mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 02:49:44 +07:00
9b9cc61c46
Signed-off-by: Vasanthakumar Thiagarajan <vasanth@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2777 lines
71 KiB
C
2777 lines
71 KiB
C
/*
|
|
* Copyright (c) 2008-2010 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/io.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "hw.h"
|
|
#include "hw-ops.h"
|
|
#include "rc.h"
|
|
#include "ar9003_mac.h"
|
|
|
|
#define ATH9K_CLOCK_RATE_CCK 22
|
|
#define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
|
|
#define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
|
|
|
|
static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
|
|
|
|
MODULE_AUTHOR("Atheros Communications");
|
|
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
|
|
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
|
|
static int __init ath9k_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
module_init(ath9k_init);
|
|
|
|
static void __exit ath9k_exit(void)
|
|
{
|
|
return;
|
|
}
|
|
module_exit(ath9k_exit);
|
|
|
|
/* Private hardware callbacks */
|
|
|
|
static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
|
|
{
|
|
ath9k_hw_private_ops(ah)->init_cal_settings(ah);
|
|
}
|
|
|
|
static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
|
|
{
|
|
ath9k_hw_private_ops(ah)->init_mode_regs(ah);
|
|
}
|
|
|
|
static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
|
|
{
|
|
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
|
|
|
|
return priv_ops->macversion_supported(ah->hw_version.macVersion);
|
|
}
|
|
|
|
static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
|
|
}
|
|
|
|
static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
|
|
{
|
|
if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
|
|
return;
|
|
|
|
ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
|
|
}
|
|
|
|
/********************/
|
|
/* Helper Functions */
|
|
/********************/
|
|
|
|
static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
|
|
{
|
|
struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
|
|
|
|
if (!ah->curchan) /* should really check for CCK instead */
|
|
return usecs *ATH9K_CLOCK_RATE_CCK;
|
|
if (conf->channel->band == IEEE80211_BAND_2GHZ)
|
|
return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
|
|
return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
|
|
}
|
|
|
|
static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
|
|
{
|
|
struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
|
|
|
|
if (conf_is_ht40(conf))
|
|
return ath9k_hw_mac_clks(ah, usecs) * 2;
|
|
else
|
|
return ath9k_hw_mac_clks(ah, usecs);
|
|
}
|
|
|
|
bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
|
|
{
|
|
int i;
|
|
|
|
BUG_ON(timeout < AH_TIME_QUANTUM);
|
|
|
|
for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
|
|
if ((REG_READ(ah, reg) & mask) == val)
|
|
return true;
|
|
|
|
udelay(AH_TIME_QUANTUM);
|
|
}
|
|
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
|
|
"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
|
|
timeout, reg, REG_READ(ah, reg), mask, val);
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_wait);
|
|
|
|
u32 ath9k_hw_reverse_bits(u32 val, u32 n)
|
|
{
|
|
u32 retval;
|
|
int i;
|
|
|
|
for (i = 0, retval = 0; i < n; i++) {
|
|
retval = (retval << 1) | (val & 1);
|
|
val >>= 1;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
bool ath9k_get_channel_edges(struct ath_hw *ah,
|
|
u16 flags, u16 *low,
|
|
u16 *high)
|
|
{
|
|
struct ath9k_hw_capabilities *pCap = &ah->caps;
|
|
|
|
if (flags & CHANNEL_5GHZ) {
|
|
*low = pCap->low_5ghz_chan;
|
|
*high = pCap->high_5ghz_chan;
|
|
return true;
|
|
}
|
|
if ((flags & CHANNEL_2GHZ)) {
|
|
*low = pCap->low_2ghz_chan;
|
|
*high = pCap->high_2ghz_chan;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
u16 ath9k_hw_computetxtime(struct ath_hw *ah,
|
|
u8 phy, int kbps,
|
|
u32 frameLen, u16 rateix,
|
|
bool shortPreamble)
|
|
{
|
|
u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
|
|
|
|
if (kbps == 0)
|
|
return 0;
|
|
|
|
switch (phy) {
|
|
case WLAN_RC_PHY_CCK:
|
|
phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
|
|
if (shortPreamble)
|
|
phyTime >>= 1;
|
|
numBits = frameLen << 3;
|
|
txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
|
|
break;
|
|
case WLAN_RC_PHY_OFDM:
|
|
if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
|
|
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
|
|
numBits = OFDM_PLCP_BITS + (frameLen << 3);
|
|
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
|
|
txTime = OFDM_SIFS_TIME_QUARTER
|
|
+ OFDM_PREAMBLE_TIME_QUARTER
|
|
+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
|
|
} else if (ah->curchan &&
|
|
IS_CHAN_HALF_RATE(ah->curchan)) {
|
|
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
|
|
numBits = OFDM_PLCP_BITS + (frameLen << 3);
|
|
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
|
|
txTime = OFDM_SIFS_TIME_HALF +
|
|
OFDM_PREAMBLE_TIME_HALF
|
|
+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
|
|
} else {
|
|
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
|
|
numBits = OFDM_PLCP_BITS + (frameLen << 3);
|
|
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
|
|
txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
|
|
+ (numSymbols * OFDM_SYMBOL_TIME);
|
|
}
|
|
break;
|
|
default:
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
|
|
"Unknown phy %u (rate ix %u)\n", phy, rateix);
|
|
txTime = 0;
|
|
break;
|
|
}
|
|
|
|
return txTime;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_computetxtime);
|
|
|
|
void ath9k_hw_get_channel_centers(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
struct chan_centers *centers)
|
|
{
|
|
int8_t extoff;
|
|
|
|
if (!IS_CHAN_HT40(chan)) {
|
|
centers->ctl_center = centers->ext_center =
|
|
centers->synth_center = chan->channel;
|
|
return;
|
|
}
|
|
|
|
if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
|
|
(chan->chanmode == CHANNEL_G_HT40PLUS)) {
|
|
centers->synth_center =
|
|
chan->channel + HT40_CHANNEL_CENTER_SHIFT;
|
|
extoff = 1;
|
|
} else {
|
|
centers->synth_center =
|
|
chan->channel - HT40_CHANNEL_CENTER_SHIFT;
|
|
extoff = -1;
|
|
}
|
|
|
|
centers->ctl_center =
|
|
centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
|
|
/* 25 MHz spacing is supported by hw but not on upper layers */
|
|
centers->ext_center =
|
|
centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
|
|
}
|
|
|
|
/******************/
|
|
/* Chip Revisions */
|
|
/******************/
|
|
|
|
static void ath9k_hw_read_revisions(struct ath_hw *ah)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
|
|
|
|
if (val == 0xFF) {
|
|
val = REG_READ(ah, AR_SREV);
|
|
ah->hw_version.macVersion =
|
|
(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
|
|
ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
|
|
ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
|
|
} else {
|
|
if (!AR_SREV_9100(ah))
|
|
ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
|
|
|
|
ah->hw_version.macRev = val & AR_SREV_REVISION;
|
|
|
|
if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
|
|
ah->is_pciexpress = true;
|
|
}
|
|
}
|
|
|
|
/************************************/
|
|
/* HW Attach, Detach, Init Routines */
|
|
/************************************/
|
|
|
|
static void ath9k_hw_disablepcie(struct ath_hw *ah)
|
|
{
|
|
if (AR_SREV_9100(ah))
|
|
return;
|
|
|
|
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
|
|
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
|
|
REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
|
|
REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
|
|
REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
|
|
REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
|
|
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
|
|
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
|
|
REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
|
|
|
|
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
|
|
}
|
|
|
|
/* This should work for all families including legacy */
|
|
static bool ath9k_hw_chip_test(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u32 regAddr[2] = { AR_STA_ID0 };
|
|
u32 regHold[2];
|
|
u32 patternData[4] = { 0x55555555,
|
|
0xaaaaaaaa,
|
|
0x66666666,
|
|
0x99999999 };
|
|
int i, j, loop_max;
|
|
|
|
if (!AR_SREV_9300_20_OR_LATER(ah)) {
|
|
loop_max = 2;
|
|
regAddr[1] = AR_PHY_BASE + (8 << 2);
|
|
} else
|
|
loop_max = 1;
|
|
|
|
for (i = 0; i < loop_max; i++) {
|
|
u32 addr = regAddr[i];
|
|
u32 wrData, rdData;
|
|
|
|
regHold[i] = REG_READ(ah, addr);
|
|
for (j = 0; j < 0x100; j++) {
|
|
wrData = (j << 16) | j;
|
|
REG_WRITE(ah, addr, wrData);
|
|
rdData = REG_READ(ah, addr);
|
|
if (rdData != wrData) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"address test failed "
|
|
"addr: 0x%08x - wr:0x%08x != "
|
|
"rd:0x%08x\n",
|
|
addr, wrData, rdData);
|
|
return false;
|
|
}
|
|
}
|
|
for (j = 0; j < 4; j++) {
|
|
wrData = patternData[j];
|
|
REG_WRITE(ah, addr, wrData);
|
|
rdData = REG_READ(ah, addr);
|
|
if (wrData != rdData) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"address test failed "
|
|
"addr: 0x%08x - wr:0x%08x != "
|
|
"rd:0x%08x\n",
|
|
addr, wrData, rdData);
|
|
return false;
|
|
}
|
|
}
|
|
REG_WRITE(ah, regAddr[i], regHold[i]);
|
|
}
|
|
udelay(100);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void ath9k_hw_init_config(struct ath_hw *ah)
|
|
{
|
|
int i;
|
|
|
|
ah->config.dma_beacon_response_time = 2;
|
|
ah->config.sw_beacon_response_time = 10;
|
|
ah->config.additional_swba_backoff = 0;
|
|
ah->config.ack_6mb = 0x0;
|
|
ah->config.cwm_ignore_extcca = 0;
|
|
ah->config.pcie_powersave_enable = 0;
|
|
ah->config.pcie_clock_req = 0;
|
|
ah->config.pcie_waen = 0;
|
|
ah->config.analog_shiftreg = 1;
|
|
ah->config.ofdm_trig_low = 200;
|
|
ah->config.ofdm_trig_high = 500;
|
|
ah->config.cck_trig_high = 200;
|
|
ah->config.cck_trig_low = 100;
|
|
|
|
/*
|
|
* For now ANI is disabled for AR9003, it is still
|
|
* being tested.
