linux_dsm_epyc7002/arch/powerpc/perf/core-book3s.c
Linus Torvalds 9d3cae26ac Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Benjamin Herrenschmidt:
 "So from the depth of frozen Minnesota, here's the powerpc pull request
  for 3.9.  It has a few interesting highlights, in addition to the
  usual bunch of bug fixes, minor updates, embedded device tree updates
  and new boards:

   - Hand tuned asm implementation of SHA1 (by Paulus & Michael
     Ellerman)

   - Support for Doorbell interrupts on Power8 (kind of fast
     thread-thread IPIs) by Ian Munsie

   - Long overdue cleanup of the way we handle relocation of our open
     firmware trampoline (prom_init.c) on 64-bit by Anton Blanchard

   - Support for saving/restoring & context switching the PPR (Processor
     Priority Register) on server processors that support it.  This
     allows the kernel to preserve thread priorities established by
     userspace.  By Haren Myneni.

   - DAWR (new watchpoint facility) support on Power8 by Michael Neuling

   - Ability to change the DSCR (Data Stream Control Register) which
     controls cache prefetching on a running process via ptrace by
     Alexey Kardashevskiy

   - Support for context switching the TAR register on Power8 (new
     branch target register meant to be used by some new specific
     userspace perf event interrupt facility which is yet to be enabled)
     by Ian Munsie.

   - Improve preservation of the CFAR register (which captures the
     origin of a branch) on various exception conditions by Paulus.

   - Move the Bestcomm DMA driver from arch powerpc to drivers/dma where
     it belongs by Philippe De Muyter

   - Support for Transactional Memory on Power8 by Michael Neuling
     (based on original work by Matt Evans).  For those curious about
     the feature, the patch contains a pretty good description."

(See commit db8ff90702: "powerpc: Documentation for transactional
memory on powerpc" for the mentioned description added to the file
Documentation/powerpc/transactional_memory.txt)

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (140 commits)
  powerpc/kexec: Disable hard IRQ before kexec
  powerpc/85xx: l2sram - Add compatible string for BSC9131 platform
  powerpc/85xx: bsc9131 - Correct typo in SDHC device node
  powerpc/e500/qemu-e500: enable coreint
  powerpc/mpic: allow coreint to be determined by MPIC version
  powerpc/fsl_pci: Store the pci ctlr device ptr in the pci ctlr struct
  powerpc/85xx: Board support for ppa8548
  powerpc/fsl: remove extraneous DIU platform functions
  arch/powerpc/platforms/85xx/p1022_ds.c: adjust duplicate test
  powerpc: Documentation for transactional memory on powerpc
  powerpc: Add transactional memory to pseries and ppc64 defconfigs
  powerpc: Add config option for transactional memory
  powerpc: Add transactional memory to POWER8 cpu features
  powerpc: Add new transactional memory state to the signal context
  powerpc: Hook in new transactional memory code
  powerpc: Routines for FP/VSX/VMX unavailable during a transaction
  powerpc: Add transactional memory unavaliable execption handler
  powerpc: Add reclaim and recheckpoint functions for context switching transactional memory processes
  powerpc: Add FP/VSX and VMX register load functions for transactional memory
  powerpc: Add helper functions for transactional memory context switching
  ...
2013-02-23 17:09:55 -08:00

1600 lines
38 KiB
C

/*
* Performance event support - powerpc architecture code
*
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/perf_event.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/reg.h>
#include <asm/pmc.h>
#include <asm/machdep.h>
#include <asm/firmware.h>
#include <asm/ptrace.h>
struct cpu_hw_events {
int n_events;
int n_percpu;
int disabled;
int n_added;
int n_limited;
u8 pmcs_enabled;
struct perf_event *event[MAX_HWEVENTS];
u64 events[MAX_HWEVENTS];
unsigned int flags[MAX_HWEVENTS];
unsigned long mmcr[3];
struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
unsigned int group_flag;
int n_txn_start;
};
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
struct power_pmu *ppmu;
/*
* Normally, to ignore kernel events we set the FCS (freeze counters
* in supervisor mode) bit in MMCR0, but if the kernel runs with the
* hypervisor bit set in the MSR, or if we are running on a processor
* where the hypervisor bit is forced to 1 (as on Apple G5 processors),
* then we need to use the FCHV bit to ignore kernel events.
*/
static unsigned int freeze_events_kernel = MMCR0_FCS;
/*
* 32-bit doesn't have MMCRA but does have an MMCR2,
* and a few other names are different.
*/
#ifdef CONFIG_PPC32
#define MMCR0_FCHV 0
#define MMCR0_PMCjCE MMCR0_PMCnCE
#define SPRN_MMCRA SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE 0
static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
return 0;
}
static inline void perf_read_regs(struct pt_regs *regs)
{
regs->result = 0;
}
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
return 0;
}
static inline int siar_valid(struct pt_regs *regs)
{
return 1;
}
#endif /* CONFIG_PPC32 */
/*
* Things that are specific to 64-bit implementations.
*/
#ifdef CONFIG_PPC64
static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
unsigned long mmcra = regs->dsisr;
if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
if (slot > 1)
return 4 * (slot - 1);
}
return 0;
}
/*
* The user wants a data address recorded.
* If we're not doing instruction sampling, give them the SDAR
* (sampled data address). If we are doing instruction sampling, then
* only give them the SDAR if it corresponds to the instruction
* pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC or
* the [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA.
