linux_dsm_epyc7002/arch/arm64/mm/init.c
Mike Rapoport 57c8a661d9 mm: remove include/linux/bootmem.h
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.

The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>

@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>

[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
  Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00

691 lines
18 KiB
C

/*
* Based on arch/arm/mm/init.c
*
* Copyright (C) 1995-2005 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/errno.h>
#include <linux/swap.h>
#include <linux/init.h>
#include <linux/cache.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
#include <linux/initrd.h>
#include <linux/gfp.h>
#include <linux/memblock.h>
#include <linux/sort.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/dma-mapping.h>
#include <linux/dma-contiguous.h>
#include <linux/efi.h>
#include <linux/swiotlb.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <asm/boot.h>
#include <asm/fixmap.h>
#include <asm/kasan.h>
#include <asm/kernel-pgtable.h>
#include <asm/memory.h>
#include <asm/numa.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/sizes.h>
#include <asm/tlb.h>
#include <asm/alternative.h>
/*
* We need to be able to catch inadvertent references to memstart_addr
* that occur (potentially in generic code) before arm64_memblock_init()
* executes, which assigns it its actual value. So use a default value
* that cannot be mistaken for a real physical address.
*/
s64 memstart_addr __ro_after_init = -1;
phys_addr_t arm64_dma_phys_limit __ro_after_init;
#ifdef CONFIG_BLK_DEV_INITRD
static int __init early_initrd(char *p)
{
unsigned long start, size;
char *endp;
start = memparse(p, &endp);
if (*endp == ',') {
size = memparse(endp + 1, NULL);
initrd_start = start;
initrd_end = start + size;
}
return 0;
}
early_param("initrd", early_initrd);
#endif
#ifdef CONFIG_KEXEC_CORE
/*
* reserve_crashkernel() - reserves memory for crash kernel
*
* This function reserves memory area given in "crashkernel=" kernel command
* line parameter. The memory reserved is used by dump capture kernel when
* primary kernel is crashing.
*/
static void __init reserve_crashkernel(void)
{
unsigned long long crash_base, crash_size;
int ret;
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
&crash_size, &crash_base);
/* no crashkernel= or invalid value specified */
if (ret || !crash_size)
return;
crash_size = PAGE_ALIGN(crash_size);
if (crash_base == 0) {
/* Current arm64 boot protocol requires 2MB alignment */
crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
crash_size, SZ_2M);
if (crash_base == 0) {
pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
crash_size);
return;
}
} else {
/* User specifies base address explicitly. */
if (!memblock_is_region_memory(crash_base, crash_size)) {
pr_warn("cannot reserve crashkernel: region is not memory\n");
return;
}
if (memblock_is_region_reserved(crash_base, crash_size)) {
pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
return;
}
if (!IS_ALIGNED(crash_base, SZ_2M)) {
pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
return;
}
}
memblock_reserve(crash_base, crash_size);
pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
crash_base, crash_base + crash_size, crash_size >> 20);
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
}
static void __init kexec_reserve_crashkres_pages(void)
{
#ifdef CONFIG_HIBERNATION
phys_addr_t addr;
struct page *page;
if (!crashk_res.end)
return;
/*
* To reduce the size of hibernation image, all the pages are
* marked as Reserved initially.
*/
for (addr = crashk_res.start; addr < (crashk_res.end + 1);
addr += PAGE_SIZE) {
page = phys_to_page(addr);
SetPageReserved(page);
}
#endif
}
#else
static void __init reserve_crashkernel(void)
{
}
static void __init kexec_reserve_crashkres_pages(void)
{
}
#endif /* CONFIG_KEXEC_CORE */
#ifdef CONFIG_CRASH_DUMP
static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
const char *uname, int depth, void *data)
{
const __be32 *reg;
int len;
if (depth != 1 || strcmp(uname, "chosen") != 0)
return 0;
reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
return 1;
elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
return 1;
}
/*
* reserve_elfcorehdr() - reserves memory for elf core header
*
* This function reserves the memory occupied by an elf core header
* described in the device tree. This region contains all the
* information about primary kernel's core image and is used by a dump
* capture kernel to access the system memory on primary kernel.