|
|
*/
|
|
if (!AR_SREV_9300_20_OR_LATER(ah))
|
|
ah->config.enable_ani = 1;
|
|
|
|
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
|
|
ah->config.spurchans[i][0] = AR_NO_SPUR;
|
|
ah->config.spurchans[i][1] = AR_NO_SPUR;
|
|
}
|
|
|
|
if (ah->hw_version.devid != AR2427_DEVID_PCIE)
|
|
ah->config.ht_enable = 1;
|
|
else
|
|
ah->config.ht_enable = 0;
|
|
|
|
ah->config.rx_intr_mitigation = true;
|
|
|
|
/*
|
|
* We need this for PCI devices only (Cardbus, PCI, miniPCI)
|
|
* _and_ if on non-uniprocessor systems (Multiprocessor/HT).
|
|
* This means we use it for all AR5416 devices, and the few
|
|
* minor PCI AR9280 devices out there.
|
|
*
|
|
* Serialization is required because these devices do not handle
|
|
* well the case of two concurrent reads/writes due to the latency
|
|
* involved. During one read/write another read/write can be issued
|
|
* on another CPU while the previous read/write may still be working
|
|
* on our hardware, if we hit this case the hardware poops in a loop.
|
|
* We prevent this by serializing reads and writes.
|
|
*
|
|
* This issue is not present on PCI-Express devices or pre-AR5416
|
|
* devices (legacy, 802.11abg).
|
|
*/
|
|
if (num_possible_cpus() > 1)
|
|
ah->config.serialize_regmode = SER_REG_MODE_AUTO;
|
|
}
|
|
|
|
static void ath9k_hw_init_defaults(struct ath_hw *ah)
|
|
{
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
|
|
regulatory->country_code = CTRY_DEFAULT;
|
|
regulatory->power_limit = MAX_RATE_POWER;
|
|
regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
|
|
|
|
ah->hw_version.magic = AR5416_MAGIC;
|
|
ah->hw_version.subvendorid = 0;
|
|
|
|
ah->ah_flags = 0;
|
|
if (!AR_SREV_9100(ah))
|
|
ah->ah_flags = AH_USE_EEPROM;
|
|
|
|
ah->atim_window = 0;
|
|
ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
|
|
ah->beacon_interval = 100;
|
|
ah->enable_32kHz_clock = DONT_USE_32KHZ;
|
|
ah->slottime = (u32) -1;
|
|
ah->globaltxtimeout = (u32) -1;
|
|
ah->power_mode = ATH9K_PM_UNDEFINED;
|
|
}
|
|
|
|
static int ath9k_hw_init_macaddr(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u32 sum;
|
|
int i;
|
|
u16 eeval;
|
|
u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
|
|
|
|
sum = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
|
|
sum += eeval;
|
|
common->macaddr[2 * i] = eeval >> 8;
|
|
common->macaddr[2 * i + 1] = eeval & 0xff;
|
|
}
|
|
if (sum == 0 || sum == 0xffff * 3)
|
|
return -EADDRNOTAVAIL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ath9k_hw_post_init(struct ath_hw *ah)
|
|
{
|
|
int ecode;
|
|
|
|
if (!AR_SREV_9271(ah)) {
|
|
if (!ath9k_hw_chip_test(ah))
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!AR_SREV_9300_20_OR_LATER(ah)) {
|
|
ecode = ar9002_hw_rf_claim(ah);
|
|
if (ecode != 0)
|
|
return ecode;
|
|
}
|
|
|
|
ecode = ath9k_hw_eeprom_init(ah);
|
|
if (ecode != 0)
|
|
return ecode;
|
|
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
|
|
"Eeprom VER: %d, REV: %d\n",
|
|
ah->eep_ops->get_eeprom_ver(ah),
|
|
ah->eep_ops->get_eeprom_rev(ah));
|
|
|
|
ecode = ath9k_hw_rf_alloc_ext_banks(ah);
|
|
if (ecode) {
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
|
|
"Failed allocating banks for "
|
|
"external radio\n");
|
|
return ecode;
|
|
}
|
|
|
|
if (!AR_SREV_9100(ah)) {
|
|
ath9k_hw_ani_setup(ah);
|
|
ath9k_hw_ani_init(ah);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ath9k_hw_attach_ops(struct ath_hw *ah)
|
|
{
|
|
if (AR_SREV_9300_20_OR_LATER(ah))
|
|
ar9003_hw_attach_ops(ah);
|
|
else
|
|
ar9002_hw_attach_ops(ah);
|
|
}
|
|
|
|
/* Called for all hardware families */
|
|
static int __ath9k_hw_init(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
int r = 0;
|
|
|
|
if (ah->hw_version.devid == AR5416_AR9100_DEVID)
|
|
ah->hw_version.macVersion = AR_SREV_VERSION_9100;
|
|
|
|
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Couldn't reset chip\n");
|
|
return -EIO;
|
|
}
|
|
|
|
ath9k_hw_init_defaults(ah);
|
|
ath9k_hw_init_config(ah);
|
|
|
|
ath9k_hw_attach_ops(ah);
|
|
|
|
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
|
|
ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
|
|
if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
|
|
(AR_SREV_9280(ah) && !ah->is_pciexpress)) {
|
|
ah->config.serialize_regmode =
|
|
SER_REG_MODE_ON;
|
|
} else {
|
|
ah->config.serialize_regmode =
|
|
SER_REG_MODE_OFF;
|
|
}
|
|
}
|
|
|
|
ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
|
|
ah->config.serialize_regmode);
|
|
|
|
if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
|
|
ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
|
|
else
|
|
ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
|
|
|
|
if (!ath9k_hw_macversion_supported(ah)) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Mac Chip Rev 0x%02x.%x is not supported by "
|
|
"this driver\n", ah->hw_version.macVersion,
|
|
ah->hw_version.macRev);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
|
|
ah->is_pciexpress = false;
|
|
|
|
ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
|
|
ath9k_hw_init_cal_settings(ah);
|
|
|
|
ah->ani_function = ATH9K_ANI_ALL;
|
|
if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
|
|
ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
|
|
|
|
ath9k_hw_init_mode_regs(ah);
|
|
|
|
if (ah->is_pciexpress)
|
|
ath9k_hw_configpcipowersave(ah, 0, 0);
|
|
else
|
|
ath9k_hw_disablepcie(ah);
|
|
|
|
if (!AR_SREV_9300_20_OR_LATER(ah))
|
|
ar9002_hw_cck_chan14_spread(ah);
|
|
|
|
r = ath9k_hw_post_init(ah);
|
|
if (r)
|
|
return r;
|
|
|
|
ath9k_hw_init_mode_gain_regs(ah);
|
|
r = ath9k_hw_fill_cap_info(ah);
|
|
if (r)
|
|
return r;
|
|
|
|
r = ath9k_hw_init_macaddr(ah);
|
|
if (r) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Failed to initialize MAC address\n");
|
|
return r;
|
|
}
|
|
|
|
if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
|
|
ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
|
|
else
|
|
ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
|
|
|
|
if (AR_SREV_9300_20_OR_LATER(ah))
|
|
ar9003_hw_set_nf_limits(ah);
|
|
|
|
ath9k_init_nfcal_hist_buffer(ah);
|
|
|
|
common->state = ATH_HW_INITIALIZED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ath9k_hw_init(struct ath_hw *ah)
|
|
{
|
|
int ret;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
|
|
switch (ah->hw_version.devid) {
|
|
case AR5416_DEVID_PCI:
|
|
case AR5416_DEVID_PCIE:
|
|
case AR5416_AR9100_DEVID:
|
|
case AR9160_DEVID_PCI:
|
|
case AR9280_DEVID_PCI:
|
|
case AR9280_DEVID_PCIE:
|
|
case AR9285_DEVID_PCIE:
|
|
case AR9287_DEVID_PCI:
|
|
case AR9287_DEVID_PCIE:
|
|
case AR2427_DEVID_PCIE:
|
|
case AR9300_DEVID_PCIE:
|
|
break;
|
|
default:
|
|
if (common->bus_ops->ath_bus_type == ATH_USB)
|
|
break;
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Hardware device ID 0x%04x not supported\n",
|
|
ah->hw_version.devid);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
ret = __ath9k_hw_init(ah);
|
|
if (ret) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Unable to initialize hardware; "
|
|
"initialization status: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_init);
|
|
|
|
static void ath9k_hw_init_qos(struct ath_hw *ah)
|
|
{
|
|
REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
|
|
REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
|
|
|
|
REG_WRITE(ah, AR_QOS_NO_ACK,
|
|
SM(2, AR_QOS_NO_ACK_TWO_BIT) |
|
|
SM(5, AR_QOS_NO_ACK_BIT_OFF) |
|
|
SM(0, AR_QOS_NO_ACK_BYTE_OFF));
|
|
|
|
REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
|
|
REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
|
|
REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
|
|
REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
|
|
REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
|
|
}
|
|
|
|
static void ath9k_hw_init_pll(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
u32 pll = ath9k_hw_compute_pll_control(ah, chan);
|
|
|
|
REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
|
|
|
|
/* Switch the core clock for ar9271 to 117Mhz */
|
|
if (AR_SREV_9271(ah)) {
|
|
udelay(500);
|
|
REG_WRITE(ah, 0x50040, 0x304);
|
|
}
|
|
|
|
udelay(RTC_PLL_SETTLE_DELAY);
|
|
|
|
REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
|
|
}
|
|
|
|
static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
|
|
enum nl80211_iftype opmode)
|
|
{
|
|
u32 imr_reg = AR_IMR_TXERR |
|
|
AR_IMR_TXURN |
|
|
AR_IMR_RXERR |
|
|
AR_IMR_RXORN |
|
|
AR_IMR_BCNMISC;
|
|
|
|
if (AR_SREV_9300_20_OR_LATER(ah)) {
|
|
imr_reg |= AR_IMR_RXOK_HP;
|
|
if (ah->config.rx_intr_mitigation)
|
|
imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
|
|
else
|
|
imr_reg |= AR_IMR_RXOK_LP;
|
|
|
|
} else {
|
|
if (ah->config.rx_intr_mitigation)
|
|
imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
|
|
else
|
|
imr_reg |= AR_IMR_RXOK;
|
|
}
|
|
|
|
if (ah->config.tx_intr_mitigation)
|
|
imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
|
|
else
|
|
imr_reg |= AR_IMR_TXOK;
|
|
|
|
if (opmode == NL80211_IFTYPE_AP)
|
|
imr_reg |= AR_IMR_MIB;
|
|
|
|
REG_WRITE(ah, AR_IMR, imr_reg);
|
|
ah->imrs2_reg |= AR_IMR_S2_GTT;
|
|
REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
|
|
|
|
if (!AR_SREV_9100(ah)) {
|
|
REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
|
|
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
|
|
REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
|
|
}
|
|
|
|
if (AR_SREV_9300_20_OR_LATER(ah)) {
|
|
REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
|
|
REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
|
|
REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
|
|
REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
|
|
{
|
|
u32 val = ath9k_hw_mac_to_clks(ah, us);
|
|
val = min(val, (u32) 0xFFFF);
|
|
REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
|
|
}
|
|
|
|
static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
|
|
{
|
|
u32 val = ath9k_hw_mac_to_clks(ah, us);
|
|
val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
|
|
REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
|
|
}
|
|
|
|
static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
|
|
{
|
|
u32 val = ath9k_hw_mac_to_clks(ah, us);
|
|
val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
|
|
REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
|
|
}
|
|
|
|
static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
|
|
{
|
|
if (tu > 0xFFFF) {
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
|
|
"bad global tx timeout %u\n", tu);
|
|
ah->globaltxtimeout = (u32) -1;
|
|
return false;
|
|
} else {
|
|
REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
|
|
ah->globaltxtimeout = tu;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void ath9k_hw_init_global_settings(struct ath_hw *ah)
|
|
{
|
|
struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
|
|
int acktimeout;
|
|
int slottime;
|
|
int sifstime;
|
|
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
|
|
ah->misc_mode);
|
|
|
|
if (ah->misc_mode != 0)
|
|
REG_WRITE(ah, AR_PCU_MISC,
|
|
REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
|
|
|
|
if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
|
|
sifstime = 16;
|
|
else
|
|
sifstime = 10;
|
|
|
|
/* As defined by IEEE 802.11-2007 17.3.8.6 */
|
|
slottime = ah->slottime + 3 * ah->coverage_class;
|
|
acktimeout = slottime + sifstime;
|
|
|
|
/*
|
|
* Workaround for early ACK timeouts, add an offset to match the
|
|
* initval's 64us ack timeout value.
