mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
7a08dbaedd
->setup_data_interface() is a controller specific method and should thus be placed in nand_controller_ops. In order to make that work with controllers that support keeping pre-configured timings we need to add a new NAND_KEEP_TIMINGS flag to inform the core it should skip the timings selection step. Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com> Tested-by: Janusz Krzysztofik <jmkrzyszt@gmail.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
1243 lines
33 KiB
C
1243 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
|
|
* Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
|
|
* Copyright (C) 2012 Avionic Design GmbH
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/reset.h>
|
|
|
|
#define COMMAND 0x00
|
|
#define COMMAND_GO BIT(31)
|
|
#define COMMAND_CLE BIT(30)
|
|
#define COMMAND_ALE BIT(29)
|
|
#define COMMAND_PIO BIT(28)
|
|
#define COMMAND_TX BIT(27)
|
|
#define COMMAND_RX BIT(26)
|
|
#define COMMAND_SEC_CMD BIT(25)
|
|
#define COMMAND_AFT_DAT BIT(24)
|
|
#define COMMAND_TRANS_SIZE(size) ((((size) - 1) & 0xf) << 20)
|
|
#define COMMAND_A_VALID BIT(19)
|
|
#define COMMAND_B_VALID BIT(18)
|
|
#define COMMAND_RD_STATUS_CHK BIT(17)
|
|
#define COMMAND_RBSY_CHK BIT(16)
|
|
#define COMMAND_CE(x) BIT(8 + ((x) & 0x7))
|
|
#define COMMAND_CLE_SIZE(size) ((((size) - 1) & 0x3) << 4)
|
|
#define COMMAND_ALE_SIZE(size) ((((size) - 1) & 0xf) << 0)
|
|
|
|
#define STATUS 0x04
|
|
|
|
#define ISR 0x08
|
|
#define ISR_CORRFAIL_ERR BIT(24)
|
|
#define ISR_UND BIT(7)
|
|
#define ISR_OVR BIT(6)
|
|
#define ISR_CMD_DONE BIT(5)
|
|
#define ISR_ECC_ERR BIT(4)
|
|
|
|
#define IER 0x0c
|
|
#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16)
|
|
#define IER_UND BIT(7)
|
|
#define IER_OVR BIT(6)
|
|
#define IER_CMD_DONE BIT(5)
|
|
#define IER_ECC_ERR BIT(4)
|
|
#define IER_GIE BIT(0)
|
|
|
|
#define CONFIG 0x10
|
|
#define CONFIG_HW_ECC BIT(31)
|
|
#define CONFIG_ECC_SEL BIT(30)
|
|
#define CONFIG_ERR_COR BIT(29)
|
|
#define CONFIG_PIPE_EN BIT(28)
|
|
#define CONFIG_TVAL_4 (0 << 24)
|
|
#define CONFIG_TVAL_6 (1 << 24)
|
|
#define CONFIG_TVAL_8 (2 << 24)
|
|
#define CONFIG_SKIP_SPARE BIT(23)
|
|
#define CONFIG_BUS_WIDTH_16 BIT(21)
|
|
#define CONFIG_COM_BSY BIT(20)
|
|
#define CONFIG_PS_256 (0 << 16)
|
|
#define CONFIG_PS_512 (1 << 16)
|
|
#define CONFIG_PS_1024 (2 << 16)
|
|
#define CONFIG_PS_2048 (3 << 16)
|
|
#define CONFIG_PS_4096 (4 << 16)
|
|
#define CONFIG_SKIP_SPARE_SIZE_4 (0 << 14)
|
|
#define CONFIG_SKIP_SPARE_SIZE_8 (1 << 14)
|
|
#define CONFIG_SKIP_SPARE_SIZE_12 (2 << 14)
|
|
#define CONFIG_SKIP_SPARE_SIZE_16 (3 << 14)
|
|
#define CONFIG_TAG_BYTE_SIZE(x) ((x) & 0xff)
|
|
|
|
#define TIMING_1 0x14
|
|
#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28)
|
|
#define TIMING_TWB(x) (((x) & 0xf) << 24)
|
|
#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20)
|
|
#define TIMING_TWHR(x) (((x) & 0xf) << 16)
|
|
#define TIMING_TCS(x) (((x) & 0x3) << 14)
|
|
#define TIMING_TWH(x) (((x) & 0x3) << 12)
|
|
#define TIMING_TWP(x) (((x) & 0xf) << 8)
|
|
#define TIMING_TRH(x) (((x) & 0x3) << 4)
|
|
#define TIMING_TRP(x) (((x) & 0xf) << 0)
|
|
|
|
#define RESP 0x18
|
|
|
|
#define TIMING_2 0x1c
|
|
#define TIMING_TADL(x) ((x) & 0xf)
|
|
|
|
#define CMD_REG1 0x20
|
|
#define CMD_REG2 0x24
|
|
#define ADDR_REG1 0x28
|
|
#define ADDR_REG2 0x2c
|
|
|
|
#define DMA_MST_CTRL 0x30
|
|
#define DMA_MST_CTRL_GO BIT(31)
|
|
#define DMA_MST_CTRL_IN (0 << 30)
|
|
#define DMA_MST_CTRL_OUT BIT(30)
|
|
#define DMA_MST_CTRL_PERF_EN BIT(29)