*/
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
unsigned long mmcra = regs->dsisr;
unsigned long sdsync;
if (ppmu->flags & PPMU_SIAR_VALID)
sdsync = POWER7P_MMCRA_SDAR_VALID;
else if (ppmu->flags & PPMU_ALT_SIPR)
sdsync = POWER6_MMCRA_SDSYNC;
else
sdsync = MMCRA_SDSYNC;
if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
*addrp = mfspr(SPRN_SDAR);
}
static bool mmcra_sihv(unsigned long mmcra)
{
unsigned long sihv = MMCRA_SIHV;
if (ppmu->flags & PPMU_ALT_SIPR)
sihv = POWER6_MMCRA_SIHV;
return !!(mmcra & sihv);
}
static bool mmcra_sipr(unsigned long mmcra)
{
unsigned long sipr = MMCRA_SIPR;
if (ppmu->flags & PPMU_ALT_SIPR)
sipr = POWER6_MMCRA_SIPR;
return !!(mmcra & sipr);
}
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
if (regs->msr & MSR_PR)
return PERF_RECORD_MISC_USER;
if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
return PERF_RECORD_MISC_HYPERVISOR;
return PERF_RECORD_MISC_KERNEL;
}
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
unsigned long mmcra = regs->dsisr;
unsigned long use_siar = regs->result;
if (!use_siar)
return perf_flags_from_msr(regs);
/*
* If we don't have flags in MMCRA, rather than using
* the MSR, we intuit the flags from the address in
* SIAR which should give slightly more reliable
* results
*/
if (ppmu->flags & PPMU_NO_SIPR) {
unsigned long siar = mfspr(SPRN_SIAR);
if (siar >= PAGE_OFFSET)
return PERF_RECORD_MISC_KERNEL;
return PERF_RECORD_MISC_USER;
}
/* PR has priority over HV, so order below is important */
if (mmcra_sipr(mmcra))
return PERF_RECORD_MISC_USER;
if (mmcra_sihv(mmcra) && (freeze_events_kernel != MMCR0_FCHV))
return PERF_RECORD_MISC_HYPERVISOR;
return PERF_RECORD_MISC_KERNEL;
}
/*
* Overload regs->dsisr to store MMCRA so we only need to read it once
* on each interrupt.
* Overload regs->result to specify whether we should use the MSR (result
* is zero) or the SIAR (result is non zero).
*/
static inline void perf_read_regs(struct pt_regs *regs)
{
unsigned long mmcra = mfspr(SPRN_MMCRA);
int marked = mmcra & MMCRA_SAMPLE_ENABLE;
int use_siar;
/*
* If this isn't a PMU exception (eg a software event) the SIAR is
* not valid. Use pt_regs.
*
* If it is a marked event use the SIAR.
*
* If the PMU doesn't update the SIAR for non marked events use
* pt_regs.
*
* If the PMU has HV/PR flags then check to see if they
* place the exception in userspace. If so, use pt_regs. In
* continuous sampling mode the SIAR and the PMU exception are
* not synchronised, so they may be many instructions apart.
* This can result in confusing backtraces. We still want
* hypervisor samples as well as samples in the kernel with
* interrupts off hence the userspace check.
*/
if (TRAP(regs) != 0xf00)
use_siar = 0;
else if (marked)
use_siar = 1;
else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
use_siar = 0;
else if (!(ppmu->flags & PPMU_NO_SIPR) && mmcra_sipr(mmcra))
use_siar = 0;
else
use_siar = 1;
regs->dsisr = mmcra;
regs->result = use_siar;
}
/*
* If interrupts were soft-disabled when a PMU interrupt occurs, treat
* it as an NMI.
*/
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
return !regs->softe;
}
/*
* On processors like P7+ that have the SIAR-Valid bit, marked instructions
* must be sampled only if the SIAR-valid bit is set.
*
* For unmarked instructions and for processors that don't have the SIAR-Valid
* bit, assume that SIAR is valid.
*/
static inline int siar_valid(struct pt_regs *regs)
{
unsigned long mmcra = regs->dsisr;
int marked = mmcra & MMCRA_SAMPLE_ENABLE;
if ((ppmu->flags & PPMU_SIAR_VALID) && marked)
return mmcra & POWER7P_MMCRA_SIAR_VALID;
return 1;
}
#endif /* CONFIG_PPC64 */
static void perf_event_interrupt(struct pt_regs *regs);
void perf_event_print_debug(void)
{
}
/*
* Read one performance monitor counter (PMC).
*/
static unsigned long read_pmc(int idx)
{
unsigned long val;
switch (idx) {
case 1:
val = mfspr(SPRN_PMC1);
break;
case 2:
val = mfspr(SPRN_PMC2);
break;
case 3:
val = mfspr(SPRN_PMC3);
break;
case 4:
val = mfspr(SPRN_PMC4);
break;
case 5:
val = mfspr(SPRN_PMC5);
break;
case 6:
val = mfspr(SPRN_PMC6);
break;
#ifdef CONFIG_PPC64
case 7:
val = mfspr(SPRN_PMC7);
break;
case 8:
val = mfspr(SPRN_PMC8);
break;
#endif /* CONFIG_PPC64 */
default:
printk(KERN_ERR "oops trying to read PMC%d\n", idx);
val = 0;
}
return val;
}
/*
* Write one PMC.