|
|
* This was initially only meant to work around an issue with delayed
|
|
* BA frames in some implementations, but it has been found to fix ACK
|
|
* timeout issues in other cases as well.
|
|
*/
|
|
if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
|
|
acktimeout += 64 - sifstime - ah->slottime;
|
|
|
|
ath9k_hw_setslottime(ah, slottime);
|
|
ath9k_hw_set_ack_timeout(ah, acktimeout);
|
|
ath9k_hw_set_cts_timeout(ah, acktimeout);
|
|
if (ah->globaltxtimeout != (u32) -1)
|
|
ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_init_global_settings);
|
|
|
|
void ath9k_hw_deinit(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (common->state < ATH_HW_INITIALIZED)
|
|
goto free_hw;
|
|
|
|
if (!AR_SREV_9100(ah))
|
|
ath9k_hw_ani_disable(ah);
|
|
|
|
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
|
|
|
|
free_hw:
|
|
ath9k_hw_rf_free_ext_banks(ah);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_deinit);
|
|
|
|
/*******/
|
|
/* INI */
|
|
/*******/
|
|
|
|
u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
|
|
{
|
|
u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
|
|
|
|
if (IS_CHAN_B(chan))
|
|
ctl |= CTL_11B;
|
|
else if (IS_CHAN_G(chan))
|
|
ctl |= CTL_11G;
|
|
else
|
|
ctl |= CTL_11A;
|
|
|
|
return ctl;
|
|
}
|
|
|
|
/****************************************/
|
|
/* Reset and Channel Switching Routines */
|
|
/****************************************/
|
|
|
|
static inline void ath9k_hw_set_dma(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u32 regval;
|
|
|
|
/*
|
|
* set AHB_MODE not to do cacheline prefetches
|
|
*/
|
|
if (!AR_SREV_9300_20_OR_LATER(ah)) {
|
|
regval = REG_READ(ah, AR_AHB_MODE);
|
|
REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
|
|
}
|
|
|
|
/*
|
|
* let mac dma reads be in 128 byte chunks
|
|
*/
|
|
regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
|
|
REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
|
|
|
|
/*
|
|
* Restore TX Trigger Level to its pre-reset value.
|
|
* The initial value depends on whether aggregation is enabled, and is
|
|
* adjusted whenever underruns are detected.
|
|
*/
|
|
if (!AR_SREV_9300_20_OR_LATER(ah))
|
|
REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
|
|
|
|
/*
|
|
* let mac dma writes be in 128 byte chunks
|
|
*/
|
|
regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
|
|
REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
|
|
|
|
/*
|
|
* Setup receive FIFO threshold to hold off TX activities
|
|
*/
|
|
REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
|
|
|
|
if (AR_SREV_9300_20_OR_LATER(ah)) {
|
|
REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
|
|
REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
|
|
|
|
ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
|
|
ah->caps.rx_status_len);
|
|
}
|
|
|
|
/*
|
|
* reduce the number of usable entries in PCU TXBUF to avoid
|
|
* wrap around issues.
|
|
*/
|
|
if (AR_SREV_9285(ah)) {
|
|
/* For AR9285 the number of Fifos are reduced to half.
|
|
* So set the usable tx buf size also to half to
|
|
* avoid data/delimiter underruns
|
|
*/
|
|
REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
|
|
AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
|
|
} else if (!AR_SREV_9271(ah)) {
|
|
REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
|
|
AR_PCU_TXBUF_CTRL_USABLE_SIZE);
|
|
}
|
|
|
|
if (AR_SREV_9300_20_OR_LATER(ah))
|
|
ath9k_hw_reset_txstatus_ring(ah);
|
|
}
|
|
|
|
static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_READ(ah, AR_STA_ID1);
|
|
val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
|
|
switch (opmode) {
|
|
case NL80211_IFTYPE_AP:
|
|
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
|
|
| AR_STA_ID1_KSRCH_MODE);
|
|
REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
|
|
break;
|
|
case NL80211_IFTYPE_ADHOC:
|
|
case NL80211_IFTYPE_MESH_POINT:
|
|
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
|
|
| AR_STA_ID1_KSRCH_MODE);
|
|
REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
|
|
break;
|
|
case NL80211_IFTYPE_STATION:
|
|
case NL80211_IFTYPE_MONITOR:
|
|
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
|
|
u32 *coef_mantissa, u32 *coef_exponent)
|
|
{
|
|
u32 coef_exp, coef_man;
|
|
|
|
for (coef_exp = 31; coef_exp > 0; coef_exp--)
|
|
if ((coef_scaled >> coef_exp) & 0x1)
|
|
break;
|
|
|
|
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
|
|
|
|
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
|
|
|
|
*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
|
|
*coef_exponent = coef_exp - 16;
|
|
}
|
|
|
|
static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
|
|
{
|
|
u32 rst_flags;
|
|
u32 tmpReg;
|
|
|
|
if (AR_SREV_9100(ah)) {
|
|
u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
|
|
val &= ~AR_RTC_DERIVED_CLK_PERIOD;
|
|
val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
|
|
REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
|
|
(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
|
|
}
|
|
|
|
REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
|
|
AR_RTC_FORCE_WAKE_ON_INT);
|
|
|
|
if (AR_SREV_9100(ah)) {
|
|
rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
|
|
AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
|
|
} else {
|
|
tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
|
|
if (tmpReg &
|
|
(AR_INTR_SYNC_LOCAL_TIMEOUT |
|
|
AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
|
|
u32 val;
|
|
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
|
|
|
|
val = AR_RC_HOSTIF;
|
|
if (!AR_SREV_9300_20_OR_LATER(ah))
|
|
val |= AR_RC_AHB;
|
|
REG_WRITE(ah, AR_RC, val);
|
|
|
|
} else if (!AR_SREV_9300_20_OR_LATER(ah))
|
|
REG_WRITE(ah, AR_RC, AR_RC_AHB);
|
|
|
|
rst_flags = AR_RTC_RC_MAC_WARM;
|
|
if (type == ATH9K_RESET_COLD)
|
|
rst_flags |= AR_RTC_RC_MAC_COLD;
|
|
}
|
|
|
|
REG_WRITE(ah, AR_RTC_RC, rst_flags);
|
|
udelay(50);
|
|
|
|
REG_WRITE(ah, AR_RTC_RC, 0);
|
|
if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
|
|
"RTC stuck in MAC reset\n");
|
|
return false;
|
|
}
|
|
|
|
if (!AR_SREV_9100(ah))
|
|
REG_WRITE(ah, AR_RC, 0);
|
|
|
|
if (AR_SREV_9100(ah))
|
|
udelay(50);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
|
|
{
|
|
REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
|
|
AR_RTC_FORCE_WAKE_ON_INT);
|
|
|
|
if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
|
|
REG_WRITE(ah, AR_RC, AR_RC_AHB);
|
|
|
|
REG_WRITE(ah, AR_RTC_RESET, 0);
|
|
|
|
if (!AR_SREV_9300_20_OR_LATER(ah))
|
|
udelay(2);
|
|
|
|
if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
|
|
REG_WRITE(ah, AR_RC, 0);
|
|
|
|
REG_WRITE(ah, AR_RTC_RESET, 1);
|
|
|
|
if (!ath9k_hw_wait(ah,
|
|
AR_RTC_STATUS,
|
|
AR_RTC_STATUS_M,
|
|
AR_RTC_STATUS_ON,
|
|
AH_WAIT_TIMEOUT)) {
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
|
|
"RTC not waking up\n");
|
|
return false;
|
|
}
|
|
|
|
ath9k_hw_read_revisions(ah);
|
|
|
|
return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
|
|
}
|
|
|
|
static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
|
|
{
|
|
REG_WRITE(ah, AR_RTC_FORCE_WAKE,
|
|
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
|
|
|
|
switch (type) {
|
|
case ATH9K_RESET_POWER_ON:
|
|
return ath9k_hw_set_reset_power_on(ah);
|
|
case ATH9K_RESET_WARM:
|
|
case ATH9K_RESET_COLD:
|
|
return ath9k_hw_set_reset(ah, type);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool ath9k_hw_chip_reset(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
|
|
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
|
|
return false;
|
|
} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
|
|
return false;
|
|
|
|
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
|
|
return false;
|
|
|
|
ah->chip_fullsleep = false;
|
|
ath9k_hw_init_pll(ah, chan);
|
|
ath9k_hw_set_rfmode(ah, chan);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ath9k_hw_channel_change(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ieee80211_channel *channel = chan->chan;
|
|
u32 qnum;
|
|
int r;
|
|
|
|
for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
|
|
if (ath9k_hw_numtxpending(ah, qnum)) {
|
|
ath_print(common, ATH_DBG_QUEUE,
|
|
"Transmit frames pending on "
|
|
"queue %d\n", qnum);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!ath9k_hw_rfbus_req(ah)) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Could not kill baseband RX\n");
|
|
return false;
|
|
}
|
|
|
|
ath9k_hw_set_channel_regs(ah, chan);
|
|
|
|
r = ath9k_hw_rf_set_freq(ah, chan);
|
|
if (r) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Failed to set channel\n");
|
|
return false;
|
|
}
|
|
|
|
ah->eep_ops->set_txpower(ah, chan,
|
|
ath9k_regd_get_ctl(regulatory, chan),
|
|
channel->max_antenna_gain * 2,
|
|
channel->max_power * 2,
|
|
min((u32) MAX_RATE_POWER,
|
|
(u32) regulatory->power_limit));
|
|
|
|
ath9k_hw_rfbus_done(ah);
|
|
|
|
if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
|
|
ath9k_hw_set_delta_slope(ah, chan);
|
|
|
|
ath9k_hw_spur_mitigate_freq(ah, chan);
|
|
|
|
if (!chan->oneTimeCalsDone)
|
|
chan->oneTimeCalsDone = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
|
|
