ia->ri_max_inline_write;
|
|
}
|
|
|
|
/* The client can't know how large the actual reply will be. Thus it
|
|
* plans for the largest possible reply for that particular ULP
|
|
* operation. If the maximum combined reply message size exceeds that
|
|
* limit, the client must provide a write list or a reply chunk for
|
|
* this request.
|
|
*/
|
|
static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
|
|
struct rpc_rqst *rqst)
|
|
{
|
|
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
|
|
|
|
return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
|
|
}
|
|
|
|
static int
|
|
rpcrdma_tail_pullup(struct xdr_buf *buf)
|
|
{
|
|
size_t tlen = buf->tail[0].iov_len;
|
|
size_t skip = tlen & 3;
|
|
|
|
/* Do not include the tail if it is only an XDR pad */
|
|
if (tlen < 4)
|
|
return 0;
|
|
|
|
/* xdr_write_pages() adds a pad at the beginning of the tail
|
|
* if the content in "buf->pages" is unaligned. Force the
|
|
* tail's actual content to land at the next XDR position
|
|
* after the head instead.
|
|
*/
|
|
if (skip) {
|
|
unsigned char *src, *dst;
|
|
unsigned int count;
|
|
|
|
src = buf->tail[0].iov_base;
|
|
dst = buf->head[0].iov_base;
|
|
dst += buf->head[0].iov_len;
|
|
|
|
src += skip;
|
|
tlen -= skip;
|
|
|
|
dprintk("RPC: %s: skip=%zu, memmove(%p, %p, %zu)\n",
|
|
__func__, skip, dst, src, tlen);
|
|
|
|
for (count = tlen; count; count--)
|
|
*dst++ = *src++;
|
|
}
|
|
|
|
return tlen;
|
|
}
|
|
|
|
/* Split "vec" on page boundaries into segments. FMR registers pages,
|
|
* not a byte range. Other modes coalesce these segments into a single
|
|
* MR when they can.
|
|
*/
|
|
static int
|
|
rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
|
|
int n, int nsegs)
|
|
{
|
|
size_t page_offset;
|
|
u32 remaining;
|
|
char *base;
|
|
|
|
base = vec->iov_base;
|
|
page_offset = offset_in_page(base);
|
|
remaining = vec->iov_len;
|
|
while (remaining && n < nsegs) {
|
|
seg[n].mr_page = NULL;
|
|
seg[n].mr_offset = base;
|
|
seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
|
|
remaining -= seg[n].mr_len;
|
|
base += seg[n].mr_len;
|
|
++n;
|
|
page_offset = 0;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Chunk assembly from upper layer xdr_buf.
|
|
*
|
|
* Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
|
|
* elements. Segments are then coalesced when registered, if possible
|
|
* within the selected memreg mode.
|
|
*
|
|
* Returns positive number of segments converted, or a negative errno.
|
|
*/
|
|
|
|
static int
|
|
rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
|
|
enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
|
|
{
|
|
int len, n = 0, p;
|
|
int page_base;
|
|
struct page **ppages;
|
|
|
|
if (pos == 0) {
|
|
n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n, nsegs);
|
|
if (n == nsegs)
|
|
return -EIO;
|
|
}
|
|
|
|
len = xdrbuf->page_len;
|
|
ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
|
|
page_base = xdrbuf->page_base & ~PAGE_MASK;
|
|
p = 0;
|
|
while (len && n < nsegs) {
|
|
if (!ppages[p]) {
|
|
/* alloc the pagelist for receiving buffer */
|
|
ppages[p] = alloc_page(GFP_ATOMIC);
|
|
if (!ppages[p])
|
|
return -ENOMEM;
|
|
}
|
|
seg[n].mr_page = ppages[p];
|
|
seg[n].mr_offset = (void *)(unsigned long) page_base;
|
|
seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
|
|
if (seg[n].mr_len > PAGE_SIZE)
|
|
return -EIO;
|
|
len -= seg[n].mr_len;
|
|
++n;
|
|
++p;
|
|
page_base = 0; /* page offset only applies to first page */
|
|
}
|
|
|
|
/* Message overflows the seg array */
|
|
if (len && n == nsegs)
|
|
return -EIO;
|
|
|
|
/* When encoding the read list, the tail is always sent inline */
|
|
if (type == rpcrdma_readch)
|
|
return n;
|
|
|
|
if (xdrbuf->tail[0].iov_len) {
|
|
/* the rpcrdma protocol allows us to omit any trailing
|
|
* xdr pad bytes, saving the server an RDMA operation. */
|
|
if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
|
|
return n;
|
|
n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n, nsegs);
|
|
if (n == nsegs)
|
|
return -EIO;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static inline __be32 *
|
|
xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr_seg *seg)
|
|
{
|
|
*iptr++ = cpu_to_be32(seg->mr_rkey);
|
|
*iptr++ = cpu_to_be32(seg->mr_len);
|
|
return xdr_encode_hyper(iptr, seg->mr_base);
|
|
}
|
|
|
|
/* XDR-encode the Read list. Supports encoding a list of read
|
|
* segments that belong to a single read chunk.