*/
static void __init reserve_elfcorehdr(void)
{
of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
if (!elfcorehdr_size)
return;
if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
pr_warn("elfcorehdr is overlapped\n");
return;
}
memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
elfcorehdr_size >> 10, elfcorehdr_addr);
}
#else
static void __init reserve_elfcorehdr(void)
{
}
#endif /* CONFIG_CRASH_DUMP */
/*
* Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
* currently assumes that for memory starting above 4G, 32-bit devices will
* use a DMA offset.
*/
static phys_addr_t __init max_zone_dma_phys(void)
{
phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
return min(offset + (1ULL << 32), memblock_end_of_DRAM());
}
#ifdef CONFIG_NUMA
static void __init zone_sizes_init(unsigned long min, unsigned long max)
{
unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
if (IS_ENABLED(CONFIG_ZONE_DMA32))
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
max_zone_pfns[ZONE_NORMAL] = max;
free_area_init_nodes(max_zone_pfns);
}
#else
static void __init zone_sizes_init(unsigned long min, unsigned long max)
{
struct memblock_region *reg;
unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
unsigned long max_dma = min;
memset(zone_size, 0, sizeof(zone_size));
/* 4GB maximum for 32-bit only capable devices */
#ifdef CONFIG_ZONE_DMA32
max_dma = PFN_DOWN(arm64_dma_phys_limit);
zone_size[ZONE_DMA32] = max_dma - min;
#endif
zone_size[ZONE_NORMAL] = max - max_dma;
memcpy(zhole_size, zone_size, sizeof(zhole_size));
for_each_memblock(memory, reg) {
unsigned long start = memblock_region_memory_base_pfn(reg);
unsigned long end = memblock_region_memory_end_pfn(reg);
if (start >= max)
continue;
#ifdef CONFIG_ZONE_DMA32
if (start < max_dma) {
unsigned long dma_end = min(end, max_dma);
zhole_size[ZONE_DMA32] -= dma_end - start;
}
#endif
if (end > max_dma) {
unsigned long normal_end = min(end, max);
unsigned long normal_start = max(start, max_dma);
zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
}
}
free_area_init_node(0, zone_size, min, zhole_size);
}
#endif /* CONFIG_NUMA */
int pfn_valid(unsigned long pfn)
{
phys_addr_t addr = pfn << PAGE_SHIFT;
if ((addr >> PAGE_SHIFT) != pfn)
return 0;
return memblock_is_map_memory(addr);
}
EXPORT_SYMBOL(pfn_valid);
#ifndef CONFIG_SPARSEMEM
static void __init arm64_memory_present(void)
{
}
#else
static void __init arm64_memory_present(void)
{
struct memblock_region *reg;
for_each_memblock(memory, reg) {
int nid = memblock_get_region_node(reg);
memory_present(nid, memblock_region_memory_base_pfn(reg),
memblock_region_memory_end_pfn(reg));
}
}
#endif
static phys_addr_t memory_limit = PHYS_ADDR_MAX;
/*
* Limit the memory size that was specified via FDT.
*/
static int __init early_mem(char *p)
{
if (!p)
return 1;
memory_limit = memparse(p, &p) & PAGE_MASK;
pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
return 0;
}
early_param("mem", early_mem);
static int __init early_init_dt_scan_usablemem(unsigned long node,
const char *uname, int depth, void *data)
{
struct memblock_region *usablemem = data;
const __be32 *reg;
int len;
if (depth != 1 || strcmp(uname, "chosen") != 0)
return 0;
reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
return 1;
usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
return 1;
}
static void __init fdt_enforce_memory_region(void)
{
struct memblock_region reg = {
.size = 0,
};
of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
if (reg.size)
memblock_cap_memory_range(reg.base, reg.size);
}
void __init arm64_memblock_init(void)
{
const s64 linear_region_size = -(s64)PAGE_OFFSET;
/* Handle linux,usable-memory-range property */
fdt_enforce_memory_region();
/* Remove memory above our supported physical address size */
memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
/*
* Ensure that the linear region takes up exactly half of the kernel
* virtual address space. This way, we can distinguish a linear address
* from a kernel/module/vmalloc address by testing a single bit.