bool bChannelChange)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u32 saveLedState;
|
|
struct ath9k_channel *curchan = ah->curchan;
|
|
u32 saveDefAntenna;
|
|
u32 macStaId1;
|
|
u64 tsf = 0;
|
|
int i, r;
|
|
|
|
ah->txchainmask = common->tx_chainmask;
|
|
ah->rxchainmask = common->rx_chainmask;
|
|
|
|
if (!ah->chip_fullsleep) {
|
|
ath9k_hw_abortpcurecv(ah);
|
|
if (!ath9k_hw_stopdmarecv(ah))
|
|
ath_print(common, ATH_DBG_XMIT,
|
|
"Failed to stop receive dma\n");
|
|
}
|
|
|
|
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
|
|
return -EIO;
|
|
|
|
if (curchan && !ah->chip_fullsleep)
|
|
ath9k_hw_getnf(ah, curchan);
|
|
|
|
if (bChannelChange &&
|
|
(ah->chip_fullsleep != true) &&
|
|
(ah->curchan != NULL) &&
|
|
(chan->channel != ah->curchan->channel) &&
|
|
((chan->channelFlags & CHANNEL_ALL) ==
|
|
(ah->curchan->channelFlags & CHANNEL_ALL)) &&
|
|
!(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
|
|
IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
|
|
|
|
if (ath9k_hw_channel_change(ah, chan)) {
|
|
ath9k_hw_loadnf(ah, ah->curchan);
|
|
ath9k_hw_start_nfcal(ah);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
|
|
if (saveDefAntenna == 0)
|
|
saveDefAntenna = 1;
|
|
|
|
macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
|
|
|
|
/* For chips on which RTC reset is done, save TSF before it gets cleared */
|
|
if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
|
|
tsf = ath9k_hw_gettsf64(ah);
|
|
|
|
saveLedState = REG_READ(ah, AR_CFG_LED) &
|
|
(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
|
|
AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
|
|
|
|
ath9k_hw_mark_phy_inactive(ah);
|
|
|
|
/* Only required on the first reset */
|
|
if (AR_SREV_9271(ah) && ah->htc_reset_init) {
|
|
REG_WRITE(ah,
|
|
AR9271_RESET_POWER_DOWN_CONTROL,
|
|
AR9271_RADIO_RF_RST);
|
|
udelay(50);
|
|
}
|
|
|
|
if (!ath9k_hw_chip_reset(ah, chan)) {
|
|
ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Only required on the first reset */
|
|
if (AR_SREV_9271(ah) && ah->htc_reset_init) {
|
|
ah->htc_reset_init = false;
|
|
REG_WRITE(ah,
|
|
AR9271_RESET_POWER_DOWN_CONTROL,
|
|
AR9271_GATE_MAC_CTL);
|
|
udelay(50);
|
|
}
|
|
|
|
/* Restore TSF */
|
|
if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
|
|
ath9k_hw_settsf64(ah, tsf);
|
|
|
|
if (AR_SREV_9280_10_OR_LATER(ah))
|
|
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
|
|
|
|
r = ath9k_hw_process_ini(ah, chan);
|
|
if (r)
|
|
return r;
|
|
|
|
/* Setup MFP options for CCMP */
|
|
if (AR_SREV_9280_20_OR_LATER(ah)) {
|
|
/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
|
|
* frames when constructing CCMP AAD. */
|
|
REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
|
|
0xc7ff);
|
|
ah->sw_mgmt_crypto = false;
|
|
} else if (AR_SREV_9160_10_OR_LATER(ah)) {
|
|
/* Disable hardware crypto for management frames */
|
|
REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
|
|
AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
|
|
REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
|
|
AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
|
|
ah->sw_mgmt_crypto = true;
|
|
} else
|
|
ah->sw_mgmt_crypto = true;
|
|
|
|
if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
|
|
ath9k_hw_set_delta_slope(ah, chan);
|
|
|
|
ath9k_hw_spur_mitigate_freq(ah, chan);
|
|
ah->eep_ops->set_board_values(ah, chan);
|
|
|
|
REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
|
|
REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
|
|
| macStaId1
|
|
| AR_STA_ID1_RTS_USE_DEF
|
|
| (ah->config.
|
|
ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
|
|
| ah->sta_id1_defaults);
|
|
ath9k_hw_set_operating_mode(ah, ah->opmode);
|
|
|
|
ath_hw_setbssidmask(common);
|
|
|
|
REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
|
|
|
|
ath9k_hw_write_associd(ah);
|
|
|
|
REG_WRITE(ah, AR_ISR, ~0);
|
|
|
|
REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
|
|
|
|
r = ath9k_hw_rf_set_freq(ah, chan);
|
|
if (r)
|
|
return r;
|
|
|
|
for (i = 0; i < AR_NUM_DCU; i++)
|
|
REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
|
|
|
|
ah->intr_txqs = 0;
|
|
for (i = 0; i < ah->caps.total_queues; i++)
|
|
ath9k_hw_resettxqueue(ah, i);
|
|
|
|
ath9k_hw_init_interrupt_masks(ah, ah->opmode);
|
|
ath9k_hw_init_qos(ah);
|
|
|
|
if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
|
|
ath9k_enable_rfkill(ah);
|
|
|
|
ath9k_hw_init_global_settings(ah);
|
|
|
|
if (!AR_SREV_9300_20_OR_LATER(ah)) {
|
|
ar9002_hw_enable_async_fifo(ah);
|
|
ar9002_hw_enable_wep_aggregation(ah);
|
|
}
|
|
|
|
REG_WRITE(ah, AR_STA_ID1,
|
|
REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
|
|
|
|
ath9k_hw_set_dma(ah);
|
|
|
|
REG_WRITE(ah, AR_OBS, 8);
|
|
|
|
if (ah->config.rx_intr_mitigation) {
|
|
REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
|
|
REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
|
|
}
|
|
|
|
if (ah->config.tx_intr_mitigation) {
|
|
REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
|
|
REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
|
|
}
|
|
|
|
ath9k_hw_init_bb(ah, chan);
|
|
|
|
if (!ath9k_hw_init_cal(ah, chan))
|
|
return -EIO;
|
|
|
|
ath9k_hw_restore_chainmask(ah);
|
|
REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
|
|
|
|
/*
|
|
* For big endian systems turn on swapping for descriptors
|
|
*/
|
|
if (AR_SREV_9100(ah)) {
|
|
u32 mask;
|
|
mask = REG_READ(ah, AR_CFG);
|
|
if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
|
|
ath_print(common, ATH_DBG_RESET,
|
|
"CFG Byte Swap Set 0x%x\n", mask);
|
|
} else {
|
|
mask =
|
|
INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
|
|
REG_WRITE(ah, AR_CFG, mask);
|
|
ath_print(common, ATH_DBG_RESET,
|
|
"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
|
|
}
|
|
} else {
|
|
/* Configure AR9271 target WLAN */
|
|
if (AR_SREV_9271(ah))
|
|
REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
|
|
#ifdef __BIG_ENDIAN
|
|
else
|
|
REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
|
|
#endif
|
|
}
|
|
|
|
if (ah->btcoex_hw.enabled)
|
|
ath9k_hw_btcoex_enable(ah);
|
|
|
|
if (AR_SREV_9300_20_OR_LATER(ah)) {
|
|
ath9k_hw_loadnf(ah, curchan);
|
|
ath9k_hw_start_nfcal(ah);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_reset);
|
|
|
|
/************************/
|
|
/* Key Cache Management */
|
|
/************************/
|
|
|
|
bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
|
|
{
|
|
u32 keyType;
|
|
|
|
if (entry >= ah->caps.keycache_size) {
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
|
|
"keychache entry %u out of range\n", entry);
|
|
return false;
|
|
}
|
|
|
|
keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
|
|
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
|
|
|
|
if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
|
|
u16 micentry = entry + 64;
|
|
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
|
|
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_keyreset);
|
|
|
|
bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
|
|
{
|
|
u32 macHi, macLo;
|
|
|
|
if (entry >= ah->caps.keycache_size) {
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
|
|
"keychache entry %u out of range\n", entry);
|
|
return false;
|
|
}
|
|
|
|
if (mac != NULL) {
|
|
macHi = (mac[5] << 8) | mac[4];
|
|
macLo = (mac[3] << 24) |
|
|
(mac[2] << 16) |
|
|
(mac[1] << 8) |
|
|
mac[0];
|
|
macLo >>= 1;
|
|
macLo |= (macHi & 1) << 31;
|
|
macHi >>= 1;
|
|
} else {
|
|
macLo = macHi = 0;
|
|
}
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_keysetmac);
|
|
|
|
bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
|
|
const struct ath9k_keyval *k,
|
|
const u8 *mac)
|
|
{
|
|
const struct ath9k_hw_capabilities *pCap = &ah->caps;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u32 key0, key1, key2, key3, key4;
|
|
u32 keyType;
|
|
|
|
if (entry >= pCap->keycache_size) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"keycache entry %u out of range\n", entry);
|
|
return false;
|
|
}
|
|
|
|
switch (k->kv_type) {
|
|
case ATH9K_CIPHER_AES_OCB:
|
|
keyType = AR_KEYTABLE_TYPE_AES;
|
|
break;
|
|
case ATH9K_CIPHER_AES_CCM:
|
|
if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
|
|
ath_print(common, ATH_DBG_ANY,
|
|
"AES-CCM not supported by mac rev 0x%x\n",
|
|
ah->hw_version.macRev);
|
|
return false;
|
|
}
|
|
keyType = AR_KEYTABLE_TYPE_CCM;
|
|
break;
|
|
case ATH9K_CIPHER_TKIP:
|
|
keyType = AR_KEYTABLE_TYPE_TKIP;
|
|
if (ATH9K_IS_MIC_ENABLED(ah)
|
|
&& entry + 64 >= pCap->keycache_size) {
|
|
ath_print(common, ATH_DBG_ANY,
|
|
"entry %u inappropriate for TKIP\n", entry);
|
|
return false;
|
|
}
|
|
break;
|
|
case ATH9K_CIPHER_WEP:
|
|
if (k->kv_len < WLAN_KEY_LEN_WEP40) {
|
|
ath_print(common, ATH_DBG_ANY,
|
|
"WEP key length %u too small\n", k->kv_len);
|
|
return false;
|
|
}
|
|
if (k->kv_len <= WLAN_KEY_LEN_WEP40)
|
|
keyType = AR_KEYTABLE_TYPE_40;
|
|
else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
|
|
keyType = AR_KEYTABLE_TYPE_104;
|
|
else
|
|
keyType = AR_KEYTABLE_TYPE_128;
|
|
break;
|
|
case ATH9K_CIPHER_CLR:
|
|
keyType = AR_KEYTABLE_TYPE_CLR;