|
|
*
|
|
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
|
|
*
|
|
* Read chunklist (a linked list):
|
|
* N elements, position P (same P for all chunks of same arg!):
|
|
* 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
|
|
*
|
|
* Returns a pointer to the XDR word in the RDMA header following
|
|
* the end of the Read list, or an error pointer.
|
|
*/
|
|
static __be32 *
|
|
rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
|
|
struct rpcrdma_req *req, struct rpc_rqst *rqst,
|
|
__be32 *iptr, enum rpcrdma_chunktype rtype)
|
|
{
|
|
struct rpcrdma_mr_seg *seg = req->rl_nextseg;
|
|
unsigned int pos;
|
|
int n, nsegs;
|
|
|
|
if (rtype == rpcrdma_noch) {
|
|
*iptr++ = xdr_zero; /* item not present */
|
|
return iptr;
|
|
}
|
|
|
|
pos = rqst->rq_snd_buf.head[0].iov_len;
|
|
if (rtype == rpcrdma_areadch)
|
|
pos = 0;
|
|
nsegs = rpcrdma_convert_iovs(&rqst->rq_snd_buf, pos, rtype, seg,
|
|
RPCRDMA_MAX_SEGS - req->rl_nchunks);
|
|
if (nsegs < 0)
|
|
return ERR_PTR(nsegs);
|
|
|
|
do {
|
|
n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, false);
|
|
if (n <= 0)
|
|
return ERR_PTR(n);
|
|
|
|
*iptr++ = xdr_one; /* item present */
|
|
|
|
/* All read segments in this chunk
|
|
* have the same "position".
|
|
*/
|
|
*iptr++ = cpu_to_be32(pos);
|
|
iptr = xdr_encode_rdma_segment(iptr, seg);
|
|
|
|
dprintk("RPC: %5u %s: read segment pos %u "
|
|
"%d@0x%016llx:0x%08x (%s)\n",
|
|
rqst->rq_task->tk_pid, __func__, pos,
|
|
seg->mr_len, (unsigned long long)seg->mr_base,
|
|
seg->mr_rkey, n < nsegs ? "more" : "last");
|
|
|
|
r_xprt->rx_stats.read_chunk_count++;
|
|
req->rl_nchunks++;
|
|
seg += n;
|
|
nsegs -= n;
|
|
} while (nsegs);
|
|
req->rl_nextseg = seg;
|
|
|
|
/* Finish Read list */
|
|
*iptr++ = xdr_zero; /* Next item not present */
|
|
return iptr;
|
|
}
|
|
|
|
/* XDR-encode the Write list. Supports encoding a list containing
|
|
* one array of plain segments that belong to a single write chunk.
|
|
*
|
|
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
|
|
*
|
|
* Write chunklist (a list of (one) counted array):
|
|
* N elements:
|
|
* 1 - N - HLOO - HLOO - ... - HLOO - 0
|
|
*
|
|
* Returns a pointer to the XDR word in the RDMA header following
|
|
* the end of the Write list, or an error pointer.
|
|
*/
|
|
static __be32 *
|
|
rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
|
|
struct rpc_rqst *rqst, __be32 *iptr,
|
|
enum rpcrdma_chunktype wtype)
|
|
{
|
|
struct rpcrdma_mr_seg *seg = req->rl_nextseg;
|
|
int n, nsegs, nchunks;
|
|
__be32 *segcount;
|
|
|
|
if (wtype != rpcrdma_writech) {
|
|
*iptr++ = xdr_zero; /* no Write list present */
|
|
return iptr;
|
|
}
|
|
|
|
nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf,
|
|
rqst->rq_rcv_buf.head[0].iov_len,
|
|
wtype, seg,
|
|
RPCRDMA_MAX_SEGS - req->rl_nchunks);
|
|
if (nsegs < 0)
|
|
return ERR_PTR(nsegs);
|
|
|
|
*iptr++ = xdr_one; /* Write list present */
|
|
segcount = iptr++; /* save location of segment count */
|
|
|
|
nchunks = 0;
|
|
do {
|
|
n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, true);
|
|
if (n <= 0)
|
|
return ERR_PTR(n);
|
|
|
|
iptr = xdr_encode_rdma_segment(iptr, seg);
|
|
|
|
dprintk("RPC: %5u %s: write segment "
|
|
"%d@0x016%llx:0x%08x (%s)\n",
|
|
rqst->rq_task->tk_pid, __func__,
|
|
seg->mr_len, (unsigned long long)seg->mr_base,
|
|
seg->mr_rkey, n < nsegs ? "more" : "last");
|
|
|
|
r_xprt->rx_stats.write_chunk_count++;
|
|
r_xprt->rx_stats.total_rdma_request += seg->mr_len;
|
|
req->rl_nchunks++;
|
|
nchunks++;
|
|
seg += n;
|
|
nsegs -= n;
|
|
} while (nsegs);
|
|
req->rl_nextseg = seg;
|
|
|
|
/* Update count of segments in this Write chunk */
|
|
*segcount = cpu_to_be32(nchunks);
|
|
|
|
/* Finish Write list */
|
|
*iptr++ = xdr_zero; /* Next item not present */
|
|
return iptr;
|
|
}
|
|
|
|
/* XDR-encode the Reply chunk. Supports encoding an array of plain
|
|
* segments that belong to a single write (reply) chunk.