*/
static void write_pmc(int idx, unsigned long val)
{
switch (idx) {
case 1:
mtspr(SPRN_PMC1, val);
break;
case 2:
mtspr(SPRN_PMC2, val);
break;
case 3:
mtspr(SPRN_PMC3, val);
break;
case 4:
mtspr(SPRN_PMC4, val);
break;
case 5:
mtspr(SPRN_PMC5, val);
break;
case 6:
mtspr(SPRN_PMC6, val);
break;
#ifdef CONFIG_PPC64
case 7:
mtspr(SPRN_PMC7, val);
break;
case 8:
mtspr(SPRN_PMC8, val);
break;
#endif /* CONFIG_PPC64 */
default:
printk(KERN_ERR "oops trying to write PMC%d\n", idx);
}
}
/*
* Check if a set of events can all go on the PMU at once.
* If they can't, this will look at alternative codes for the events
* and see if any combination of alternative codes is feasible.
* The feasible set is returned in event_id[].
*/
static int power_check_constraints(struct cpu_hw_events *cpuhw,
u64 event_id[], unsigned int cflags[],
int n_ev)
{
unsigned long mask, value, nv;
unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
int i, j;
unsigned long addf = ppmu->add_fields;
unsigned long tadd = ppmu->test_adder;
if (n_ev > ppmu->n_counter)
return -1;
/* First see if the events will go on as-is */
for (i = 0; i < n_ev; ++i) {
if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
&& !ppmu->limited_pmc_event(event_id[i])) {
ppmu->get_alternatives(event_id[i], cflags[i],
cpuhw->alternatives[i]);
event_id[i] = cpuhw->alternatives[i][0];
}
if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
&cpuhw->avalues[i][0]))
return -1;
}
value = mask = 0;
for (i = 0; i < n_ev; ++i) {
nv = (value | cpuhw->avalues[i][0]) +
(value & cpuhw->avalues[i][0] & addf);
if ((((nv + tadd) ^ value) & mask) != 0 ||
(((nv + tadd) ^ cpuhw->avalues[i][0]) &
cpuhw->amasks[i][0]) != 0)
break;
value = nv;
mask |= cpuhw->amasks[i][0];
}
if (i == n_ev)
return 0; /* all OK */
/* doesn't work, gather alternatives... */
if (!ppmu->get_alternatives)
return -1;
for (i = 0; i < n_ev; ++i) {
choice[i] = 0;
n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
cpuhw->alternatives[i]);
for (j = 1; j < n_alt[i]; ++j)
ppmu->get_constraint(cpuhw->alternatives[i][j],
&cpuhw->amasks[i][j],
&cpuhw->avalues[i][j]);
}
/* enumerate all possibilities and see if any will work */
i = 0;
j = -1;
value = mask = nv = 0;
while (i < n_ev) {
if (j >= 0) {
/* we're backtracking, restore context */
value = svalues[i];
mask = smasks[i];
j = choice[i];
}
/*
* See if any alternative k for event_id i,
* where k > j, will satisfy the constraints.
*/
while (++j < n_alt[i]) {
nv = (value | cpuhw->avalues[i][j]) +
(value & cpuhw->avalues[i][j] & addf);
if ((((nv + tadd) ^ value) & mask) == 0 &&
(((nv + tadd) ^ cpuhw->avalues[i][j])
& cpuhw->amasks[i][j]) == 0)
break;
}
if (j >= n_alt[i]) {
/*
* No feasible alternative, backtrack
* to event_id i-1 and continue enumerating its
* alternatives from where we got up to.
*/
if (--i < 0)
return -1;
} else {
/*
* Found a feasible alternative for event_id i,
* remember where we got up to with this event_id,
* go on to the next event_id, and start with
* the first alternative for it.
*/
choice[i] = j;
svalues[i] = value;
smasks[i] = mask;
value = nv;
mask |= cpuhw->amasks[i][j];
++i;
j = -1;
}
}
/* OK, we have a feasible combination, tell the caller the solution */
for (i = 0; i < n_ev; ++i)
event_id[i] = cpuhw->alternatives[i][choice[i]];
return 0;
}
/*
* Check if newly-added events have consistent settings for
* exclude_{user,kernel,hv} with each other and any previously
* added events.
*/
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
int n_prev, int n_new)
{
int eu = 0, ek = 0, eh = 0;
int i, n, first;
struct perf_event *event;
n = n_prev + n_new;
if (n <= 1)
return 0;
first = 1;
for (i = 0; i < n; ++i) {
if (cflags[i] & PPMU_LIMITED_PMC_OK) {
cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
continue;
}
event = ctrs[i];
if (first) {
eu = event->attr.exclude_user;
ek = event->attr.exclude_kernel;
eh = event->attr.exclude_hv;
first = 0;
} else if (event->attr.exclude_user != eu ||
event->attr.exclude_kernel != ek ||
event->attr.exclude_hv != eh) {
return -EAGAIN;
}
}
if (eu || ek || eh)
for (i = 0; i < n; ++i)
if (cflags[i] & PPMU_LIMITED_PMC_OK)
cflags[i] |= PPMU_LIMITED_PMC_REQD;
return 0;
}
static u64 check_and_compute_delta(u64 prev, u64 val)
{
u64 delta = (val - prev) & 0xfffffffful;
/*
* POWER7 can roll back counter values, if the new value is smaller
* than the previous value it will cause the delta and the counter to
* have bogus values unless we rolled a counter over. If a coutner is
* rolled back, it will be smaller, but within 256, which is the maximum
* number of events to rollback at once. If we dectect a rollback
* return 0. This can lead to a small lack of precision in the
* counters.
