mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 09:39:34 +07:00
4e8b14526c
Unexpected behavior could occur if the time is set to a value large enough to overflow a 64bit ktime_t (which is something larger then the year 2262). Also unexpected behavior could occur if large negative offsets are injected via adjtimex. So this patch improves the sanity check timekeeping inputs by improving the timespec_valid() check, and then makes better use of timespec_valid() to make sure we don't set the time to an invalid negative value or one that overflows ktime_t. Note: This does not protect from setting the time close to overflowing ktime_t and then letting natural accumulation cause the overflow. Reported-by: CAI Qian <caiqian@redhat.com> Reported-by: Sasha Levin <levinsasha928@gmail.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Zhouping Liu <zliu@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1344454580-17031-1-git-send-email-john.stultz@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
336 lines
9.1 KiB
C
336 lines
9.1 KiB
C
/*
|
|
* include/linux/ktime.h
|
|
*
|
|
* ktime_t - nanosecond-resolution time format.
|
|
*
|
|
* Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
|
|
*
|
|
* data type definitions, declarations, prototypes and macros.
|
|
*
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
*
|
|
* Credits:
|
|
*
|
|
* Roman Zippel provided the ideas and primary code snippets of
|
|
* the ktime_t union and further simplifications of the original
|
|
* code.
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
#ifndef _LINUX_KTIME_H
|
|
#define _LINUX_KTIME_H
|
|
|
|
#include <linux/time.h>
|
|
#include <linux/jiffies.h>
|
|
|
|
/*
|
|
* ktime_t:
|
|
*
|
|
* On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
|
|
* internal representation of time values in scalar nanoseconds. The
|
|
* design plays out best on 64-bit CPUs, where most conversions are
|
|
* NOPs and most arithmetic ktime_t operations are plain arithmetic
|
|
* operations.
|
|
*
|
|
* On 32-bit CPUs an optimized representation of the timespec structure
|
|
* is used to avoid expensive conversions from and to timespecs. The
|
|
* endian-aware order of the tv struct members is chosen to allow
|
|
* mathematical operations on the tv64 member of the union too, which
|
|
* for certain operations produces better code.
|
|
*
|
|
* For architectures with efficient support for 64/32-bit conversions the
|
|
* plain scalar nanosecond based representation can be selected by the
|
|
* config switch CONFIG_KTIME_SCALAR.
|
|
*/
|
|
union ktime {
|
|
s64 tv64;
|
|
#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
|
|
struct {
|
|
# ifdef __BIG_ENDIAN
|
|
s32 sec, nsec;
|
|
# else
|
|
s32 nsec, sec;
|
|
# endif
|
|
} tv;
|
|
#endif
|
|
};
|
|
|
|
typedef union ktime ktime_t; /* Kill this */
|
|
|
|
/*
|
|
* ktime_t definitions when using the 64-bit scalar representation:
|
|
*/
|
|
|
|
#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
|
|
|
|
/**
|
|
* ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
|
|
* @secs: seconds to set
|
|
* @nsecs: nanoseconds to set
|
|
*
|
|
* Return the ktime_t representation of the value
|
|
*/
|
|
static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
|
|
{
|
|
#if (BITS_PER_LONG == 64)
|
|
if (unlikely(secs >= KTIME_SEC_MAX))
|
|
return (ktime_t){ .tv64 = KTIME_MAX };
|
|
#endif
|
|
return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
|
|
}
|
|
|
|
/* Subtract two ktime_t variables. rem = lhs -rhs: */
|
|
#define ktime_sub(lhs, rhs) \
|
|
({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
|
|
|
|
/* Add two ktime_t variables. res = lhs + rhs: */
|
|
#define ktime_add(lhs, rhs) \
|
|
({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
|
|
|
|
/*
|
|
* Add a ktime_t variable and a scalar nanosecond value.