|
|
break;
|
|
default:
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"cipher %u not supported\n", k->kv_type);
|
|
return false;
|
|
}
|
|
|
|
key0 = get_unaligned_le32(k->kv_val + 0);
|
|
key1 = get_unaligned_le16(k->kv_val + 4);
|
|
key2 = get_unaligned_le32(k->kv_val + 6);
|
|
key3 = get_unaligned_le16(k->kv_val + 10);
|
|
key4 = get_unaligned_le32(k->kv_val + 12);
|
|
if (k->kv_len <= WLAN_KEY_LEN_WEP104)
|
|
key4 &= 0xff;
|
|
|
|
/*
|
|
* Note: Key cache registers access special memory area that requires
|
|
* two 32-bit writes to actually update the values in the internal
|
|
* memory. Consequently, the exact order and pairs used here must be
|
|
* maintained.
|
|
*/
|
|
|
|
if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
|
|
u16 micentry = entry + 64;
|
|
|
|
/*
|
|
* Write inverted key[47:0] first to avoid Michael MIC errors
|
|
* on frames that could be sent or received at the same time.
|
|
* The correct key will be written in the end once everything
|
|
* else is ready.
|
|
*/
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
|
|
|
|
/* Write key[95:48] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
|
|
|
|
/* Write key[127:96] and key type */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
|
|
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
|
|
|
|
/* Write MAC address for the entry */
|
|
(void) ath9k_hw_keysetmac(ah, entry, mac);
|
|
|
|
if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
|
|
/*
|
|
* TKIP uses two key cache entries:
|
|
* Michael MIC TX/RX keys in the same key cache entry
|
|
* (idx = main index + 64):
|
|
* key0 [31:0] = RX key [31:0]
|
|
* key1 [15:0] = TX key [31:16]
|
|
* key1 [31:16] = reserved
|
|
* key2 [31:0] = RX key [63:32]
|
|
* key3 [15:0] = TX key [15:0]
|
|
* key3 [31:16] = reserved
|
|
* key4 [31:0] = TX key [63:32]
|
|
*/
|
|
u32 mic0, mic1, mic2, mic3, mic4;
|
|
|
|
mic0 = get_unaligned_le32(k->kv_mic + 0);
|
|
mic2 = get_unaligned_le32(k->kv_mic + 4);
|
|
mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
|
|
mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
|
|
mic4 = get_unaligned_le32(k->kv_txmic + 4);
|
|
|
|
/* Write RX[31:0] and TX[31:16] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
|
|
|
|
/* Write RX[63:32] and TX[15:0] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
|
|
|
|
/* Write TX[63:32] and keyType(reserved) */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
|
|
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
|
|
AR_KEYTABLE_TYPE_CLR);
|
|
|
|
} else {
|
|
/*
|
|
* TKIP uses four key cache entries (two for group
|
|
* keys):
|
|
* Michael MIC TX/RX keys are in different key cache
|
|
* entries (idx = main index + 64 for TX and
|
|
* main index + 32 + 96 for RX):
|
|
* key0 [31:0] = TX/RX MIC key [31:0]
|
|
* key1 [31:0] = reserved
|
|
* key2 [31:0] = TX/RX MIC key [63:32]
|
|
* key3 [31:0] = reserved
|
|
* key4 [31:0] = reserved
|
|
*
|
|
* Upper layer code will call this function separately
|
|
* for TX and RX keys when these registers offsets are
|
|
* used.
|
|
*/
|
|
u32 mic0, mic2;
|
|
|
|
mic0 = get_unaligned_le32(k->kv_mic + 0);
|
|
mic2 = get_unaligned_le32(k->kv_mic + 4);
|
|
|
|
/* Write MIC key[31:0] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
|
|
|
|
/* Write MIC key[63:32] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
|
|
|
|
/* Write TX[63:32] and keyType(reserved) */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
|
|
AR_KEYTABLE_TYPE_CLR);
|
|
}
|
|
|
|
/* MAC address registers are reserved for the MIC entry */
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
|
|
|
|
/*
|
|
* Write the correct (un-inverted) key[47:0] last to enable
|
|
* TKIP now that all other registers are set with correct
|
|
* values.
|
|
*/
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
|
|
} else {
|
|
/* Write key[47:0] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
|
|
|
|
/* Write key[95:48] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
|
|
|
|
/* Write key[127:96] and key type */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
|
|
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
|
|
|
|
/* Write MAC address for the entry */
|
|
(void) ath9k_hw_keysetmac(ah, entry, mac);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
|
|
|
|
bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
|
|
{
|
|
if (entry < ah->caps.keycache_size) {
|
|
u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
|
|
if (val & AR_KEYTABLE_VALID)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_keyisvalid);
|
|
|
|
/******************************/
|
|
/* Power Management (Chipset) */
|
|
/******************************/
|
|
|
|
/*
|
|
* Notify Power Mgt is disabled in self-generated frames.
|
|
* If requested, force chip to sleep.
|
|
*/
|
|
static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
|
|
{
|
|
REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
|
|
if (setChip) {
|
|
/*
|
|
* Clear the RTC force wake bit to allow the
|
|
* mac to go to sleep.
|
|
*/
|
|
REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
|
|
AR_RTC_FORCE_WAKE_EN);
|
|
if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
|
|
REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
|
|
|
|
/* Shutdown chip. Active low */
|
|
if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
|
|
REG_CLR_BIT(ah, (AR_RTC_RESET),
|
|
AR_RTC_RESET_EN);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Notify Power Management is enabled in self-generating
|
|
* frames. If request, set power mode of chip to
|
|
* auto/normal. Duration in units of 128us (1/8 TU).
|
|
*/
|
|
static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
|
|
{
|
|
REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
|
|
if (setChip) {
|
|
struct ath9k_hw_capabilities *pCap = &ah->caps;
|
|
|
|
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
|
|
/* Set WakeOnInterrupt bit; clear ForceWake bit */
|
|
REG_WRITE(ah, AR_RTC_FORCE_WAKE,
|
|
AR_RTC_FORCE_WAKE_ON_INT);
|
|
} else {
|
|
/*
|
|
* Clear the RTC force wake bit to allow the
|
|
* mac to go to sleep.
|
|
*/
|
|
REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
|
|
AR_RTC_FORCE_WAKE_EN);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
|
|
{
|
|
u32 val;
|
|
int i;
|
|
|
|
if (setChip) {
|
|
if ((REG_READ(ah, AR_RTC_STATUS) &
|
|
AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
|
|
if (ath9k_hw_set_reset_reg(ah,
|
|
ATH9K_RESET_POWER_ON) != true) {
|
|
return false;
|
|
}
|
|
if (!AR_SREV_9300_20_OR_LATER(ah))
|
|
ath9k_hw_init_pll(ah, NULL);
|
|
}
|
|
if (AR_SREV_9100(ah))
|
|
REG_SET_BIT(ah, AR_RTC_RESET,
|
|
AR_RTC_RESET_EN);
|
|
|
|
REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
|
|
AR_RTC_FORCE_WAKE_EN);
|
|
udelay(50);
|
|
|
|
for (i = POWER_UP_TIME / 50; i > 0; i--) {
|
|
val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
|
|
if (val == AR_RTC_STATUS_ON)
|
|
break;
|
|
udelay(50);
|
|
REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
|
|
AR_RTC_FORCE_WAKE_EN);
|
|
}
|
|
if (i == 0) {
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
|
|
"Failed to wakeup in %uus\n",
|
|
POWER_UP_TIME / 20);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
int status = true, setChip = true;
|
|
static const char *modes[] = {
|
|
"AWAKE",
|
|
"FULL-SLEEP",
|
|
"NETWORK SLEEP",
|
|
"UNDEFINED"
|
|
};
|
|
|
|
if (ah->power_mode == mode)
|
|
return status;
|
|
|
|
ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
|
|
modes[ah->power_mode], modes[mode]);
|
|
|
|
switch (mode) {
|
|
case ATH9K_PM_AWAKE:
|
|
status = ath9k_hw_set_power_awake(ah, setChip);
|
|
break;
|
|
case ATH9K_PM_FULL_SLEEP:
|
|
ath9k_set_power_sleep(ah, setChip);
|
|
ah->chip_fullsleep = true;
|
|
break;
|
|
case ATH9K_PM_NETWORK_SLEEP:
|
|
ath9k_set_power_network_sleep(ah, setChip);
|
|
break;
|
|
default:
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Unknown power mode %u\n", mode);
|
|
return false;
|
|
}
|
|
ah->power_mode = mode;
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_setpower);
|
|
|
|
/*******************/
|
|
/* Beacon Handling */
|
|
/*******************/
|
|
|
|
void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
|
|
{
|
|
int flags = 0;
|
|
|
|
ah->beacon_interval = beacon_period;
|
|
|
|
switch (ah->opmode) {
|
|
case NL80211_IFTYPE_STATION:
|
|
case NL80211_IFTYPE_MONITOR:
|
|
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
|
|
REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
|
|
REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
|
|
flags |= AR_TBTT_TIMER_EN;
|
|
break;
|
|
case NL80211_IFTYPE_ADHOC:
|
|
case NL80211_IFTYPE_MESH_POINT:
|
|
REG_SET_BIT(ah, AR_TXCFG,
|
|
AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
|
|
REG_WRITE(ah, AR_NEXT_NDP_TIMER,
|
|
TU_TO_USEC(next_beacon +
|
|
(ah->atim_window ? ah->
|
|
atim_window : 1)));
|
|
flags |= AR_NDP_TIMER_EN;
|
|
case NL80211_IFTYPE_AP:
|
|
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
|
|
REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
|
|
TU_TO_USEC(next_beacon -
|
|
ah->config.