*/
if (prev > val && (prev - val) < 256)
delta = 0;
return delta;
}
static void power_pmu_read(struct perf_event *event)
{
s64 val, delta, prev;
if (event->hw.state & PERF_HES_STOPPED)
return;
if (!event->hw.idx)
return;
/*
* Performance monitor interrupts come even when interrupts
* are soft-disabled, as long as interrupts are hard-enabled.
* Therefore we treat them like NMIs.
*/
do {
prev = local64_read(&event->hw.prev_count);
barrier();
val = read_pmc(event->hw.idx);
delta = check_and_compute_delta(prev, val);
if (!delta)
return;
} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
local64_add(delta, &event->count);
local64_sub(delta, &event->hw.period_left);
}
/*
* On some machines, PMC5 and PMC6 can't be written, don't respect
* the freeze conditions, and don't generate interrupts. This tells
* us if `event' is using such a PMC.
*/
static int is_limited_pmc(int pmcnum)
{
return (ppmu->flags & PPMU_LIMITED_PMC5_6)
&& (pmcnum == 5 || pmcnum == 6);
}
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
unsigned long pmc5, unsigned long pmc6)
{
struct perf_event *event;
u64 val, prev, delta;
int i;
for (i = 0; i < cpuhw->n_limited; ++i) {
event = cpuhw->limited_counter[i];
if (!event->hw.idx)
continue;
val = (event->hw.idx == 5) ? pmc5 : pmc6;
prev = local64_read(&event->hw.prev_count);
event->hw.idx = 0;
delta = check_and_compute_delta(prev, val);
if (delta)
local64_add(delta, &event->count);
}
}
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
unsigned long pmc5, unsigned long pmc6)
{
struct perf_event *event;
u64 val, prev;
int i;
for (i = 0; i < cpuhw->n_limited; ++i) {
event = cpuhw->limited_counter[i];
event->hw.idx = cpuhw->limited_hwidx[i];
val = (event->hw.idx == 5) ? pmc5 : pmc6;
prev = local64_read(&event->hw.prev_count);
if (check_and_compute_delta(prev, val))
local64_set(&event->hw.prev_count, val);
perf_event_update_userpage(event);
}
}
/*
* Since limited events don't respect the freeze conditions, we
* have to read them immediately after freezing or unfreezing the
* other events. We try to keep the values from the limited
* events as consistent as possible by keeping the delay (in
* cycles and instructions) between freezing/unfreezing and reading
* the limited events as small and consistent as possible.
* Therefore, if any limited events are in use, we read them
* both, and always in the same order, to minimize variability,
* and do it inside the same asm that writes MMCR0.
*/
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
{
unsigned long pmc5, pmc6;
if (!cpuhw->n_limited) {
mtspr(SPRN_MMCR0, mmcr0);
return;
}
/*
* Write MMCR0, then read PMC5 and PMC6 immediately.
* To ensure we don't get a performance monitor interrupt
* between writing MMCR0 and freezing/thawing the limited
* events, we first write MMCR0 with the event overflow
* interrupt enable bits turned off.
*/
asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
: "=&r" (pmc5), "=&r" (pmc6)
: "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
"i" (SPRN_MMCR0),
"i" (SPRN_PMC5), "i" (SPRN_PMC6));
if (mmcr0 & MMCR0_FC)
freeze_limited_counters(cpuhw, pmc5, pmc6);
else
thaw_limited_counters(cpuhw, pmc5, pmc6);
/*
* Write the full MMCR0 including the event overflow interrupt
* enable bits, if necessary.
*/
if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
mtspr(SPRN_MMCR0, mmcr0);
}
/*
* Disable all events to prevent PMU interrupts and to allow
* events to be added or removed.
*/
static void power_pmu_disable(struct pmu *pmu)
{
struct cpu_hw_events *cpuhw;
unsigned long flags;
if (!ppmu)
return;
local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_events);
if (!cpuhw->disabled) {
cpuhw->disabled = 1;
cpuhw->n_added = 0;
/*
* Check if we ever enabled the PMU on this cpu.
*/
if (!cpuhw->pmcs_enabled) {
ppc_enable_pmcs();
cpuhw->pmcs_enabled = 1;
}
/*
* Disable instruction sampling if it was enabled
*/
if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
mtspr(SPRN_MMCRA,
cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
mb();
}
/*
* Set the 'freeze counters' bit.
* The barrier is to make sure the mtspr has been
* executed and the PMU has frozen the events
* before we return.
*/
write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
mb();
}
local_irq_restore(flags);
}
/*
* Re-enable all events if disable == 0.
* If we were previously disabled and events were added, then
* put the new config on the PMU.
*/
static void power_pmu_enable(struct pmu *pmu)
{
struct perf_event *event;
struct cpu_hw_events *cpuhw;
unsigned long flags;
long i;
unsigned long val;
s64 left;
unsigned int hwc_index[MAX_HWEVENTS];
int n_lim;
int idx;
if (!ppmu)
return;
local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_events);
if (!cpuhw->disabled) {
local_irq_restore(flags);
return;
}
cpuhw->disabled = 0;
/*
* If we didn't change anything, or only removed events,
* no need to recalculate MMCR* settings and reset the PMCs.