|
|
#define DMA_MST_CTRL_IE_DONE BIT(28)
|
|
#define DMA_MST_CTRL_REUSE BIT(27)
|
|
#define DMA_MST_CTRL_BURST_1 (2 << 24)
|
|
#define DMA_MST_CTRL_BURST_4 (3 << 24)
|
|
#define DMA_MST_CTRL_BURST_8 (4 << 24)
|
|
#define DMA_MST_CTRL_BURST_16 (5 << 24)
|
|
#define DMA_MST_CTRL_IS_DONE BIT(20)
|
|
#define DMA_MST_CTRL_EN_A BIT(2)
|
|
#define DMA_MST_CTRL_EN_B BIT(1)
|
|
|
|
#define DMA_CFG_A 0x34
|
|
#define DMA_CFG_B 0x38
|
|
|
|
#define FIFO_CTRL 0x3c
|
|
#define FIFO_CTRL_CLR_ALL BIT(3)
|
|
|
|
#define DATA_PTR 0x40
|
|
#define TAG_PTR 0x44
|
|
#define ECC_PTR 0x48
|
|
|
|
#define DEC_STATUS 0x4c
|
|
#define DEC_STATUS_A_ECC_FAIL BIT(1)
|
|
#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000
|
|
#define DEC_STATUS_ERR_COUNT_SHIFT 16
|
|
|
|
#define HWSTATUS_CMD 0x50
|
|
#define HWSTATUS_MASK 0x54
|
|
#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24)
|
|
#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16)
|
|
#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8)
|
|
#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0)
|
|
|
|
#define BCH_CONFIG 0xcc
|
|
#define BCH_ENABLE BIT(0)
|
|
#define BCH_TVAL_4 (0 << 4)
|
|
#define BCH_TVAL_8 (1 << 4)
|
|
#define BCH_TVAL_14 (2 << 4)
|
|
#define BCH_TVAL_16 (3 << 4)
|
|
|
|
#define DEC_STAT_RESULT 0xd0
|
|
#define DEC_STAT_BUF 0xd4
|
|
#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000
|
|
#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24
|
|
#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000
|
|
#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16
|
|
#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00
|
|
#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8
|
|
|
|
#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off))
|
|
|
|
#define SKIP_SPARE_BYTES 4
|
|
#define BITS_PER_STEP_RS 18
|
|
#define BITS_PER_STEP_BCH 13
|
|
|
|
#define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
|
|
#define HWSTATUS_CMD_DEFAULT NAND_STATUS_READY
|
|
#define HWSTATUS_MASK_DEFAULT (HWSTATUS_RDSTATUS_MASK(1) | \
|
|
HWSTATUS_RDSTATUS_VALUE(0) | \
|
|
HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
|
|
HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
|
|
|
|
struct tegra_nand_controller {
|
|
struct nand_controller controller;
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
int irq;
|
|
struct clk *clk;
|
|
struct completion command_complete;
|
|
struct completion dma_complete;
|
|
bool last_read_error;
|
|
int cur_cs;
|
|
struct nand_chip *chip;
|
|
};
|
|
|
|
struct tegra_nand_chip {
|
|
struct nand_chip chip;
|
|
struct gpio_desc *wp_gpio;
|
|
struct mtd_oob_region ecc;
|
|
u32 config;
|
|
u32 config_ecc;
|
|
u32 bch_config;
|
|
int cs[1];
|
|
};
|
|
|
|
static inline struct tegra_nand_controller *
|
|
to_tegra_ctrl(struct nand_controller *hw_ctrl)
|
|
{
|
|
return container_of(hw_ctrl, struct tegra_nand_controller, controller);
|
|
}
|
|
|
|
static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct tegra_nand_chip, chip);
|
|
}
|
|
|
|
static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
|
|
BITS_PER_BYTE);
|
|
|
|
if (section > 0)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = SKIP_SPARE_BYTES;
|
|
oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
return -ERANGE;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
|
|
.ecc = tegra_nand_ooblayout_rs_ecc,
|
|
.free = tegra_nand_ooblayout_no_free,
|
|
};
|
|
|
|
static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
|
|
BITS_PER_BYTE);
|
|
|
|