|
|
*
|
|
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
|
|
*
|
|
* Reply chunk (a counted array):
|
|
* N elements:
|
|
* 1 - N - HLOO - HLOO - ... - HLOO
|
|
*
|
|
* Returns a pointer to the XDR word in the RDMA header following
|
|
* the end of the Reply chunk, or an error pointer.
|
|
*/
|
|
static __be32 *
|
|
rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
|
|
struct rpcrdma_req *req, struct rpc_rqst *rqst,
|
|
__be32 *iptr, enum rpcrdma_chunktype wtype)
|
|
{
|
|
struct rpcrdma_mr_seg *seg = req->rl_nextseg;
|
|
int n, nsegs, nchunks;
|
|
__be32 *segcount;
|
|
|
|
if (wtype != rpcrdma_replych) {
|
|
*iptr++ = xdr_zero; /* no Reply chunk present */
|
|
return iptr;
|
|
}
|
|
|
|
nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf, 0, wtype, seg,
|
|
RPCRDMA_MAX_SEGS - req->rl_nchunks);
|
|
if (nsegs < 0)
|
|
return ERR_PTR(nsegs);
|
|
|
|
*iptr++ = xdr_one; /* Reply chunk present */
|
|
segcount = iptr++; /* save location of segment count */
|
|
|
|
nchunks = 0;
|
|
do {
|
|
n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, true);
|
|
if (n <= 0)
|
|
return ERR_PTR(n);
|
|
|
|
iptr = xdr_encode_rdma_segment(iptr, seg);
|
|
|
|
dprintk("RPC: %5u %s: reply segment "
|
|
"%d@0x%016llx:0x%08x (%s)\n",
|
|
rqst->rq_task->tk_pid, __func__,
|
|
seg->mr_len, (unsigned long long)seg->mr_base,
|
|
seg->mr_rkey, n < nsegs ? "more" : "last");
|
|
|
|
r_xprt->rx_stats.reply_chunk_count++;
|
|
r_xprt->rx_stats.total_rdma_request += seg->mr_len;
|
|
req->rl_nchunks++;
|
|
nchunks++;
|
|
seg += n;
|
|
nsegs -= n;
|
|
} while (nsegs);
|
|
req->rl_nextseg = seg;
|
|
|
|
/* Update count of segments in the Reply chunk */
|
|
*segcount = cpu_to_be32(nchunks);
|
|
|
|
return iptr;
|
|
}
|
|
|
|
/*
|
|
* Copy write data inline.
|
|
* This function is used for "small" requests. Data which is passed
|
|
* to RPC via iovecs (or page list) is copied directly into the
|
|
* pre-registered memory buffer for this request. For small amounts
|
|
* of data, this is efficient. The cutoff value is tunable.