*/
BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
/*
* Select a suitable value for the base of physical memory.
*/
memstart_addr = round_down(memblock_start_of_DRAM(),
ARM64_MEMSTART_ALIGN);
/*
* Remove the memory that we will not be able to cover with the
* linear mapping. Take care not to clip the kernel which may be
* high in memory.
*/
memblock_remove(max_t(u64, memstart_addr + linear_region_size,
__pa_symbol(_end)), ULLONG_MAX);
if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
/* ensure that memstart_addr remains sufficiently aligned */
memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
ARM64_MEMSTART_ALIGN);
memblock_remove(0, memstart_addr);
}
/*
* Apply the memory limit if it was set. Since the kernel may be loaded
* high up in memory, add back the kernel region that must be accessible
* via the linear mapping.
*/
if (memory_limit != PHYS_ADDR_MAX) {
memblock_mem_limit_remove_map(memory_limit);
memblock_add(__pa_symbol(_text), (u64)(_end - _text));
}
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
/*
* Add back the memory we just removed if it results in the
* initrd to become inaccessible via the linear mapping.
* Otherwise, this is a no-op
*/
u64 base = initrd_start & PAGE_MASK;
u64 size = PAGE_ALIGN(initrd_end) - base;
/*
* We can only add back the initrd memory if we don't end up
* with more memory than we can address via the linear mapping.
* It is up to the bootloader to position the kernel and the
* initrd reasonably close to each other (i.e., within 32 GB of
* each other) so that all granule/#levels combinations can
* always access both.
*/
if (WARN(base < memblock_start_of_DRAM() ||
base + size > memblock_start_of_DRAM() +
linear_region_size,
"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
initrd_start = 0;
} else {
memblock_remove(base, size); /* clear MEMBLOCK_ flags */
memblock_add(base, size);
memblock_reserve(base, size);
}
}
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
extern u16 memstart_offset_seed;
u64 range = linear_region_size -
(memblock_end_of_DRAM() - memblock_start_of_DRAM());
/*
* If the size of the linear region exceeds, by a sufficient
* margin, the size of the region that the available physical
* memory spans, randomize the linear region as well.
*/
if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
range = range / ARM64_MEMSTART_ALIGN + 1;
memstart_addr -= ARM64_MEMSTART_ALIGN *
((range * memstart_offset_seed) >> 16);
}
}
/*
* Register the kernel text, kernel data, initrd, and initial
* pagetables with memblock.
*/
memblock_reserve(__pa_symbol(_text), _end - _text);
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start) {
memblock_reserve(initrd_start, initrd_end - initrd_start);
/* the generic initrd code expects virtual addresses */
initrd_start = __phys_to_virt(initrd_start);
initrd_end = __phys_to_virt(initrd_end);
}
#endif
early_init_fdt_scan_reserved_mem();
/* 4GB maximum for 32-bit only capable devices */
if (IS_ENABLED(CONFIG_ZONE_DMA32))
arm64_dma_phys_limit = max_zone_dma_phys();
else
arm64_dma_phys_limit = PHYS_MASK + 1;
reserve_crashkernel();
reserve_elfcorehdr();
high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
dma_contiguous_reserve(arm64_dma_phys_limit);
memblock_allow_resize();
}
void __init bootmem_init(void)
{
unsigned long min, max;
min = PFN_UP(memblock_start_of_DRAM());
max = PFN_DOWN(memblock_end_of_DRAM());
early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
max_pfn = max_low_pfn = max;
arm64_numa_init();
/*
* Sparsemem tries to allocate bootmem in memory_present(), so must be
* done after the fixed reservations.