|
|
dma_beacon_response_time));
|
|
REG_WRITE(ah, AR_NEXT_SWBA,
|
|
TU_TO_USEC(next_beacon -
|
|
ah->config.
|
|
sw_beacon_response_time));
|
|
flags |=
|
|
AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
|
|
break;
|
|
default:
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
|
|
"%s: unsupported opmode: %d\n",
|
|
__func__, ah->opmode);
|
|
return;
|
|
break;
|
|
}
|
|
|
|
REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
|
|
REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
|
|
REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
|
|
REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
|
|
|
|
beacon_period &= ~ATH9K_BEACON_ENA;
|
|
if (beacon_period & ATH9K_BEACON_RESET_TSF) {
|
|
ath9k_hw_reset_tsf(ah);
|
|
}
|
|
|
|
REG_SET_BIT(ah, AR_TIMER_MODE, flags);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_beaconinit);
|
|
|
|
void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
|
|
const struct ath9k_beacon_state *bs)
|
|
{
|
|
u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
|
|
struct ath9k_hw_capabilities *pCap = &ah->caps;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
|
|
|
|
REG_WRITE(ah, AR_BEACON_PERIOD,
|
|
TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
|
|
REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
|
|
TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
|
|
|
|
REG_RMW_FIELD(ah, AR_RSSI_THR,
|
|
AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
|
|
|
|
beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
|
|
|
|
if (bs->bs_sleepduration > beaconintval)
|
|
beaconintval = bs->bs_sleepduration;
|
|
|
|
dtimperiod = bs->bs_dtimperiod;
|
|
if (bs->bs_sleepduration > dtimperiod)
|
|
dtimperiod = bs->bs_sleepduration;
|
|
|
|
if (beaconintval == dtimperiod)
|
|
nextTbtt = bs->bs_nextdtim;
|
|
else
|
|
nextTbtt = bs->bs_nexttbtt;
|
|
|
|
ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
|
|
ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
|
|
ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
|
|
ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
|
|
|
|
REG_WRITE(ah, AR_NEXT_DTIM,
|
|
TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
|
|
REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
|
|
|
|
REG_WRITE(ah, AR_SLEEP1,
|
|
SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
|
|
| AR_SLEEP1_ASSUME_DTIM);
|
|
|
|
if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
|
|
beacontimeout = (BEACON_TIMEOUT_VAL << 3);
|
|
else
|
|
beacontimeout = MIN_BEACON_TIMEOUT_VAL;
|
|
|
|
REG_WRITE(ah, AR_SLEEP2,
|
|
SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
|
|
|
|
REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
|
|
REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
|
|
|
|
REG_SET_BIT(ah, AR_TIMER_MODE,
|
|
AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
|
|
AR_DTIM_TIMER_EN);
|
|
|
|
/* TSF Out of Range Threshold */
|
|
REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
|
|
|
|
/*******************/
|
|
/* HW Capabilities */
|
|
/*******************/
|
|
|
|
int ath9k_hw_fill_cap_info(struct ath_hw *ah)
|
|
{
|
|
struct ath9k_hw_capabilities *pCap = &ah->caps;
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
|
|
|
|
u16 capField = 0, eeval;
|
|
|
|
eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
|
|
regulatory->current_rd = eeval;
|
|
|
|
eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
|
|
if (AR_SREV_9285_10_OR_LATER(ah))
|
|
eeval |= AR9285_RDEXT_DEFAULT;
|
|
regulatory->current_rd_ext = eeval;
|
|
|
|
capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
|
|
|
|
if (ah->opmode != NL80211_IFTYPE_AP &&
|
|
ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
|
|
if (regulatory->current_rd == 0x64 ||
|
|
regulatory->current_rd == 0x65)
|
|
regulatory->current_rd += 5;
|
|
else if (regulatory->current_rd == 0x41)
|
|
regulatory->current_rd = 0x43;
|
|
ath_print(common, ATH_DBG_REGULATORY,
|
|
"regdomain mapped to 0x%x\n", regulatory->current_rd);
|
|
}
|
|
|
|
eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
|
|
if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"no band has been marked as supported in EEPROM.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
|
|
|
|
if (eeval & AR5416_OPFLAGS_11A) {
|
|
set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
|
|
if (ah->config.ht_enable) {
|
|
if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
|
|
set_bit(ATH9K_MODE_11NA_HT20,
|
|
pCap->wireless_modes);
|
|
if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
|
|
set_bit(ATH9K_MODE_11NA_HT40PLUS,
|
|
pCap->wireless_modes);
|
|
set_bit(ATH9K_MODE_11NA_HT40MINUS,
|
|
pCap->wireless_modes);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (eeval & AR5416_OPFLAGS_11G) {
|
|
set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
|
|
if (ah->config.ht_enable) {
|
|
if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
|
|
set_bit(ATH9K_MODE_11NG_HT20,
|
|
pCap->wireless_modes);
|
|
if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
|
|
set_bit(ATH9K_MODE_11NG_HT40PLUS,
|
|
pCap->wireless_modes);
|
|
set_bit(ATH9K_MODE_11NG_HT40MINUS,
|
|
pCap->wireless_modes);
|
|
}
|
|
}
|
|
}
|
|
|
|
pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
|
|
/*
|
|
* For AR9271 we will temporarilly uses the rx chainmax as read from
|
|
* the EEPROM.
|
|
*/
|
|
if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
|
|
!(eeval & AR5416_OPFLAGS_11A) &&
|
|
!(AR_SREV_9271(ah)))
|
|
/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
|
|
pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
|
|
else
|
|
/* Use rx_chainmask from EEPROM. */
|
|
pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
|
|
|
|
if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
|
|
ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
|
|
|
|
pCap->low_2ghz_chan = 2312;
|
|
pCap->high_2ghz_chan = 2732;
|
|
|
|
pCap->low_5ghz_chan = 4920;
|
|
pCap->high_5ghz_chan = 6100;
|
|
|
|
pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
|
|
pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
|
|
pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
|
|
|
|
pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
|
|
pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
|
|
pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
|
|
|
|
if (ah->config.ht_enable)
|
|
pCap->hw_caps |= ATH9K_HW_CAP_HT;
|
|
else
|
|
pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
|
|
|
|
pCap->hw_caps |= ATH9K_HW_CAP_GTT;
|
|
pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
|
|
pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
|
|
pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
|
|
|
|
if (capField & AR_EEPROM_EEPCAP_MAXQCU)
|
|
pCap->total_queues =
|
|
MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
|
|
else
|
|
pCap->total_queues = ATH9K_NUM_TX_QUEUES;
|
|
|
|
if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
|
|
pCap->keycache_size =
|
|
1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
|
|
else
|
|
pCap->keycache_size = AR_KEYTABLE_SIZE;
|
|
|
|
pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
|
|
|
|
if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
|
|
pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
|
|
else
|
|
pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
|
|
|
|
if (AR_SREV_9271(ah))
|
|
pCap->num_gpio_pins = AR9271_NUM_GPIO;
|
|
else if (AR_SREV_9285_10_OR_LATER(ah))
|
|
pCap->num_gpio_pins = AR9285_NUM_GPIO;
|
|
else if (AR_SREV_9280_10_OR_LATER(ah))
|
|
pCap->num_gpio_pins = AR928X_NUM_GPIO;
|
|
else
|
|
pCap->num_gpio_pins = AR_NUM_GPIO;
|
|
|
|
if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
|
|
pCap->hw_caps |= ATH9K_HW_CAP_CST;
|
|
pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
|
|
} else {
|
|
pCap->rts_aggr_limit = (8 * 1024);
|
|
}
|
|
|
|
pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
|
|
|
|
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
|
|
ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
|
|
if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
|
|
ah->rfkill_gpio =
|
|
MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
|
|
ah->rfkill_polarity =
|
|
MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
|
|
|
|
pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
|
|
}
|
|
#endif
|
|
if (AR_SREV_9271(ah))
|
|
pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
|
|
else
|
|
pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
|
|
|
|
if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
|
|
pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
|
|
else
|
|
pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
|
|
|
|
if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
|
|
pCap->reg_cap =
|
|
AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
|
|
AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
|
|
AR_EEPROM_EEREGCAP_EN_KK_U2 |
|
|
AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
|
|
} else {
|
|
pCap->reg_cap =
|
|
AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
|
|
AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
|
|
}
|
|
|
|
/* Advertise midband for AR5416 with FCC midband set in eeprom */
|
|
if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
|
|
AR_SREV_5416(ah))
|
|
pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
|
|
|
|
pCap->num_antcfg_5ghz =
|
|
ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
|
|
pCap->num_antcfg_2ghz =
|
|
ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
|
|
|
|
if (AR_SREV_9280_10_OR_LATER(ah) &&
|
|
ath9k_hw_btcoex_supported(ah)) {
|
|
btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
|
|
btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
|
|
|
|
if (AR_SREV_9285(ah)) {
|
|
btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