* Just reenable the PMU with the current MMCR* settings
* (possibly updated for removal of events).
*/
if (!cpuhw->n_added) {
mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
if (cpuhw->n_events == 0)
ppc_set_pmu_inuse(0);
goto out_enable;
}
/*
* Compute MMCR* values for the new set of events
*/
if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
cpuhw->mmcr)) {
/* shouldn't ever get here */
printk(KERN_ERR "oops compute_mmcr failed\n");
goto out;
}
/*
* Add in MMCR0 freeze bits corresponding to the
* attr.exclude_* bits for the first event.
* We have already checked that all events have the
* same values for these bits as the first event.
*/
event = cpuhw->event[0];
if (event->attr.exclude_user)
cpuhw->mmcr[0] |= MMCR0_FCP;
if (event->attr.exclude_kernel)
cpuhw->mmcr[0] |= freeze_events_kernel;
if (event->attr.exclude_hv)
cpuhw->mmcr[0] |= MMCR0_FCHV;
/*
* Write the new configuration to MMCR* with the freeze
* bit set and set the hardware events to their initial values.
* Then unfreeze the events.
*/
ppc_set_pmu_inuse(1);
mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
| MMCR0_FC);
/*
* Read off any pre-existing events that need to move
* to another PMC.
*/
for (i = 0; i < cpuhw->n_events; ++i) {
event = cpuhw->event[i];
if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
power_pmu_read(event);
write_pmc(event->hw.idx, 0);
event->hw.idx = 0;
}
}
/*
* Initialize the PMCs for all the new and moved events.
*/
cpuhw->n_limited = n_lim = 0;
for (i = 0; i < cpuhw->n_events; ++i) {
event = cpuhw->event[i];
if (event->hw.idx)
continue;
idx = hwc_index[i] + 1;
if (is_limited_pmc(idx)) {
cpuhw->limited_counter[n_lim] = event;
cpuhw->limited_hwidx[n_lim] = idx;
++n_lim;
continue;
}
val = 0;
if (event->hw.sample_period) {
left = local64_read(&event->hw.period_left);
if (left < 0x80000000L)
val = 0x80000000L - left;
}
local64_set(&event->hw.prev_count, val);
event->hw.idx = idx;
if (event->hw.state & PERF_HES_STOPPED)
val = 0;
write_pmc(idx, val);
perf_event_update_userpage(event);
}
cpuhw->n_limited = n_lim;
cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
out_enable:
mb();
write_mmcr0(cpuhw, cpuhw->mmcr[0]);
/*
* Enable instruction sampling if necessary
*/
if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
mb();
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
}
out:
local_irq_restore(flags);
}
static int collect_events(struct perf_event *group, int max_count,
struct perf_event *ctrs[], u64 *events,
unsigned int *flags)
{
int n = 0;
struct perf_event *event;
if (!is_software_event(group)) {
if (n >= max_count)
return -1;
ctrs[n] = group;
flags[n] = group->hw.event_base;
events[n++] = group->hw.config;
}
list_for_each_entry(event, &group->sibling_list, group_entry) {
if (!is_software_event(event) &&
event->state != PERF_EVENT_STATE_OFF) {
if (n >= max_count)
return -1;
ctrs[n] = event;
flags[n] = event->hw.event_base;
events[n++] = event->hw.config;
}
}
return n;
}
/*
* Add a event to the PMU.
* If all events are not already frozen, then we disable and
* re-enable the PMU in order to get hw_perf_enable to do the
* actual work of reconfiguring the PMU.
*/
static int power_pmu_add(struct perf_event *event, int ef_flags)
{
struct cpu_hw_events *cpuhw;
unsigned long flags;
int n0;
int ret = -EAGAIN;
local_irq_save(flags);
perf_pmu_disable(event->pmu);
/*
* Add the event to the list (if there is room)
* and check whether the total set is still feasible.
*/
cpuhw = &__get_cpu_var(cpu_hw_events);
n0 = cpuhw->n_events;
if (n0 >= ppmu->n_counter)
goto out;
cpuhw->event[n0] = event;
cpuhw->events[n0] = event->hw.config;
cpuhw->flags[n0] = event->hw.event_base;
/*
* This event may have been disabled/stopped in record_and_restart()
* because we exceeded the ->event_limit. If re-starting the event,
* clear the ->hw.state (STOPPED and UPTODATE flags), so the user
* notification is re-enabled.
*/
if (!(ef_flags & PERF_EF_START))
event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
else
event->hw.state = 0;
/*
* If group events scheduling transaction was started,
* skip the schedulability test here, it will be performed
* at commit time(->commit_txn) as a whole
*/
if (cpuhw->group_flag & PERF_EVENT_TXN)
goto nocheck;
if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
goto out;
if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
goto out;
event->hw.config = cpuhw->events[n0];
nocheck:
++cpuhw->n_events;
++cpuhw->n_added;
ret = 0;
out:
perf_pmu_enable(event->pmu);
local_irq_restore(flags);
return ret;
}
/*
* Remove a event from the PMU.