*/
arm64_memory_present();
sparse_init();
zone_sizes_init(min, max);
memblock_dump_all();
}
#ifndef CONFIG_SPARSEMEM_VMEMMAP
static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
{
struct page *start_pg, *end_pg;
unsigned long pg, pgend;
/*
* Convert start_pfn/end_pfn to a struct page pointer.
*/
start_pg = pfn_to_page(start_pfn - 1) + 1;
end_pg = pfn_to_page(end_pfn - 1) + 1;
/*
* Convert to physical addresses, and round start upwards and end
* downwards.
*/
pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
/*
* If there are free pages between these, free the section of the
* memmap array.
*/
if (pg < pgend)
memblock_free(pg, pgend - pg);
}
/*
* The mem_map array can get very big. Free the unused area of the memory map.
*/
static void __init free_unused_memmap(void)
{
unsigned long start, prev_end = 0;
struct memblock_region *reg;
for_each_memblock(memory, reg) {
start = __phys_to_pfn(reg->base);
#ifdef CONFIG_SPARSEMEM
/*
* Take care not to free memmap entries that don't exist due
* to SPARSEMEM sections which aren't present.
*/
start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
#endif
/*
* If we had a previous bank, and there is a space between the
* current bank and the previous, free it.
*/
if (prev_end && prev_end < start)
free_memmap(prev_end, start);
/*
* Align up here since the VM subsystem insists that the
* memmap entries are valid from the bank end aligned to
* MAX_ORDER_NR_PAGES.
*/
prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
MAX_ORDER_NR_PAGES);
}
#ifdef CONFIG_SPARSEMEM
if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
#endif
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
/*
* mem_init() marks the free areas in the mem_map and tells us how much memory
* is free. This is done after various parts of the system have claimed their
* memory after the kernel image.
*/
void __init mem_init(void)
{
if (swiotlb_force == SWIOTLB_FORCE ||
max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
swiotlb_init(1);
else
swiotlb_force = SWIOTLB_NO_FORCE;
set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
#ifndef CONFIG_SPARSEMEM_VMEMMAP
free_unused_memmap();
#endif
/* this will put all unused low memory onto the freelists */
memblock_free_all();
kexec_reserve_crashkres_pages();
mem_init_print_info(NULL);
/*
* Check boundaries twice: Some fundamental inconsistencies can be
* detected at build time already.
*/
#ifdef CONFIG_COMPAT
BUILD_BUG_ON(TASK_SIZE_32 > TASK_SIZE_64);
#endif
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Make sure we chose the upper bound of sizeof(struct page)
* correctly when sizing the VMEMMAP array.
*/
BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
#endif
if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
extern int sysctl_overcommit_memory;
/*
* On a machine this small we won't get anywhere without
* overcommit, so turn it on by default.
*/
sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
}
}
void free_initmem(void)
{
free_reserved_area(lm_alias(__init_begin),
lm_alias(__init_end),
0, "unused kernel");
/*
* Unmap the __init region but leave the VM area in place. This
* prevents the region from being reused for kernel modules, which
* is not supported by kallsyms.
*/
unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
}
#ifdef CONFIG_BLK_DEV_INITRD
static int keep_initrd __initdata;
void __init free_initrd_mem(unsigned long start, unsigned long end)
{
if (!keep_initrd) {
free_reserved_area((void *)start, (void *)end, 0, "initrd");
memblock_free(__virt_to_phys(start), end - start);
}
}
static int __init keepinitrd_setup(char *__unused)
{
keep_initrd = 1;
return 1;
}
__setup("keepinitrd", keepinitrd_setup);
#endif
/*
* Dump out memory limit information on panic.
*/
static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
{
if (memory_limit != PHYS_ADDR_MAX) {
pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
} else {
pr_emerg("Memory Limit: none\n");
}
return 0;
}
static struct notifier_block mem_limit_notifier = {
.notifier_call = dump_mem_limit,
};
static int __init register_mem_limit_dumper(void)
{
atomic_notifier_chain_register(&panic_notifier_list,
&mem_limit_notifier);
return 0;
}
__initcall(register_mem_limit_dumper);