if (section > 0)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = SKIP_SPARE_BYTES;
|
|
oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
|
|
.ecc = tegra_nand_ooblayout_bch_ecc,
|
|
.free = tegra_nand_ooblayout_no_free,
|
|
};
|
|
|
|
static irqreturn_t tegra_nand_irq(int irq, void *data)
|
|
{
|
|
struct tegra_nand_controller *ctrl = data;
|
|
u32 isr, dma;
|
|
|
|
isr = readl_relaxed(ctrl->regs + ISR);
|
|
dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
|
|
dev_dbg(ctrl->dev, "isr %08x\n", isr);
|
|
|
|
if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
|
|
return IRQ_NONE;
|
|
|
|
/*
|
|
* The bit name is somewhat missleading: This is also set when
|
|
* HW ECC was successful. The data sheet states:
|
|
* Correctable OR Un-correctable errors occurred in the DMA transfer...
|
|
*/
|
|
if (isr & ISR_CORRFAIL_ERR)
|
|
ctrl->last_read_error = true;
|
|
|
|
if (isr & ISR_CMD_DONE)
|
|
complete(&ctrl->command_complete);
|
|
|
|
if (isr & ISR_UND)
|
|
dev_err(ctrl->dev, "FIFO underrun\n");
|
|
|
|
if (isr & ISR_OVR)
|
|
dev_err(ctrl->dev, "FIFO overrun\n");
|
|
|
|
/* handle DMA interrupts */
|
|
if (dma & DMA_MST_CTRL_IS_DONE) {
|
|
writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
|
|
complete(&ctrl->dma_complete);
|
|
}
|
|
|
|
/* clear interrupts */
|
|
writel_relaxed(isr, ctrl->regs + ISR);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const char * const tegra_nand_reg_names[] = {
|
|
"COMMAND",
|
|
"STATUS",
|
|
"ISR",
|
|
"IER",
|
|
"CONFIG",
|
|
"TIMING",
|
|
NULL,
|
|
"TIMING2",
|
|
"CMD_REG1",
|
|
"CMD_REG2",
|
|
"ADDR_REG1",
|
|
"ADDR_REG2",
|
|
"DMA_MST_CTRL",
|
|
"DMA_CFG_A",
|
|
"DMA_CFG_B",
|
|
"FIFO_CTRL",
|
|
};
|
|
|
|
static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
|
|
{
|
|
u32 reg;
|
|
int i;
|
|
|
|
dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
|
|
for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
|
|
const char *reg_name = tegra_nand_reg_names[i];
|
|
|
|
if (!reg_name)
|
|
continue;
|
|
|
|
reg = readl_relaxed(ctrl->regs + (i * 4));
|
|
dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
|
|
}
|
|
}
|
|
|
|
static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
|
|
{
|
|
u32 isr, dma;
|
|
|
|
disable_irq(ctrl->irq);
|
|
|
|
/* Abort current command/DMA operation */
|
|
writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
|
|
writel_relaxed(0, ctrl->regs + COMMAND);
|
|
|
|
/* clear interrupts */
|
|
isr = readl_relaxed(ctrl->regs + ISR);
|
|
writel_relaxed(isr, ctrl->regs + ISR);
|
|
dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
|
|
writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
|
|
|
|
reinit_completion(&ctrl->command_complete);
|
|
reinit_completion(&ctrl->dma_complete);
|
|
|
|
enable_irq(ctrl->irq);
|
|
}
|
|
|
|
static int tegra_nand_cmd(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
const struct nand_op_instr *instr;
|
|
const struct nand_op_instr *instr_data_in = NULL;
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
unsigned int op_id, size = 0, offset = 0;
|
|
bool first_cmd = true;
|
|
u32 reg, cmd = 0;
|
|
int ret;
|
|
|
|
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
|
|
unsigned int naddrs, i;
|
|
const u8 *addrs;
|
|
u32 addr1 = 0, addr2 = 0;
|
|
|
|
instr = &subop->instrs[op_id];
|
|
|
|
switch (instr->type) {
|
|
case NAND_OP_CMD_INSTR:
|
|
if (first_cmd) {
|
|
cmd |= COMMAND_CLE;
|
|
writel_relaxed(instr->ctx.cmd.opcode,
|
|
ctrl->regs + CMD_REG1);
|
|
} else {
|
|
cmd |= COMMAND_SEC_CMD;
|
|
writel_relaxed(instr->ctx.cmd.opcode,
|
|
ctrl->regs + CMD_REG2);
|
|