|
|
*/
|
|
static void rpcrdma_inline_pullup(struct rpc_rqst *rqst)
|
|
{
|
|
int i, npages, curlen;
|
|
int copy_len;
|
|
unsigned char *srcp, *destp;
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
|
|
int page_base;
|
|
struct page **ppages;
|
|
|
|
destp = rqst->rq_svec[0].iov_base;
|
|
curlen = rqst->rq_svec[0].iov_len;
|
|
destp += curlen;
|
|
|
|
dprintk("RPC: %s: destp 0x%p len %d hdrlen %d\n",
|
|
__func__, destp, rqst->rq_slen, curlen);
|
|
|
|
copy_len = rqst->rq_snd_buf.page_len;
|
|
|
|
if (rqst->rq_snd_buf.tail[0].iov_len) {
|
|
curlen = rqst->rq_snd_buf.tail[0].iov_len;
|
|
if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
|
|
memmove(destp + copy_len,
|
|
rqst->rq_snd_buf.tail[0].iov_base, curlen);
|
|
r_xprt->rx_stats.pullup_copy_count += curlen;
|
|
}
|
|
dprintk("RPC: %s: tail destp 0x%p len %d\n",
|
|
__func__, destp + copy_len, curlen);
|
|
rqst->rq_svec[0].iov_len += curlen;
|
|
}
|
|
r_xprt->rx_stats.pullup_copy_count += copy_len;
|
|
|
|
page_base = rqst->rq_snd_buf.page_base;
|
|
ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
|
|
page_base &= ~PAGE_MASK;
|
|
npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
|
|
for (i = 0; copy_len && i < npages; i++) {
|
|
curlen = PAGE_SIZE - page_base;
|
|
if (curlen > copy_len)
|
|
curlen = copy_len;
|
|
dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
|
|
__func__, i, destp, copy_len, curlen);
|
|
srcp = kmap_atomic(ppages[i]);
|
|
memcpy(destp, srcp+page_base, curlen);
|
|
kunmap_atomic(srcp);
|
|
rqst->rq_svec[0].iov_len += curlen;
|
|
destp += curlen;
|
|
copy_len -= curlen;
|
|
page_base = 0;
|
|
}
|
|
/* header now contains entire send message */
|
|
}
|
|
|
|
/*
|
|
* Marshal a request: the primary job of this routine is to choose
|
|
* the transfer modes. See comments below.
|
|
*
|
|
* Prepares up to two IOVs per Call message:
|
|
*
|
|
* [0] -- RPC RDMA header
|
|
* [1] -- the RPC header/data
|
|
*
|
|
* Returns zero on success, otherwise a negative errno.
|
|
*/
|
|
|
|
int
|
|
rpcrdma_marshal_req(struct rpc_rqst *rqst)
|
|
{
|
|
struct rpc_xprt *xprt = rqst->rq_xprt;
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
|
|
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
|
|
enum rpcrdma_chunktype rtype, wtype;
|
|
struct rpcrdma_msg *headerp;
|
|
ssize_t hdrlen;
|
|
size_t rpclen;
|
|
__be32 *iptr;
|
|
|
|
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
|
|
if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
|
|
return rpcrdma_bc_marshal_reply(rqst);
|
|
#endif
|
|
|
|
headerp = rdmab_to_msg(req->rl_rdmabuf);
|
|
/* don't byte-swap XID, it's already done in request */
|
|
headerp->rm_xid = rqst->rq_xid;
|
|
headerp->rm_vers = rpcrdma_version;
|
|
headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
|
|
headerp->rm_type = rdma_msg;
|
|
|
|
/*
|
|
* Chunks needed for results?
|
|
*
|
|
* o If the expected result is under the inline threshold, all ops
|
|
* return as inline.
|
|
* o Large read ops return data as write chunk(s), header as
|
|
* inline.
|
|
* o Large non-read ops return as a single reply chunk.
|
|
*/
|
|
if (rpcrdma_results_inline(r_xprt, rqst))
|
|
wtype = rpcrdma_noch;
|
|
else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
|
|
wtype = rpcrdma_writech;
|
|
else
|
|
wtype = rpcrdma_replych;
|
|
|
|
/*
|
|
* Chunks needed for arguments?
|
|
*
|
|
* o If the total request is under the inline threshold, all ops
|
|
* are sent as inline.
|
|
* o Large write ops transmit data as read chunk(s), header as
|
|
* inline.
|
|
* o Large non-write ops are sent with the entire message as a
|
|
* single read chunk (protocol 0-position special case).
|
|
*
|
|
* This assumes that the upper layer does not present a request
|
|
* that both has a data payload, and whose non-data arguments
|
|
* by themselves are larger than the inline threshold.
|
|
*/
|
|
if (rpcrdma_args_inline(r_xprt, rqst)) {
|
|
rtype = rpcrdma_noch;
|
|
rpcrdma_inline_pullup(rqst);
|
|
rpclen = rqst->rq_svec[0].iov_len;
|
|
} else if (rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
|
|
rtype = rpcrdma_readch;
|
|
rpclen = rqst->rq_svec[0].iov_len;
|
|
rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
|
|
} else {
|
|
r_xprt->rx_stats.nomsg_call_count++;
|
|
headerp->rm_type = htonl(RDMA_NOMSG);
|
|
rtype = rpcrdma_areadch;
|
|
rpclen = 0;
|
|
}
|
|
|
|
/* This implementation supports the following combinations
|
|
* of chunk lists in one RPC-over-RDMA Call message:
|
|
*
|
|
* - Read list
|
|
* - Write list
|
|
* - Reply chunk
|
|
* - Read list + Reply chunk
|
|
*
|
|
* It might not yet support the following combinations:
|
|
*
|
|
* - Read list + Write list
|
|
*
|
|
* It does not support the following combinations:
|
|
*
|
|
* - Write list + Reply chunk
|
|
* - Read list + Write list + Reply chunk
|
|
*
|
|
* This implementation supports only a single chunk in each
|
|
* Read or Write list. Thus for example the client cannot
|
|
* send a Call message with a Position Zero Read chunk and a
|
|
* regular Read chunk at the same time.