|
|
* res = kt + nsval:
|
|
*/
|
|
#define ktime_add_ns(kt, nsval) \
|
|
({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
|
|
|
|
/*
|
|
* Subtract a scalar nanosecod from a ktime_t variable
|
|
* res = kt - nsval:
|
|
*/
|
|
#define ktime_sub_ns(kt, nsval) \
|
|
({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
|
|
|
|
/* convert a timespec to ktime_t format: */
|
|
static inline ktime_t timespec_to_ktime(struct timespec ts)
|
|
{
|
|
return ktime_set(ts.tv_sec, ts.tv_nsec);
|
|
}
|
|
|
|
/* convert a timeval to ktime_t format: */
|
|
static inline ktime_t timeval_to_ktime(struct timeval tv)
|
|
{
|
|
return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
|
|
}
|
|
|
|
/* Map the ktime_t to timespec conversion to ns_to_timespec function */
|
|
#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
|
|
|
|
/* Map the ktime_t to timeval conversion to ns_to_timeval function */
|
|
#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
|
|
|
|
/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
|
|
#define ktime_to_ns(kt) ((kt).tv64)
|
|
|
|
#else /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
|
|
|
|
/*
|
|
* Helper macros/inlines to get the ktime_t math right in the timespec
|
|
* representation. The macros are sometimes ugly - their actual use is
|
|
* pretty okay-ish, given the circumstances. We do all this for
|
|
* performance reasons. The pure scalar nsec_t based code was nice and
|
|
* simple, but created too many 64-bit / 32-bit conversions and divisions.
|
|
*
|
|
* Be especially aware that negative values are represented in a way
|
|
* that the tv.sec field is negative and the tv.nsec field is greater
|
|
* or equal to zero but less than nanoseconds per second. This is the
|
|
* same representation which is used by timespecs.
|
|
*
|
|
* tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
|
|
*/
|
|
|
|
/* Set a ktime_t variable to a value in sec/nsec representation: */
|
|
static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
|
|
{
|
|
return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
|
|
}
|
|
|
|
/**
|
|
* ktime_sub - subtract two ktime_t variables
|
|
* @lhs: minuend
|
|
* @rhs: subtrahend
|
|
*
|
|
* Returns the remainder of the subtraction
|
|
*/
|
|
static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
|
|
{
|
|
ktime_t res;
|
|
|
|
res.tv64 = lhs.tv64 - rhs.tv64;
|
|
if (res.tv.nsec < 0)
|
|
res.tv.nsec += NSEC_PER_SEC;
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* ktime_add - add two ktime_t variables
|
|
* @add1: addend1
|
|
* @add2: addend2
|
|
*
|
|
* Returns the sum of @add1 and @add2.
|
|
*/
|
|
static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
|
|
{
|
|
ktime_t res;
|
|
|
|
res.tv64 = add1.tv64 + add2.tv64;
|
|
/*
|
|
* performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
|
|
* so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
|
|
*
|
|
* it's equivalent to:
|
|
* tv.nsec -= NSEC_PER_SEC
|
|
* tv.sec ++;
|
|
*/
|
|
if (res.tv.nsec >= NSEC_PER_SEC)
|
|
res.tv64 += (u32)-NSEC_PER_SEC;
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
|
|
* @kt: addend
|
|
* @nsec: the scalar nsec value to add
|
|
*
|
|
* Returns the sum of @kt and @nsec in ktime_t format
|
|
*/
|
|
extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
|
|
|
|
/**
|
|
* ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
|
|
* @kt: minuend
|
|
* @nsec: the scalar nsec value to subtract
|
|
*
|
|
* Returns the subtraction of @nsec from @kt in ktime_t format
|
|
*/
|
|
extern ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec);
|
|
|
|
/**
|
|
* timespec_to_ktime - convert a timespec to ktime_t format
|
|
* @ts: the timespec variable to convert
|