*/
static void power_pmu_del(struct perf_event *event, int ef_flags)
{
struct cpu_hw_events *cpuhw;
long i;
unsigned long flags;
local_irq_save(flags);
perf_pmu_disable(event->pmu);
power_pmu_read(event);
cpuhw = &__get_cpu_var(cpu_hw_events);
for (i = 0; i < cpuhw->n_events; ++i) {
if (event == cpuhw->event[i]) {
while (++i < cpuhw->n_events) {
cpuhw->event[i-1] = cpuhw->event[i];
cpuhw->events[i-1] = cpuhw->events[i];
cpuhw->flags[i-1] = cpuhw->flags[i];
}
--cpuhw->n_events;
ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
if (event->hw.idx) {
write_pmc(event->hw.idx, 0);
event->hw.idx = 0;
}
perf_event_update_userpage(event);
break;
}
}
for (i = 0; i < cpuhw->n_limited; ++i)
if (event == cpuhw->limited_counter[i])
break;
if (i < cpuhw->n_limited) {
while (++i < cpuhw->n_limited) {
cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
}
--cpuhw->n_limited;
}
if (cpuhw->n_events == 0) {
/* disable exceptions if no events are running */
cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
}
perf_pmu_enable(event->pmu);
local_irq_restore(flags);
}
/*
* POWER-PMU does not support disabling individual counters, hence
* program their cycle counter to their max value and ignore the interrupts.
*/
static void power_pmu_start(struct perf_event *event, int ef_flags)
{
unsigned long flags;
s64 left;
unsigned long val;
if (!event->hw.idx || !event->hw.sample_period)
return;
if (!(event->hw.state & PERF_HES_STOPPED))
return;
if (ef_flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
local_irq_save(flags);
perf_pmu_disable(event->pmu);
event->hw.state = 0;
left = local64_read(&event->hw.period_left);
val = 0;
if (left < 0x80000000L)
val = 0x80000000L - left;
write_pmc(event->hw.idx, val);
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
local_irq_restore(flags);
}
static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
unsigned long flags;
if (!event->hw.idx || !event->hw.sample_period)
return;
if (event->hw.state & PERF_HES_STOPPED)
return;
local_irq_save(flags);
perf_pmu_disable(event->pmu);
power_pmu_read(event);
event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
write_pmc(event->hw.idx, 0);
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
local_irq_restore(flags);
}
/*
* Start group events scheduling transaction
* Set the flag to make pmu::enable() not perform the
* schedulability test, it will be performed at commit time
*/
void power_pmu_start_txn(struct pmu *pmu)
{
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
perf_pmu_disable(pmu);
cpuhw->group_flag |= PERF_EVENT_TXN;
cpuhw->n_txn_start = cpuhw->n_events;
}
/*
* Stop group events scheduling transaction
* Clear the flag and pmu::enable() will perform the
* schedulability test.
*/
void power_pmu_cancel_txn(struct pmu *pmu)
{
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
cpuhw->group_flag &= ~PERF_EVENT_TXN;
perf_pmu_enable(pmu);
}
/*
* Commit group events scheduling transaction
* Perform the group schedulability test as a whole
* Return 0 if success
*/
int power_pmu_commit_txn(struct pmu *pmu)
{
struct cpu_hw_events *cpuhw;
long i, n;
if (!ppmu)
return -EAGAIN;
cpuhw = &__get_cpu_var(cpu_hw_events);
n = cpuhw->n_events;
if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
return -EAGAIN;
i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
if (i < 0)
return -EAGAIN;
for (i = cpuhw->n_txn_start; i < n; ++i)
cpuhw->event[i]->hw.config = cpuhw->events[i];
cpuhw->group_flag &= ~PERF_EVENT_TXN;
perf_pmu_enable(pmu);
return 0;
}
/*
* Return 1 if we might be able to put event on a limited PMC,
* or 0 if not.
* A event can only go on a limited PMC if it counts something
* that a limited PMC can count, doesn't require interrupts, and
* doesn't exclude any processor mode.
*/
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
unsigned int flags)
{
int n;
u64 alt[MAX_EVENT_ALTERNATIVES];
if (event->attr.exclude_user
|| event->attr.exclude_kernel
|| event->attr.exclude_hv
|| event->attr.sample_period)
return 0;
if (ppmu->limited_pmc_event(ev))
return 1;
/*
* The requested event_id isn't on a limited PMC already;
* see if any alternative code goes on a limited PMC.
*/
if (!ppmu->get_alternatives)
return 0;
flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
n = ppmu->get_alternatives(ev, flags, alt);
return n > 0;
}
/*
* Find an alternative event_id that goes on a normal PMC, if possible,
* and return the event_id code, or 0 if there is no such alternative.
* (Note: event_id code 0 is "don't count" on all machines.)
*/
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
{
u64 alt[MAX_EVENT_ALTERNATIVES];
int n;
flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
n = ppmu->get_alternatives(ev, flags, alt);
if (!n)
return 0;
return alt[0];
}
/* Number of perf_events counting hardware events */
static atomic_t num_events;
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);
/*
* Release the PMU if this is the last perf_event.
*/
static void hw_perf_event_destroy(struct perf_event *event)
{
if (!atomic_add_unless(&num_events, -1, 1)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_dec_return(&num_events) == 0)
release_pmc_hardware();
mutex_unlock(&pmc_reserve_mutex);
}
}
/*
* Translate a generic cache event_id config to a raw event_id code.