|
|
btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
|
|
} else {
|
|
btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
|
|
}
|
|
} else {
|
|
btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
|
|
}
|
|
|
|
if (AR_SREV_9300_20_OR_LATER(ah)) {
|
|
pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC;
|
|
pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
|
|
pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
|
|
pCap->rx_status_len = sizeof(struct ar9003_rxs);
|
|
pCap->tx_desc_len = sizeof(struct ar9003_txc);
|
|
pCap->txs_len = sizeof(struct ar9003_txs);
|
|
} else {
|
|
pCap->tx_desc_len = sizeof(struct ath_desc);
|
|
}
|
|
|
|
if (AR_SREV_9300_20_OR_LATER(ah))
|
|
pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
|
|
u32 capability, u32 *result)
|
|
{
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
switch (type) {
|
|
case ATH9K_CAP_CIPHER:
|
|
switch (capability) {
|
|
case ATH9K_CIPHER_AES_CCM:
|
|
case ATH9K_CIPHER_AES_OCB:
|
|
case ATH9K_CIPHER_TKIP:
|
|
case ATH9K_CIPHER_WEP:
|
|
case ATH9K_CIPHER_MIC:
|
|
case ATH9K_CIPHER_CLR:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
case ATH9K_CAP_TKIP_MIC:
|
|
switch (capability) {
|
|
case 0:
|
|
return true;
|
|
case 1:
|
|
return (ah->sta_id1_defaults &
|
|
AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
|
|
false;
|
|
}
|
|
case ATH9K_CAP_TKIP_SPLIT:
|
|
return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
|
|
false : true;
|
|
case ATH9K_CAP_MCAST_KEYSRCH:
|
|
switch (capability) {
|
|
case 0:
|
|
return true;
|
|
case 1:
|
|
if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
|
|
return false;
|
|
} else {
|
|
return (ah->sta_id1_defaults &
|
|
AR_STA_ID1_MCAST_KSRCH) ? true :
|
|
false;
|
|
}
|
|
}
|
|
return false;
|
|
case ATH9K_CAP_TXPOW:
|
|
switch (capability) {
|
|
case 0:
|
|
return 0;
|
|
case 1:
|
|
*result = regulatory->power_limit;
|
|
return 0;
|
|
case 2:
|
|
*result = regulatory->max_power_level;
|
|
return 0;
|
|
case 3:
|
|
*result = regulatory->tp_scale;
|
|
return 0;
|
|
}
|
|
return false;
|
|
case ATH9K_CAP_DS:
|
|
return (AR_SREV_9280_20_OR_LATER(ah) &&
|
|
(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
|
|
? false : true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_getcapability);
|
|
|
|
bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
|
|
u32 capability, u32 setting, int *status)
|
|
{
|
|
switch (type) {
|
|
case ATH9K_CAP_TKIP_MIC:
|
|
if (setting)
|
|
ah->sta_id1_defaults |=
|
|
AR_STA_ID1_CRPT_MIC_ENABLE;
|
|
else
|
|
ah->sta_id1_defaults &=
|
|
~AR_STA_ID1_CRPT_MIC_ENABLE;
|
|
return true;
|
|
case ATH9K_CAP_MCAST_KEYSRCH:
|
|
if (setting)
|
|
ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
|
|
else
|
|
ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_setcapability);
|
|
|
|
/****************************/
|
|
/* GPIO / RFKILL / Antennae */
|
|
/****************************/
|
|
|
|
static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
|
|
u32 gpio, u32 type)
|
|
{
|
|
int addr;
|
|
u32 gpio_shift, tmp;
|
|
|
|
if (gpio > 11)
|
|
addr = AR_GPIO_OUTPUT_MUX3;
|
|
else if (gpio > 5)
|
|
addr = AR_GPIO_OUTPUT_MUX2;
|
|
else
|
|
addr = AR_GPIO_OUTPUT_MUX1;
|
|
|
|
gpio_shift = (gpio % 6) * 5;
|
|
|
|
if (AR_SREV_9280_20_OR_LATER(ah)
|
|
|| (addr != AR_GPIO_OUTPUT_MUX1)) {
|
|
REG_RMW(ah, addr, (type << gpio_shift),
|
|
(0x1f << gpio_shift));
|
|
} else {
|
|
tmp = REG_READ(ah, addr);
|
|
tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
|
|
tmp &= ~(0x1f << gpio_shift);
|
|
tmp |= (type << gpio_shift);
|
|
REG_WRITE(ah, addr, tmp);
|
|
}
|
|
}
|
|
|
|
void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
|
|
{
|
|
u32 gpio_shift;
|
|
|
|
BUG_ON(gpio >= ah->caps.num_gpio_pins);
|
|
|
|
gpio_shift = gpio << 1;
|
|
|
|
REG_RMW(ah,
|
|
AR_GPIO_OE_OUT,
|
|
(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
|
|
(AR_GPIO_OE_OUT_DRV << gpio_shift));
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
|
|
|
|
u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
|
|
{
|
|
#define MS_REG_READ(x, y) \
|
|
(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
|
|
|
|
if (gpio >= ah->caps.num_gpio_pins)
|
|
return 0xffffffff;
|
|
|
|
if (AR_SREV_9300_20_OR_LATER(ah))
|
|
return MS_REG_READ(AR9300, gpio) != 0;
|
|
else if (AR_SREV_9271(ah))
|
|
return MS_REG_READ(AR9271, gpio) != 0;
|
|
else if (AR_SREV_9287_10_OR_LATER(ah))
|
|
return MS_REG_READ(AR9287, gpio) != 0;
|
|
else if (AR_SREV_9285_10_OR_LATER(ah))
|
|
return MS_REG_READ(AR9285, gpio) != 0;
|
|
else if (AR_SREV_9280_10_OR_LATER(ah))
|
|
return MS_REG_READ(AR928X, gpio) != 0;
|
|
else
|
|
return MS_REG_READ(AR, gpio) != 0;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_gpio_get);
|
|
|
|
void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
|
|
u32 ah_signal_type)
|
|
{
|
|
u32 gpio_shift;
|
|
|
|
ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
|
|
|
|
gpio_shift = 2 * gpio;
|
|
|
|
REG_RMW(ah,
|
|
AR_GPIO_OE_OUT,
|
|
(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
|
|
(AR_GPIO_OE_OUT_DRV << gpio_shift));
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_cfg_output);
|
|
|
|
void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
|
|
{
|
|
if (AR_SREV_9271(ah))
|
|
val = ~val;
|
|
|
|
REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
|
|
AR_GPIO_BIT(gpio));
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_set_gpio);
|
|
|
|
u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
|
|
{
|
|
return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_getdefantenna);
|
|
|
|
void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
|
|
{
|
|
REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_setantenna);
|
|
|
|
/*********************/
|
|
/* General Operation */
|
|
/*********************/
|
|
|
|
u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
|
|
{
|
|
u32 bits = REG_READ(ah, AR_RX_FILTER);
|
|
u32 phybits = REG_READ(ah, AR_PHY_ERR);
|
|
|
|
if (phybits & AR_PHY_ERR_RADAR)
|
|
bits |= ATH9K_RX_FILTER_PHYRADAR;
|
|
if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
|
|
bits |= ATH9K_RX_FILTER_PHYERR;
|
|
|
|
return bits;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_getrxfilter);
|
|
|
|
void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
|
|
{
|
|
u32 phybits;
|
|
|
|
REG_WRITE(ah, AR_RX_FILTER, bits);
|
|
|
|
phybits = 0;
|
|
if (bits & ATH9K_RX_FILTER_PHYRADAR)
|
|
phybits |= AR_PHY_ERR_RADAR;
|
|
if (bits & ATH9K_RX_FILTER_PHYERR)
|
|
phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
|
|
REG_WRITE(ah, AR_PHY_ERR, phybits);
|
|
|
|
if (phybits)
|
|
REG_WRITE(ah, AR_RXCFG,
|
|
REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
|
|
else
|
|
REG_WRITE(ah, AR_RXCFG,
|
|
REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_setrxfilter);
|
|
|
|
bool ath9k_hw_phy_disable(struct ath_hw *ah)
|
|
{
|
|
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
|
|
return false;
|
|
|
|
ath9k_hw_init_pll(ah, NULL);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_phy_disable);
|
|
|
|
bool ath9k_hw_disable(struct ath_hw *ah)
|
|
{
|
|
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
|
|
return false;
|
|
|
|
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
|
|
return false;
|
|
|
|
ath9k_hw_init_pll(ah, NULL);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_disable);
|
|
|
|
void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
|
|
{
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
struct ath9k_channel *chan = ah->curchan;
|
|
struct ieee80211_channel *channel = chan->chan;
|
|
|
|
regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
|
|
|
|
ah->eep_ops->set_txpower(ah, chan,
|
|
ath9k_regd_get_ctl(regulatory, chan),
|
|
channel->max_antenna_gain * 2,
|
|
channel->max_power * 2,
|
|
min((u32) MAX_RATE_POWER,
|
|
(u32) regulatory->power_limit));
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
|
|
|
|
void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
|
|
{
|
|
memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_setmac);
|
|
|
|
void ath9k_hw_setopmode(struct ath_hw *ah)
|
|
{
|
|
ath9k_hw_set_operating_mode(ah, ah->opmode);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_setopmode);
|
|
|
|
void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
|
|
{
|
|
REG_WRITE(ah, AR_MCAST_FIL0, filter0);
|
|
REG_WRITE(ah, AR_MCAST_FIL1, filter1);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
|
|
|
|
void ath9k_hw_write_associd(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
|
|
REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
|
|
((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_write_associd);
|
|
|
|
u64 ath9k_hw_gettsf64(struct ath_hw *ah)
|
|
{
|
|
u64 tsf;
|
|
|
|
tsf = REG_READ(ah, AR_TSF_U32);
|
|
tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
|
|
|
|
return tsf;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_gettsf64);
|
|
|
|
void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
|
|
{
|
|
REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
|
|
REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_settsf64);
|
|
|
|
void ath9k_hw_reset_tsf(struct ath_hw *ah)
|
|
{
|
|
if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
|
|
AH_TSF_WRITE_TIMEOUT))
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
|
|
"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
|
|
|
|
REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_reset_tsf);
|
|
|
|
void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
|
|
{
|
|
if (setting)
|
|
ah->misc_mode |= AR_PCU_TX_ADD_TSF;
|
|
else
|
|
ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
|
|
|
|
/*
|
|
* Extend 15-bit time stamp from rx descriptor to
|
|
* a full 64-bit TSF using the current h/w TSF.