}
|
|
first_cmd = false;
|
|
break;
|
|
|
|
case NAND_OP_ADDR_INSTR:
|
|
offset = nand_subop_get_addr_start_off(subop, op_id);
|
|
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
|
|
addrs = &instr->ctx.addr.addrs[offset];
|
|
|
|
cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
|
|
for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
|
|
addr1 |= *addrs++ << (BITS_PER_BYTE * i);
|
|
naddrs -= i;
|
|
for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
|
|
addr2 |= *addrs++ << (BITS_PER_BYTE * i);
|
|
|
|
writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
|
|
writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
|
|
break;
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
size = nand_subop_get_data_len(subop, op_id);
|
|
offset = nand_subop_get_data_start_off(subop, op_id);
|
|
|
|
cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
|
|
COMMAND_RX | COMMAND_A_VALID;
|
|
|
|
instr_data_in = instr;
|
|
break;
|
|
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
size = nand_subop_get_data_len(subop, op_id);
|
|
offset = nand_subop_get_data_start_off(subop, op_id);
|
|
|
|
cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
|
|
COMMAND_TX | COMMAND_A_VALID;
|
|
memcpy(®, instr->ctx.data.buf.out + offset, size);
|
|
|
|
writel_relaxed(reg, ctrl->regs + RESP);
|
|
break;
|
|
|
|
case NAND_OP_WAITRDY_INSTR:
|
|
cmd |= COMMAND_RBSY_CHK;
|
|
break;
|
|
}
|
|
}
|
|
|
|
cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
|
|
writel_relaxed(cmd, ctrl->regs + COMMAND);
|
|
ret = wait_for_completion_timeout(&ctrl->command_complete,
|
|
msecs_to_jiffies(500));
|
|
if (!ret) {
|
|
dev_err(ctrl->dev, "COMMAND timeout\n");
|
|
tegra_nand_dump_reg(ctrl);
|
|
tegra_nand_controller_abort(ctrl);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
if (instr_data_in) {
|
|
reg = readl_relaxed(ctrl->regs + RESP);
|
|
memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
|
|
NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
|
|
NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
|
|
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
|
|
NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
|
|
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
|
|
);
|
|
|
|
static void tegra_nand_select_target(struct nand_chip *chip,
|
|
unsigned int die_nr)
|
|
{
|
|
struct tegra_nand_chip *nand = to_tegra_chip(chip);
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
|
|
ctrl->cur_cs = nand->cs[die_nr];
|
|
}
|
|
|
|
static int tegra_nand_exec_op(struct nand_chip *chip,
|
|
const struct nand_operation *op,
|
|
bool check_only)
|
|
{
|
|
tegra_nand_select_target(chip, op->cs);
|
|
return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
|
|
check_only);
|
|
}
|
|
|
|
static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
|
|
struct nand_chip *chip, bool enable)
|
|
{
|
|
struct tegra_nand_chip *nand = to_tegra_chip(chip);
|
|
|
|
if (chip->ecc.algo == NAND_ECC_BCH && enable)
|
|
writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
|
|
else
|
|
writel_relaxed(0, ctrl->regs + BCH_CONFIG);
|
|
|
|
if (enable)
|
|
writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
|
|
else
|
|
writel_relaxed(nand->config, ctrl->regs + CONFIG);
|
|
}
|
|
|
|
static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
|
|
void *buf, void *oob_buf, int oob_len, int page,
|
|
bool read)
|
|
{
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
|
|
dma_addr_t dma_addr = 0, dma_addr_oob = 0;
|
|
u32 addr1, cmd, dma_ctrl;
|
|
int ret;
|
|
|
|