|
|
*/
|
|
req->rl_nchunks = 0;
|
|
req->rl_nextseg = req->rl_segments;
|
|
iptr = headerp->rm_body.rm_chunks;
|
|
iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype);
|
|
if (IS_ERR(iptr))
|
|
goto out_unmap;
|
|
iptr = rpcrdma_encode_write_list(r_xprt, req, rqst, iptr, wtype);
|
|
if (IS_ERR(iptr))
|
|
goto out_unmap;
|
|
iptr = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, iptr, wtype);
|
|
if (IS_ERR(iptr))
|
|
goto out_unmap;
|
|
hdrlen = (unsigned char *)iptr - (unsigned char *)headerp;
|
|
|
|
if (hdrlen + rpclen > RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
|
|
goto out_overflow;
|
|
|
|
dprintk("RPC: %5u %s: %s/%s: hdrlen %zd rpclen %zd\n",
|
|
rqst->rq_task->tk_pid, __func__,
|
|
transfertypes[rtype], transfertypes[wtype],
|
|
hdrlen, rpclen);
|
|
|
|
req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
|
|
req->rl_send_iov[0].length = hdrlen;
|
|
req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
|
|
|
|
req->rl_niovs = 1;
|
|
if (rtype == rpcrdma_areadch)
|
|
return 0;
|
|
|
|
req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
|
|
req->rl_send_iov[1].length = rpclen;
|
|
req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
|
|
|
|
req->rl_niovs = 2;
|
|
return 0;
|
|
|
|
out_overflow:
|
|
pr_err("rpcrdma: send overflow: hdrlen %zd rpclen %zu %s/%s\n",
|
|
hdrlen, rpclen, transfertypes[rtype], transfertypes[wtype]);
|
|
/* Terminate this RPC. Chunks registered above will be
|
|
* released by xprt_release -> xprt_rmda_free .
|
|
*/
|
|
return -EIO;
|
|
|
|
out_unmap:
|
|
r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false);
|
|
return PTR_ERR(iptr);
|
|
}
|
|
|
|
/*
|
|
* Chase down a received write or reply chunklist to get length
|
|
* RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
|
|
*/
|
|
static int
|
|
rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
|
|
{
|
|
unsigned int i, total_len;
|
|
struct rpcrdma_write_chunk *cur_wchunk;
|
|
char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
|
|
|
|
i = be32_to_cpu(**iptrp);
|
|
if (i > max)
|
|
return -1;
|
|
cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
|
|
total_len = 0;
|
|
while (i--) {
|
|
struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
|
|
ifdebug(FACILITY) {
|
|
u64 off;
|
|
xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
|
|
dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
|
|
__func__,
|
|
be32_to_cpu(seg->rs_length),
|
|
(unsigned long long)off,
|
|
be32_to_cpu(seg->rs_handle));
|
|
}
|
|
total_len += be32_to_cpu(seg->rs_length);
|
|
++cur_wchunk;
|
|
}
|
|
/* check and adjust for properly terminated write chunk */
|
|
if (wrchunk) {
|
|
__be32 *w = (__be32 *) cur_wchunk;
|
|
if (*w++ != xdr_zero)
|
|
return -1;
|
|
cur_wchunk = (struct rpcrdma_write_chunk *) w;
|
|
}
|
|
if ((char *)cur_wchunk > base + rep->rr_len)
|
|
return -1;
|
|
|
|
*iptrp = (__be32 *) cur_wchunk;
|
|
return total_len;
|
|
}
|
|
|
|
/*
|
|
* Scatter inline received data back into provided iov's.