|
|
*/
|
|
u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
|
|
{
|
|
u64 tsf;
|
|
|
|
tsf = ath9k_hw_gettsf64(ah);
|
|
if ((tsf & 0x7fff) < rstamp)
|
|
tsf -= 0x8000;
|
|
return (tsf & ~0x7fff) | rstamp;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_extend_tsf);
|
|
|
|
void ath9k_hw_set11nmac2040(struct ath_hw *ah)
|
|
{
|
|
struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
|
|
u32 macmode;
|
|
|
|
if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
|
|
macmode = AR_2040_JOINED_RX_CLEAR;
|
|
else
|
|
macmode = 0;
|
|
|
|
REG_WRITE(ah, AR_2040_MODE, macmode);
|
|
}
|
|
|
|
/* HW Generic timers configuration */
|
|
|
|
static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
|
|
{
|
|
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
|
|
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
|
|
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
|
|
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
|
|
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
|
|
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
|
|
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
|
|
{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
|
|
{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
|
|
{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
|
|
AR_NDP2_TIMER_MODE, 0x0002},
|
|
{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
|
|
AR_NDP2_TIMER_MODE, 0x0004},
|
|
{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
|
|
AR_NDP2_TIMER_MODE, 0x0008},
|
|
{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
|
|
AR_NDP2_TIMER_MODE, 0x0010},
|
|
{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
|
|
AR_NDP2_TIMER_MODE, 0x0020},
|
|
{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
|
|
AR_NDP2_TIMER_MODE, 0x0040},
|
|
{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
|
|
AR_NDP2_TIMER_MODE, 0x0080}
|
|
};
|
|
|
|
/* HW generic timer primitives */
|
|
|
|
/* compute and clear index of rightmost 1 */
|
|
static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
|
|
{
|
|
u32 b;
|
|
|
|
b = *mask;
|
|
b &= (0-b);
|
|
*mask &= ~b;
|
|
b *= debruijn32;
|
|
b >>= 27;
|
|
|
|
return timer_table->gen_timer_index[b];
|
|
}
|
|
|
|
u32 ath9k_hw_gettsf32(struct ath_hw *ah)
|
|
{
|
|
return REG_READ(ah, AR_TSF_L32);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_gettsf32);
|
|
|
|
struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
|
|
void (*trigger)(void *),
|
|
void (*overflow)(void *),
|
|
void *arg,
|
|
u8 timer_index)
|
|
{
|
|
struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
|
|
struct ath_gen_timer *timer;
|
|
|
|
timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
|
|
|
|
if (timer == NULL) {
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
|
|
"Failed to allocate memory"
|
|
"for hw timer[%d]\n", timer_index);
|
|
return NULL;
|
|
}
|
|
|
|
/* allocate a hardware generic timer slot */
|
|
timer_table->timers[timer_index] = timer;
|
|
timer->index = timer_index;
|
|
timer->trigger = trigger;
|
|
timer->overflow = overflow;
|
|
timer->arg = arg;
|
|
|
|
return timer;
|
|
}
|
|
EXPORT_SYMBOL(ath_gen_timer_alloc);
|
|
|
|
void ath9k_hw_gen_timer_start(struct ath_hw *ah,
|
|
struct ath_gen_timer *timer,
|
|
u32 timer_next,
|
|
u32 timer_period)
|
|
{
|
|
struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
|
|
u32 tsf;
|
|
|
|
BUG_ON(!timer_period);
|
|
|
|
set_bit(timer->index, &timer_table->timer_mask.timer_bits);
|
|
|
|
tsf = ath9k_hw_gettsf32(ah);
|
|
|
|
ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
|
|
"curent tsf %x period %x"
|
|
"timer_next %x\n", tsf, timer_period, timer_next);
|
|
|
|
/*
|
|
* Pull timer_next forward if the current TSF already passed it
|
|
* because of software latency
|
|
*/
|
|
if (timer_next < tsf)
|
|
timer_next = tsf + timer_period;
|
|
|
|
/*
|
|
* Program generic timer registers
|
|
*/
|
|
REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
|
|
timer_next);
|
|
REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
|
|
timer_period);
|
|
REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
|
|
gen_tmr_configuration[timer->index].mode_mask);
|
|
|
|
/* Enable both trigger and thresh interrupt masks */
|
|
REG_SET_BIT(ah, AR_IMR_S5,
|
|
(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
|
|
SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
|
|
|
|
void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
|
|
{
|
|
struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
|
|
|
|
if ((timer->index < AR_FIRST_NDP_TIMER) ||
|
|
(timer->index >= ATH_MAX_GEN_TIMER)) {
|
|
return;
|
|
}
|
|
|
|
/* Clear generic timer enable bits. */
|
|
REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
|
|
gen_tmr_configuration[timer->index].mode_mask);
|
|
|
|
/* Disable both trigger and thresh interrupt masks */
|
|
REG_CLR_BIT(ah, AR_IMR_S5,
|
|
(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
|
|
SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
|
|
|
|
clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
|
|
|
|
void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
|
|
{
|
|
struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
|
|
|
|
/* free the hardware generic timer slot */
|
|
timer_table->timers[timer->index] = NULL;
|
|
kfree(timer);
|
|
}
|
|
EXPORT_SYMBOL(ath_gen_timer_free);
|
|
|
|
/*
|
|
* Generic Timer Interrupts handling
|
|
*/
|
|
void ath_gen_timer_isr(struct ath_hw *ah)
|
|
{
|
|
struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
|
|
struct ath_gen_timer *timer;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u32 trigger_mask, thresh_mask, index;
|
|
|
|
/* get hardware generic timer interrupt status */
|
|
trigger_mask = ah->intr_gen_timer_trigger;
|
|
thresh_mask = ah->intr_gen_timer_thresh;
|
|
trigger_mask &= timer_table->timer_mask.val;
|
|
thresh_mask &= timer_table->timer_mask.val;
|
|
|
|
trigger_mask &= ~thresh_mask;
|
|
|
|
while (thresh_mask) {
|
|
index = rightmost_index(timer_table, &thresh_mask);
|
|
timer = timer_table->timers[index];
|
|
BUG_ON(!timer);
|
|
ath_print(common, ATH_DBG_HWTIMER,
|
|
"TSF overflow for Gen timer %d\n", index);
|
|
timer->overflow(timer->arg);
|
|
}
|
|
|
|
while (trigger_mask) {
|
|
index = rightmost_index(timer_table, &trigger_mask);
|
|
timer = timer_table->timers[index];
|
|
BUG_ON(!timer);
|
|
ath_print(common, ATH_DBG_HWTIMER,
|
|
"Gen timer[%d] trigger\n", index);
|
|
timer->trigger(timer->arg);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ath_gen_timer_isr);
|
|
|
|
/********/
|
|
/* HTC */
|
|
/********/
|
|
|
|
void ath9k_hw_htc_resetinit(struct ath_hw *ah)
|
|
{
|
|
ah->htc_reset_init = true;
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
|
|
|
|
static struct {
|
|
u32 version;
|
|
const char * name;
|
|
} ath_mac_bb_names[] = {
|
|
/* Devices with external radios */
|
|
{ AR_SREV_VERSION_5416_PCI, "5416" },
|
|
{ AR_SREV_VERSION_5416_PCIE, "5418" },
|
|
{ AR_SREV_VERSION_9100, "9100" },
|
|
{ AR_SREV_VERSION_9160, "9160" },
|
|
/* Single-chip solutions */
|
|
{ AR_SREV_VERSION_9280, "9280" },
|
|
{ AR_SREV_VERSION_9285, "9285" },
|
|
{ AR_SREV_VERSION_9287, "9287" },
|
|
{ AR_SREV_VERSION_9271, "9271" },
|
|
{ AR_SREV_VERSION_9300, "9300" },
|
|
};
|
|
|
|
/* For devices with external radios */
|
|
static struct {
|
|
u16 version;
|
|
const char * name;
|
|
} ath_rf_names[] = {
|
|
{ 0, "5133" },
|
|
{ AR_RAD5133_SREV_MAJOR, "5133" },
|
|
{ AR_RAD5122_SREV_MAJOR, "5122" },
|
|
{ AR_RAD2133_SREV_MAJOR, "2133" },
|
|
{ AR_RAD2122_SREV_MAJOR, "2122" }
|
|
};
|
|
|
|
/*
|
|
* Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
|
|
*/
|
|
static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
|
|
if (ath_mac_bb_names[i].version == mac_bb_version) {
|
|
return ath_mac_bb_names[i].name;
|
|
}
|
|
}
|
|
|
|
return "????";
|
|
}
|
|
|
|
/*
|
|
* Return the RF name. "????" is returned if the RF is unknown.
|
|
* Used for devices with external radios.
|
|
*/
|
|
static const char *ath9k_hw_rf_name(u16 rf_version)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
|
|
if (ath_rf_names[i].version == rf_version) {
|
|
return ath_rf_names[i].name;
|
|
}
|
|
}
|
|
|
|
return "????";
|
|
}
|
|
|
|
void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
|
|
{
|
|
int used;
|
|
|
|
/* chipsets >= AR9280 are single-chip */
|
|
if (AR_SREV_9280_10_OR_LATER(ah)) {
|
|
used = snprintf(hw_name, len,
|
|
"Atheros AR%s Rev:%x",
|
|
ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
|
|
ah->hw_version.macRev);
|
|
}
|
|
else {
|
|
used = snprintf(hw_name, len,
|
|
"Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
|
|
ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
|
|
ah->hw_version.macRev,
|
|
ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
|
|
AR_RADIO_SREV_MAJOR)),
|
|
ah->hw_version.phyRev);
|
|
}
|
|
|
|
hw_name[used] = '\0';
|
|
}
|
|
EXPORT_SYMBOL(ath9k_hw_name);
|