tegra_nand_select_target(chip, chip->cur_cs);
|
|
|
|
if (read) {
|
|
writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
|
|
writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
|
|
} else {
|
|
writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
|
|
writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
|
|
}
|
|
cmd = COMMAND_CLE | COMMAND_SEC_CMD;
|
|
|
|
/* Lower 16-bits are column, by default 0 */
|
|
addr1 = page << 16;
|
|
|
|
if (!buf)
|
|
addr1 |= mtd->writesize;
|
|
writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3) {
|
|
writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
|
|
cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
|
|
} else {
|
|
cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
|
|
}
|
|
|
|
if (buf) {
|
|
dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
|
|
ret = dma_mapping_error(ctrl->dev, dma_addr);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "dma mapping error\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
|
|
writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
|
|
}
|
|
|
|
if (oob_buf) {
|
|
dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
|
|
dir);
|
|
ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "dma mapping error\n");
|
|
ret = -EINVAL;
|
|
goto err_unmap_dma_page;
|
|
}
|
|
|
|
writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
|
|
writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
|
|
}
|
|
|
|
dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
|
|
DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
|
|
DMA_MST_CTRL_BURST_16;
|
|
|
|
if (buf)
|
|
dma_ctrl |= DMA_MST_CTRL_EN_A;
|
|
if (oob_buf)
|
|
dma_ctrl |= DMA_MST_CTRL_EN_B;
|
|
|
|
if (read)
|
|
dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
|
|
else
|
|
dma_ctrl |= DMA_MST_CTRL_OUT;
|
|
|
|
writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
|
|
|
|
cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
|
|
COMMAND_CE(ctrl->cur_cs);
|
|
|
|
if (buf)
|
|
cmd |= COMMAND_A_VALID;
|
|
if (oob_buf)
|
|
cmd |= COMMAND_B_VALID;
|
|
|
|
if (read)
|
|
cmd |= COMMAND_RX;
|
|
else
|
|
cmd |= COMMAND_TX | COMMAND_AFT_DAT;
|
|
|
|
writel_relaxed(cmd, ctrl->regs + COMMAND);
|
|
|
|
ret = wait_for_completion_timeout(&ctrl->command_complete,
|
|
msecs_to_jiffies(500));
|
|
if (!ret) {
|
|
dev_err(ctrl->dev, "COMMAND timeout\n");
|
|
tegra_nand_dump_reg(ctrl);
|
|
tegra_nand_controller_abort(ctrl);
|
|
ret = -ETIMEDOUT;
|
|
goto err_unmap_dma;
|
|
}
|
|
|
|
ret = wait_for_completion_timeout(&ctrl->dma_complete,
|
|
msecs_to_jiffies(500));
|
|
if (!ret) {
|
|
dev_err(ctrl->dev, "DMA timeout\n");
|
|
tegra_nand_dump_reg(ctrl);
|
|
tegra_nand_controller_abort(ctrl);
|
|
ret = -ETIMEDOUT;
|
|
goto err_unmap_dma;
|
|
}
|
|
ret = 0;
|
|
|
|
err_unmap_dma:
|
|
if (oob_buf)
|
|
dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
|
|
err_unmap_dma_page:
|
|
if (buf)
|
|
dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
void *oob_buf = oob_required ? chip->oob_poi : NULL;
|
|
|
|
return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
|
|
mtd->oobsize, page, true);
|
|
}
|
|
|
|
static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
void *oob_buf = oob_required ? chip->oob_poi : NULL;
|
|
|
|
return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
|
|
mtd->oobsize, page, false);
|
|
}
|
|
|
|
static int tegra_nand_read_oob(struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
|
|
mtd->oobsize, page, true);
|
|
}
|
|
|
|
static int tegra_nand_write_oob(struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