*/
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
unsigned long type, op, result;
int ev;
if (!ppmu->cache_events)
return -EINVAL;
/* unpack config */
type = config & 0xff;
op = (config >> 8) & 0xff;
result = (config >> 16) & 0xff;
if (type >= PERF_COUNT_HW_CACHE_MAX ||
op >= PERF_COUNT_HW_CACHE_OP_MAX ||
result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
ev = (*ppmu->cache_events)[type][op][result];
if (ev == 0)
return -EOPNOTSUPP;
if (ev == -1)
return -EINVAL;
*eventp = ev;
return 0;
}
static int power_pmu_event_init(struct perf_event *event)
{
u64 ev;
unsigned long flags;
struct perf_event *ctrs[MAX_HWEVENTS];
u64 events[MAX_HWEVENTS];
unsigned int cflags[MAX_HWEVENTS];
int n;
int err;
struct cpu_hw_events *cpuhw;
if (!ppmu)
return -ENOENT;
/* does not support taken branch sampling */
if (has_branch_stack(event))
return -EOPNOTSUPP;
switch (event->attr.type) {
case PERF_TYPE_HARDWARE:
ev = event->attr.config;
if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
return -EOPNOTSUPP;
ev = ppmu->generic_events[ev];
break;
case PERF_TYPE_HW_CACHE:
err = hw_perf_cache_event(event->attr.config, &ev);
if (err)
return err;
break;
case PERF_TYPE_RAW:
ev = event->attr.config;
break;
default:
return -ENOENT;
}
event->hw.config_base = ev;
event->hw.idx = 0;
/*
* If we are not running on a hypervisor, force the
* exclude_hv bit to 0 so that we don't care what
* the user set it to.
*/
if (!firmware_has_feature(FW_FEATURE_LPAR))
event->attr.exclude_hv = 0;
/*
* If this is a per-task event, then we can use
* PM_RUN_* events interchangeably with their non RUN_*
* equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
* XXX we should check if the task is an idle task.
*/
flags = 0;
if (event->attach_state & PERF_ATTACH_TASK)
flags |= PPMU_ONLY_COUNT_RUN;
/*
* If this machine has limited events, check whether this
* event_id could go on a limited event.
*/
if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
if (can_go_on_limited_pmc(event, ev, flags)) {
flags |= PPMU_LIMITED_PMC_OK;
} else if (ppmu->limited_pmc_event(ev)) {
/*
* The requested event_id is on a limited PMC,
* but we can't use a limited PMC; see if any
* alternative goes on a normal PMC.
*/
ev = normal_pmc_alternative(ev, flags);
if (!ev)
return -EINVAL;
}
}
/*
* If this is in a group, check if it can go on with all the
* other hardware events in the group. We assume the event
* hasn't been linked into its leader's sibling list at this point.
*/
n = 0;
if (event->group_leader != event) {
n = collect_events(event->group_leader, ppmu->n_counter - 1,
ctrs, events, cflags);
if (n < 0)
return -EINVAL;
}
events[n] = ev;
ctrs[n] = event;
cflags[n] = flags;
if (check_excludes(ctrs, cflags, n, 1))
return -EINVAL;
cpuhw = &get_cpu_var(cpu_hw_events);
err = power_check_constraints(cpuhw, events, cflags, n + 1);
put_cpu_var(cpu_hw_events);
if (err)
return -EINVAL;
event->hw.config = events[n];
event->hw.event_base = cflags[n];
event->hw.last_period = event->hw.sample_period;
local64_set(&event->hw.period_left, event->hw.last_period);
/*
* See if we need to reserve the PMU.
* If no events are currently in use, then we have to take a
* mutex to ensure that we don't race with another task doing
* reserve_pmc_hardware or release_pmc_hardware.
*/
err = 0;
if (!atomic_inc_not_zero(&num_events)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&num_events) == 0 &&
reserve_pmc_hardware(perf_event_interrupt))
err = -EBUSY;
else
atomic_inc(&num_events);
mutex_unlock(&pmc_reserve_mutex);
}
event->destroy = hw_perf_event_destroy;
return err;
}
static int power_pmu_event_idx(struct perf_event *event)
{
return event->hw.idx;
}
ssize_t power_events_sysfs_show(struct device *dev,
struct device_attribute *attr, char *page)
{
struct perf_pmu_events_attr *pmu_attr;
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}
struct pmu power_pmu = {
.pmu_enable = power_pmu_enable,
.pmu_disable = power_pmu_disable,
.event_init = power_pmu_event_init,
.add = power_pmu_add,
.del = power_pmu_del,
.start = power_pmu_start,
.stop = power_pmu_stop,
.read = power_pmu_read,
.start_txn = power_pmu_start_txn,
.cancel_txn = power_pmu_cancel_txn,
.commit_txn = power_pmu_commit_txn,
.event_idx = power_pmu_event_idx,
};
/*
* A counter has overflowed; update its count and record
* things if requested. Note that interrupts are hard-disabled
* here so there is no possibility of being interrupted.
*/
static void record_and_restart(struct perf_event *event, unsigned long val,
struct pt_regs *regs)
{
u64 period = event->hw.sample_period;
s64 prev, delta, left;
int record = 0;
if (event->hw.state & PERF_HES_STOPPED) {
write_pmc(event->hw.idx, 0);
return;
}
/* we don't have to worry about interrupts here */
prev = local64_read(&event->hw.prev_count);
delta = check_and_compute_delta(prev, val);
local64_add(delta, &event->count);
/*
* See if the total period for this event has expired,
* and update for the next period.