|
|
*/
|
|
static void
|
|
rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
|
|
{
|
|
int i, npages, curlen, olen;
|
|
char *destp;
|
|
struct page **ppages;
|
|
int page_base;
|
|
|
|
curlen = rqst->rq_rcv_buf.head[0].iov_len;
|
|
if (curlen > copy_len) { /* write chunk header fixup */
|
|
curlen = copy_len;
|
|
rqst->rq_rcv_buf.head[0].iov_len = curlen;
|
|
}
|
|
|
|
dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
|
|
__func__, srcp, copy_len, curlen);
|
|
|
|
/* Shift pointer for first receive segment only */
|
|
rqst->rq_rcv_buf.head[0].iov_base = srcp;
|
|
srcp += curlen;
|
|
copy_len -= curlen;
|
|
|
|
olen = copy_len;
|
|
i = 0;
|
|
rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
|
|
page_base = rqst->rq_rcv_buf.page_base;
|
|
ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
|
|
page_base &= ~PAGE_MASK;
|
|
|
|
if (copy_len && rqst->rq_rcv_buf.page_len) {
|
|
npages = PAGE_ALIGN(page_base +
|
|
rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
|
|
for (; i < npages; i++) {
|
|
curlen = PAGE_SIZE - page_base;
|
|
if (curlen > copy_len)
|
|
curlen = copy_len;
|
|
dprintk("RPC: %s: page %d"
|
|
" srcp 0x%p len %d curlen %d\n",
|
|
__func__, i, srcp, copy_len, curlen);
|
|
destp = kmap_atomic(ppages[i]);
|
|
memcpy(destp + page_base, srcp, curlen);
|
|
flush_dcache_page(ppages[i]);
|
|
kunmap_atomic(destp);
|
|
srcp += curlen;
|
|
copy_len -= curlen;
|
|
if (copy_len == 0)
|
|
break;
|
|
page_base = 0;
|
|
}
|
|
}
|
|
|
|
if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
|
|
curlen = copy_len;
|
|
if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
|
|
curlen = rqst->rq_rcv_buf.tail[0].iov_len;
|
|
if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
|
|
memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
|
|
dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
|
|
__func__, srcp, copy_len, curlen);
|
|
rqst->rq_rcv_buf.tail[0].iov_len = curlen;
|
|
copy_len -= curlen; ++i;
|
|
} else
|
|
rqst->rq_rcv_buf.tail[0].iov_len = 0;
|
|
|
|
if (pad) {
|
|
/* implicit padding on terminal chunk */
|
|
unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
|
|
while (pad--)
|
|
p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
|
|
}
|
|
|
|
if (copy_len)
|
|
dprintk("RPC: %s: %d bytes in"
|
|
" %d extra segments (%d lost)\n",
|
|
__func__, olen, i, copy_len);
|
|
|
|
/* TBD avoid a warning from call_decode() */
|
|
rqst->rq_private_buf = rqst->rq_rcv_buf;
|
|
}
|
|
|
|
void
|
|
rpcrdma_connect_worker(struct work_struct *work)
|
|
{
|
|
struct rpcrdma_ep *ep =
|
|
container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
|
|
struct rpcrdma_xprt *r_xprt =
|
|
container_of(ep, struct rpcrdma_xprt, rx_ep);
|
|
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
|
|
|
|
spin_lock_bh(&xprt->transport_lock);
|
|
if (++xprt->connect_cookie == 0) /* maintain a reserved value */
|
|
++xprt->connect_cookie;
|
|
if (ep->rep_connected > 0) {
|
|
if (!xprt_test_and_set_connected(xprt))
|
|
xprt_wake_pending_tasks(xprt, 0);
|
|
} else {
|
|
if (xprt_test_and_clear_connected(xprt))
|
|
xprt_wake_pending_tasks(xprt, -ENOTCONN);
|
|
}
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
}
|
|
|
|
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
|
|
/* By convention, backchannel calls arrive via rdma_msg type
|
|
* messages, and never populate the chunk lists. This makes
|
|
* the RPC/RDMA header small and fixed in size, so it is
|
|
* straightforward to check the RPC header's direction field.
|
|
*/
|
|
static bool
|
|
rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
|
|
{
|
|
__be32 *p = (__be32 *)headerp;
|
|
|
|
if (headerp->rm_type != rdma_msg)
|
|
return false;
|
|
if (headerp->rm_body.rm_chunks[0] != xdr_zero)
|
|
return false;
|
|
if (headerp->rm_body.rm_chunks[1] != xdr_zero)
|
|
return false;
|
|
if (headerp->rm_body.rm_chunks[2] != xdr_zero)
|
|
return false;
|
|
|
|
/* sanity */
|
|
if (p[7] != headerp->rm_xid)
|
|
return false;
|
|
/* call direction */
|
|
if (p[8] != cpu_to_be32(RPC_CALL))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
|
|
|
|
/*
|
|
* This function is called when an async event is posted to
|
|
* the connection which changes the connection state. All it
|
|
* does at this point is mark the connection up/down, the rpc
|
|
* timers do the rest.