|
|
mtd->oobsize, page, false);
|
|
}
|
|
|
|
static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
struct tegra_nand_chip *nand = to_tegra_chip(chip);
|
|
void *oob_buf = oob_required ? chip->oob_poi : NULL;
|
|
u32 dec_stat, max_corr_cnt;
|
|
unsigned long fail_sec_flag;
|
|
int ret;
|
|
|
|
tegra_nand_hw_ecc(ctrl, chip, true);
|
|
ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true);
|
|
tegra_nand_hw_ecc(ctrl, chip, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* No correctable or un-correctable errors, page must have 0 bitflips */
|
|
if (!ctrl->last_read_error)
|
|
return 0;
|
|
|
|
/*
|
|
* Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
|
|
* which contains information for all ECC selections.
|
|
*
|
|
* Note that since we do not use Command Queues DEC_RESULT does not
|
|
* state the number of pages we can read from the DEC_STAT_BUF. But
|
|
* since CORRFAIL_ERR did occur during page read we do have a valid
|
|
* result in DEC_STAT_BUF.
|
|
*/
|
|
ctrl->last_read_error = false;
|
|
dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
|
|
|
|
fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
|
|
DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
|
|
|
|
max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
|
|
DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
|
|
|
|
if (fail_sec_flag) {
|
|
int bit, max_bitflips = 0;
|
|
|
|
/*
|
|
* Since we do not support subpage writes, a complete page
|
|
* is either written or not. We can take a shortcut here by
|
|
* checking wheather any of the sector has been successful
|
|
* read. If at least one sectors has been read successfully,
|
|
* the page must have been a written previously. It cannot
|
|
* be an erased page.
|
|
*
|
|
* E.g. controller might return fail_sec_flag with 0x4, which
|
|
* would mean only the third sector failed to correct. The
|
|
* page must have been written and the third sector is really
|
|
* not correctable anymore.
|
|
*/
|
|
if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
|
|
mtd->ecc_stats.failed += hweight8(fail_sec_flag);
|
|
return max_corr_cnt;
|
|
}
|
|
|
|
/*
|
|
* All sectors failed to correct, but the ECC isn't smart
|
|
* enough to figure out if a page is really just erased.
|
|
* Read OOB data and check whether data/OOB is completely
|
|
* erased or if error correction just failed for all sub-
|
|
* pages.
|
|
*/
|
|
ret = tegra_nand_read_oob(chip, page);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
|
|
u8 *data = buf + (chip->ecc.size * bit);
|
|
u8 *oob = chip->oob_poi + nand->ecc.offset +
|
|
(chip->ecc.bytes * bit);
|
|
|
|
ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
|
|
oob, chip->ecc.bytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
if (ret < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += ret;
|
|
max_bitflips = max(ret, max_bitflips);
|
|
}
|
|
}
|
|
|
|
return max_t(unsigned int, max_corr_cnt, max_bitflips);
|
|
} else {
|
|
int corr_sec_flag;
|
|
|
|
corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
|
|
DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
|
|
|
|
/*
|
|
* The value returned in the register is the maximum of
|
|
* bitflips encountered in any of the ECC regions. As there is
|
|
* no way to get the number of bitflips in a specific regions
|
|
* we are not able to deliver correct stats but instead
|
|
* overestimate the number of corrected bitflips by assuming
|
|
* that all regions where errors have been corrected
|
|
* encountered the maximum number of bitflips.