|
*
|
|
* Returns a ktime_t variable with the converted timespec value
|
|
*/
|
|
static inline ktime_t timespec_to_ktime(const struct timespec ts)
|
|
{
|
|
return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
|
|
.nsec = (s32)ts.tv_nsec } };
|
|
}
|
|
|
|
/**
|
|
* timeval_to_ktime - convert a timeval to ktime_t format
|
|
* @tv: the timeval variable to convert
|
|
*
|
|
* Returns a ktime_t variable with the converted timeval value
|
|
*/
|
|
static inline ktime_t timeval_to_ktime(const struct timeval tv)
|
|
{
|
|
return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
|
|
.nsec = (s32)tv.tv_usec * 1000 } };
|
|
}
|
|
|
|
/**
|
|
* ktime_to_timespec - convert a ktime_t variable to timespec format
|
|
* @kt: the ktime_t variable to convert
|
|
*
|
|
* Returns the timespec representation of the ktime value
|
|
*/
|
|
static inline struct timespec ktime_to_timespec(const ktime_t kt)
|
|
{
|
|
return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
|
|
.tv_nsec = (long) kt.tv.nsec };
|
|
}
|
|
|
|
/**
|
|
* ktime_to_timeval - convert a ktime_t variable to timeval format
|
|
* @kt: the ktime_t variable to convert
|
|
*
|
|
* Returns the timeval representation of the ktime value
|
|
*/
|
|
static inline struct timeval ktime_to_timeval(const ktime_t kt)
|
|
{
|
|
return (struct timeval) {
|
|
.tv_sec = (time_t) kt.tv.sec,
|
|
.tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
|
|
}
|
|
|
|
/**
|
|
* ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
|
|
* @kt: the ktime_t variable to convert
|
|
*
|
|
* Returns the scalar nanoseconds representation of @kt
|
|
*/
|
|
static inline s64 ktime_to_ns(const ktime_t kt)
|
|
{
|
|
return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
|
|
}
|
|
|
|
#endif /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
|
|
|
|
/**
|
|
* ktime_equal - Compares two ktime_t variables to see if they are equal
|
|
* @cmp1: comparable1
|
|
* @cmp2: comparable2
|
|
*
|
|
* Compare two ktime_t variables, returns 1 if equal
|
|
*/
|
|
static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
|
|
{
|
|
return cmp1.tv64 == cmp2.tv64;
|
|
}
|
|
|
|
static inline s64 ktime_to_us(const ktime_t kt)
|
|
{
|
|
struct timeval tv = ktime_to_timeval(kt);
|
|
return (s64) tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
|
|
}
|
|
|
|
static inline s64 ktime_to_ms(const ktime_t kt)
|
|
{
|
|
struct timeval tv = ktime_to_timeval(kt);
|
|
return (s64) tv.tv_sec * MSEC_PER_SEC + tv.tv_usec / USEC_PER_MSEC;
|
|
}
|
|
|
|
static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
|
|
{
|
|
return ktime_to_us(ktime_sub(later, earlier));
|
|
}
|
|
|
|
static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
|
|
{
|
|
return ktime_add_ns(kt, usec * 1000);
|
|
}
|
|
|
|
static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
|
|
{
|
|
return ktime_sub_ns(kt, usec * 1000);
|
|
}
|
|
|
|
extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
|
|
|
|
/*
|
|
* The resolution of the clocks. The resolution value is returned in
|
|
* the clock_getres() system call to give application programmers an
|
|
* idea of the (in)accuracy of timers. Timer values are rounded up to
|
|
* this resolution values.
|
|
*/
|
|
#define LOW_RES_NSEC TICK_NSEC
|
|
#define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC }
|
|
|
|
/* Get the monotonic time in timespec format: */
|
|
extern void ktime_get_ts(struct timespec *ts);
|
|
|
|
/* Get the real (wall-) time in timespec format: */
|
|
#define ktime_get_real_ts(ts) getnstimeofday(ts)
|
|
|
|
static inline ktime_t ns_to_ktime(u64 ns)
|
|
{
|
|
static const ktime_t ktime_zero = { .tv64 = 0 };
|
|
return ktime_add_ns(ktime_zero, ns);
|
|
}
|
|
|
|
#endif
|