|
|
*/
|
|
void
|
|
rpcrdma_conn_func(struct rpcrdma_ep *ep)
|
|
{
|
|
schedule_delayed_work(&ep->rep_connect_worker, 0);
|
|
}
|
|
|
|
/* Process received RPC/RDMA messages.
|
|
*
|
|
* Errors must result in the RPC task either being awakened, or
|
|
* allowed to timeout, to discover the errors at that time.
|
|
*/
|
|
void
|
|
rpcrdma_reply_handler(struct rpcrdma_rep *rep)
|
|
{
|
|
struct rpcrdma_msg *headerp;
|
|
struct rpcrdma_req *req;
|
|
struct rpc_rqst *rqst;
|
|
struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
|
|
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
|
|
__be32 *iptr;
|
|
int rdmalen, status, rmerr;
|
|
unsigned long cwnd;
|
|
|
|
dprintk("RPC: %s: incoming rep %p\n", __func__, rep);
|
|
|
|
if (rep->rr_len == RPCRDMA_BAD_LEN)
|
|
goto out_badstatus;
|
|
if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
|
|
goto out_shortreply;
|
|
|
|
headerp = rdmab_to_msg(rep->rr_rdmabuf);
|
|
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
|
|
if (rpcrdma_is_bcall(headerp))
|
|
goto out_bcall;
|
|
#endif
|
|
|
|
/* Match incoming rpcrdma_rep to an rpcrdma_req to
|
|
* get context for handling any incoming chunks.
|
|
*/
|
|
spin_lock_bh(&xprt->transport_lock);
|
|
rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
|
|
if (!rqst)
|
|
goto out_nomatch;
|
|
|
|
req = rpcr_to_rdmar(rqst);
|
|
if (req->rl_reply)
|
|
goto out_duplicate;
|
|
|
|
/* Sanity checking has passed. We are now committed
|
|
* to complete this transaction.
|
|
*/
|
|
list_del_init(&rqst->rq_list);
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
dprintk("RPC: %s: reply %p completes request %p (xid 0x%08x)\n",
|
|
__func__, rep, req, be32_to_cpu(headerp->rm_xid));
|
|
|
|
/* from here on, the reply is no longer an orphan */
|
|
req->rl_reply = rep;
|
|
xprt->reestablish_timeout = 0;
|
|
|
|
if (headerp->rm_vers != rpcrdma_version)
|
|
goto out_badversion;
|
|
|
|
/* check for expected message types */
|
|
/* The order of some of these tests is important. */
|
|
switch (headerp->rm_type) {
|
|
case rdma_msg:
|
|
/* never expect read chunks */
|
|
/* never expect reply chunks (two ways to check) */
|
|
/* never expect write chunks without having offered RDMA */
|
|
if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
|
|
(headerp->rm_body.rm_chunks[1] == xdr_zero &&
|
|
headerp->rm_body.rm_chunks[2] != xdr_zero) ||
|
|
(headerp->rm_body.rm_chunks[1] != xdr_zero &&
|
|
req->rl_nchunks == 0))
|
|
goto badheader;
|
|
if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
|
|
/* count any expected write chunks in read reply */
|
|
/* start at write chunk array count */
|
|
iptr = &headerp->rm_body.rm_chunks[2];
|
|
rdmalen = rpcrdma_count_chunks(rep,
|
|
req->rl_nchunks, 1, &iptr);
|
|
/* check for validity, and no reply chunk after */
|
|
if (rdmalen < 0 || *iptr++ != xdr_zero)
|
|
goto badheader;
|
|
rep->rr_len -=
|
|
((unsigned char *)iptr - (unsigned char *)headerp);
|
|
status = rep->rr_len + rdmalen;
|
|
r_xprt->rx_stats.total_rdma_reply += rdmalen;
|
|
/* special case - last chunk may omit padding */
|
|
if (rdmalen &= 3) {
|
|
rdmalen = 4 - rdmalen;
|
|
status += rdmalen;
|
|
}
|
|
} else {
|
|
/* else ordinary inline */
|
|
rdmalen = 0;
|
|
iptr = (__be32 *)((unsigned char *)headerp +
|
|
RPCRDMA_HDRLEN_MIN);
|
|
rep->rr_len -= RPCRDMA_HDRLEN_MIN;
|
|
status = rep->rr_len;
|
|
}
|
|
/* Fix up the rpc results for upper layer */
|
|
rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
|
|
break;
|
|
|
|
case rdma_nomsg:
|
|
/* never expect read or write chunks, always reply chunks */
|
|
if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
|
|
headerp->rm_body.rm_chunks[1] != xdr_zero ||
|
|
headerp->rm_body.rm_chunks[2] != xdr_one ||