|
|
*/
|
|
mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
|
|
|
|
return max_corr_cnt;
|
|
}
|
|
}
|
|
|
|
static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
void *oob_buf = oob_required ? chip->oob_poi : NULL;
|
|
int ret;
|
|
|
|
tegra_nand_hw_ecc(ctrl, chip, true);
|
|
ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
|
|
0, page, false);
|
|
tegra_nand_hw_ecc(ctrl, chip, false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
|
|
const struct nand_sdr_timings *timings)
|
|
{
|
|
/*
|
|
* The period (and all other timings in this function) is in ps,
|
|
* so need to take care here to avoid integer overflows.
|
|
*/
|
|
unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
|
|
unsigned int period = DIV_ROUND_UP(1000000, rate);
|
|
u32 val, reg = 0;
|
|
|
|
val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
|
|
timings->tRC_min), period);
|
|
reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
|
|
|
|
val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
|
|
max(timings->tALS_min, timings->tALH_min)),
|
|
period);
|
|
reg |= TIMING_TCS(OFFSET(val, 2));
|
|
|
|
val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
|
|
period);
|
|
reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
|
|
|
|
reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
|
|
reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
|
|
reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
|
|
reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
|
|
reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
|
|
|
|
writel_relaxed(reg, ctrl->regs + TIMING_1);
|
|
|
|
val = DIV_ROUND_UP(timings->tADL_min, period);
|
|
reg = TIMING_TADL(OFFSET(val, 3));
|
|
|
|
writel_relaxed(reg, ctrl->regs + TIMING_2);
|
|
}
|
|
|
|
static int tegra_nand_setup_data_interface(struct nand_chip *chip, int csline,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
const struct nand_sdr_timings *timings;
|
|
|
|
timings = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(timings))
|
|
return PTR_ERR(timings);
|
|
|
|
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
tegra_nand_setup_timing(ctrl, timings);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const int rs_strength_bootable[] = { 4 };
|
|
static const int rs_strength[] = { 4, 6, 8 };
|
|
static const int bch_strength_bootable[] = { 8, 16 };
|
|
static const int bch_strength[] = { 4, 8, 14, 16 };
|
|
|
|
static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
|
|
int strength_len, int bits_per_step,
|
|
int oobsize)
|
|
{
|
|
bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE;
|
|
int i;
|
|
|
|
/*
|
|
* Loop through available strengths. Backwards in case we try to
|
|
* maximize the BCH strength.