*/
val = 0;
left = local64_read(&event->hw.period_left) - delta;
if (delta == 0)
left++;
if (period) {
if (left <= 0) {
left += period;
if (left <= 0)
left = period;
record = siar_valid(regs);
event->hw.last_period = event->hw.sample_period;
}
if (left < 0x80000000LL)
val = 0x80000000LL - left;
}
write_pmc(event->hw.idx, val);
local64_set(&event->hw.prev_count, val);
local64_set(&event->hw.period_left, left);
perf_event_update_userpage(event);
/*
* Finally record data if requested.
*/
if (record) {
struct perf_sample_data data;
perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
if (event->attr.sample_type & PERF_SAMPLE_ADDR)
perf_get_data_addr(regs, &data.addr);
if (perf_event_overflow(event, &data, regs))
power_pmu_stop(event, 0);
}
}
/*
* Called from generic code to get the misc flags (i.e. processor mode)
* for an event_id.
*/
unsigned long perf_misc_flags(struct pt_regs *regs)
{
u32 flags = perf_get_misc_flags(regs);
if (flags)
return flags;
return user_mode(regs) ? PERF_RECORD_MISC_USER :
PERF_RECORD_MISC_KERNEL;
}
/*
* Called from generic code to get the instruction pointer
* for an event_id.
*/
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
unsigned long use_siar = regs->result;
if (use_siar && siar_valid(regs))
return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
else if (use_siar)
return 0; // no valid instruction pointer
else
return regs->nip;
}
static bool pmc_overflow_power7(unsigned long val)
{
/*
* Events on POWER7 can roll back if a speculative event doesn't
* eventually complete. Unfortunately in some rare cases they will
* raise a performance monitor exception. We need to catch this to
* ensure we reset the PMC. In all cases the PMC will be 256 or less
* cycles from overflow.
*
* We only do this if the first pass fails to find any overflowing
* PMCs because a user might set a period of less than 256 and we
* don't want to mistakenly reset them.
*/
if ((0x80000000 - val) <= 256)
return true;
return false;
}
static bool pmc_overflow(unsigned long val)
{
if ((int)val < 0)
return true;
return false;
}
/*
* Performance monitor interrupt stuff
*/
static void perf_event_interrupt(struct pt_regs *regs)
{
int i, j;
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
struct perf_event *event;
unsigned long val[8];
int found, active;
int nmi;
if (cpuhw->n_limited)
freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
mfspr(SPRN_PMC6));
perf_read_regs(regs);
nmi = perf_intr_is_nmi(regs);
if (nmi)
nmi_enter();
else
irq_enter();
/* Read all the PMCs since we'll need them a bunch of times */
for (i = 0; i < ppmu->n_counter; ++i)
val[i] = read_pmc(i + 1);
/* Try to find what caused the IRQ */
found = 0;
for (i = 0; i < ppmu->n_counter; ++i) {
if (!pmc_overflow(val[i]))
continue;
if (is_limited_pmc(i + 1))
continue; /* these won't generate IRQs */
/*
* We've found one that's overflowed. For active
* counters we need to log this. For inactive
* counters, we need to reset it anyway
*/
found = 1;
active = 0;
for (j = 0; j < cpuhw->n_events; ++j) {
event = cpuhw->event[j];
if (event->hw.idx == (i + 1)) {
active = 1;
record_and_restart(event, val[i], regs);
break;
}
}
if (!active)
/* reset non active counters that have overflowed */
write_pmc(i + 1, 0);
}
if (!found && pvr_version_is(PVR_POWER7)) {
/* check active counters for special buggy p7 overflow */
for (i = 0; i < cpuhw->n_events; ++i) {
event = cpuhw->event[i];
if (!event->hw.idx || is_limited_pmc(event->hw.idx))
continue;
if (pmc_overflow_power7(val[event->hw.idx - 1])) {
/* event has overflowed in a buggy way*/
found = 1;
record_and_restart(event,
val[event->hw.idx - 1],
regs);
}
}
}
if ((!found) && printk_ratelimit())
printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
/*
* Reset MMCR0 to its normal value. This will set PMXE and
* clear FC (freeze counters) and PMAO (perf mon alert occurred)
* and thus allow interrupts to occur again.
* XXX might want to use MSR.PM to keep the events frozen until
* we get back out of this interrupt.
*/
write_mmcr0(cpuhw, cpuhw->mmcr[0]);
if (nmi)
nmi_exit();
else
irq_exit();
}
static void power_pmu_setup(int cpu)
{
struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
if (!ppmu)
return;
memset(cpuhw, 0, sizeof(*cpuhw));
cpuhw->mmcr[0] = MMCR0_FC;
}
static int __cpuinit
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
{
unsigned int cpu = (long)hcpu;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_UP_PREPARE:
power_pmu_setup(cpu);
break;
default:
break;
}
return NOTIFY_OK;
}
int __cpuinit register_power_pmu(struct power_pmu *pmu)
{
if (ppmu)
return -EBUSY; /* something's already registered */
ppmu = pmu;
pr_info("%s performance monitor hardware support registered\n",
pmu->name);
power_pmu.attr_groups = ppmu->attr_groups;
#ifdef MSR_HV
/*
* Use FCHV to ignore kernel events if MSR.HV is set.
*/
if (mfmsr() & MSR_HV)
freeze_events_kernel = MMCR0_FCHV;
#endif /* CONFIG_PPC64 */
perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
perf_cpu_notifier(power_pmu_notifier);
return 0;
}