|
|
req->rl_nchunks == 0)
|
|
goto badheader;
|
|
iptr = (__be32 *)((unsigned char *)headerp +
|
|
RPCRDMA_HDRLEN_MIN);
|
|
rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
|
|
if (rdmalen < 0)
|
|
goto badheader;
|
|
r_xprt->rx_stats.total_rdma_reply += rdmalen;
|
|
/* Reply chunk buffer already is the reply vector - no fixup. */
|
|
status = rdmalen;
|
|
break;
|
|
|
|
case rdma_error:
|
|
goto out_rdmaerr;
|
|
|
|
badheader:
|
|
default:
|
|
dprintk("%s: invalid rpcrdma reply header (type %d):"
|
|
" chunks[012] == %d %d %d"
|
|
" expected chunks <= %d\n",
|
|
__func__, be32_to_cpu(headerp->rm_type),
|
|
headerp->rm_body.rm_chunks[0],
|
|
headerp->rm_body.rm_chunks[1],
|
|
headerp->rm_body.rm_chunks[2],
|
|
req->rl_nchunks);
|
|
status = -EIO;
|
|
r_xprt->rx_stats.bad_reply_count++;
|
|
break;
|
|
}
|
|
|
|
out:
|
|
/* Invalidate and flush the data payloads before waking the
|
|
* waiting application. This guarantees the memory region is
|
|
* properly fenced from the server before the application
|
|
* accesses the data. It also ensures proper send flow
|
|
* control: waking the next RPC waits until this RPC has
|
|
* relinquished all its Send Queue entries.
|
|
*/
|
|
if (req->rl_nchunks)
|
|
r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
|
|
|
|
spin_lock_bh(&xprt->transport_lock);
|
|
cwnd = xprt->cwnd;
|
|
xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
|
|
if (xprt->cwnd > cwnd)
|
|
xprt_release_rqst_cong(rqst->rq_task);
|
|
|
|
xprt_complete_rqst(rqst->rq_task, status);
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
|
|
__func__, xprt, rqst, status);
|
|
return;
|
|
|
|
out_badstatus:
|
|
rpcrdma_recv_buffer_put(rep);
|
|
if (r_xprt->rx_ep.rep_connected == 1) {
|
|
r_xprt->rx_ep.rep_connected = -EIO;
|
|
rpcrdma_conn_func(&r_xprt->rx_ep);
|
|
}
|
|
return;
|
|
|
|
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
|
|
out_bcall:
|
|
rpcrdma_bc_receive_call(r_xprt, rep);
|
|
return;
|
|
#endif
|
|
|
|
/* If the incoming reply terminated a pending RPC, the next
|
|
* RPC call will post a replacement receive buffer as it is
|
|
* being marshaled.
|
|
*/
|
|
out_badversion:
|
|
dprintk("RPC: %s: invalid version %d\n",
|
|
__func__, be32_to_cpu(headerp->rm_vers));
|
|
status = -EIO;
|
|
r_xprt->rx_stats.bad_reply_count++;
|
|
goto out;
|
|
|
|
out_rdmaerr:
|
|
rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
|
|
switch (rmerr) {
|
|
case ERR_VERS:
|
|
pr_err("%s: server reports header version error (%u-%u)\n",
|
|
__func__,
|
|
be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
|
|
be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
|
|
break;
|
|
case ERR_CHUNK:
|
|
pr_err("%s: server reports header decoding error\n",
|
|
__func__);
|
|
break;
|
|
default:
|
|
pr_err("%s: server reports unknown error %d\n",
|
|
__func__, rmerr);
|
|
}
|
|
status = -EREMOTEIO;
|
|
r_xprt->rx_stats.bad_reply_count++;
|
|
goto out;
|
|
|
|
/* If no pending RPC transaction was matched, post a replacement
|
|
* receive buffer before returning.
|
|
*/
|
|
out_shortreply:
|
|
dprintk("RPC: %s: short/invalid reply\n", __func__);
|
|
goto repost;
|
|
|
|
out_nomatch:
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
dprintk("RPC: %s: no match for incoming xid 0x%08x len %d\n",
|
|
__func__, be32_to_cpu(headerp->rm_xid),
|
|
rep->rr_len);
|
|
goto repost;
|
|
|
|
out_duplicate:
|
|
spin_unlock_bh(&xprt->transport_lock);
|
|
dprintk("RPC: %s: "
|
|
"duplicate reply %p to RPC request %p: xid 0x%08x\n",
|
|
__func__, rep, req, be32_to_cpu(headerp->rm_xid));
|
|
|
|
repost:
|
|
r_xprt->rx_stats.bad_reply_count++;
|
|
if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
|
|
rpcrdma_recv_buffer_put(rep);
|
|
}
|