|
|
*/
|
|
for (i = 0; i < strength_len; i++) {
|
|
int strength_sel, bytes_per_step, bytes_per_page;
|
|
|
|
if (maximize) {
|
|
strength_sel = strength[strength_len - i - 1];
|
|
} else {
|
|
strength_sel = strength[i];
|
|
|
|
if (strength_sel < chip->ecc_strength_ds)
|
|
continue;
|
|
}
|
|
|
|
bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
|
|
BITS_PER_BYTE);
|
|
bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
|
|
|
|
/* Check whether strength fits OOB */
|
|
if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
|
|
return strength_sel;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
|
|
{
|
|
const int *strength;
|
|
int strength_len, bits_per_step;
|
|
|
|
switch (chip->ecc.algo) {
|
|
case NAND_ECC_RS:
|
|
bits_per_step = BITS_PER_STEP_RS;
|
|
if (chip->options & NAND_IS_BOOT_MEDIUM) {
|
|
strength = rs_strength_bootable;
|
|
strength_len = ARRAY_SIZE(rs_strength_bootable);
|
|
} else {
|
|
strength = rs_strength;
|
|
strength_len = ARRAY_SIZE(rs_strength);
|
|
}
|
|
break;
|
|
case NAND_ECC_BCH:
|
|
bits_per_step = BITS_PER_STEP_BCH;
|
|
if (chip->options & NAND_IS_BOOT_MEDIUM) {
|
|
strength = bch_strength_bootable;
|
|
strength_len = ARRAY_SIZE(bch_strength_bootable);
|
|
} else {
|
|
strength = bch_strength;
|
|
strength_len = ARRAY_SIZE(bch_strength);
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return tegra_nand_get_strength(chip, strength, strength_len,
|
|
bits_per_step, oobsize);
|
|
}
|
|
|
|
static int tegra_nand_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
struct tegra_nand_chip *nand = to_tegra_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int bits_per_step;
|
|
int ret;
|
|
|
|
if (chip->bbt_options & NAND_BBT_USE_FLASH)
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
chip->ecc.size = 512;
|
|
chip->ecc.steps = mtd->writesize / chip->ecc.size;
|
|
if (chip->ecc_step_ds != 512) {
|
|
dev_err(ctrl->dev, "Unsupported step size %d\n",
|
|
chip->ecc_step_ds);
|
|
return -EINVAL;
|
|
}
|
|
|
|
chip->ecc.read_page = tegra_nand_read_page_hwecc;
|
|
chip->ecc.write_page = tegra_nand_write_page_hwecc;
|
|
chip->ecc.read_page_raw = tegra_nand_read_page_raw;
|
|
chip->ecc.write_page_raw = tegra_nand_write_page_raw;
|
|
chip->ecc.read_oob = tegra_nand_read_oob;
|
|
chip->ecc.write_oob = tegra_nand_write_oob;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
nand->config |= CONFIG_BUS_WIDTH_16;
|
|
|
|
if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
|
|
if (mtd->writesize < 2048)
|
|
chip->ecc.algo = NAND_ECC_RS;
|
|
else
|
|
chip->ecc.algo = NAND_ECC_BCH;
|
|
}
|
|
|
|
if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) {
|
|
dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!chip->ecc.strength) {
|
|
ret = tegra_nand_select_strength(chip, mtd->oobsize);
|
|
if (ret < 0) {
|
|
dev_err(ctrl->dev,
|
|
"No valid strength found, minimum %d\n",
|
|
chip->ecc_strength_ds);
|
|
return ret;
|
|
}
|
|
|
|
chip->ecc.strength = ret;
|
|
}
|
|
|
|
nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
|
|
CONFIG_SKIP_SPARE_SIZE_4;
|
|
|
|
switch (chip->ecc.algo) {
|
|
case NAND_ECC_RS:
|
|
bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
|
|
mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
|
|
nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
|
|
CONFIG_ERR_COR;
|
|
switch (chip->ecc.strength) {
|
|
case 4:
|
|
nand->config_ecc |= CONFIG_TVAL_4;
|
|
break;
|
|
case 6:
|
|
nand->config_ecc |= CONFIG_TVAL_6;
|
|
break;
|
|
case 8:
|
|
nand->config_ecc |= CONFIG_TVAL_8;
|
|
break;
|
|
default:
|
|
dev_err(ctrl->dev, "ECC strength %d not supported\n",
|
|
chip->ecc.strength);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case NAND_ECC_BCH:
|
|
bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
|
|
mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
|
|
nand->bch_config = BCH_ENABLE;
|
|
switch (chip->ecc.strength) {
|
|
case 4:
|
|
nand->bch_config |= BCH_TVAL_4;
|
|
break;
|
|
case 8:
|
|
nand->bch_config |= BCH_TVAL_8;
|
|
break;
|
|
case 14:
|
|
nand->bch_config |= BCH_TVAL_14;
|
|
break;
|
|
case 16:
|
|
nand->bch_config |= BCH_TVAL_16;
|
|
break;
|
|
default:
|
|
dev_err(ctrl->dev, "ECC strength %d not supported\n",
|
|
chip->ecc.strength);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
dev_err(ctrl->dev, "ECC algorithm not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n",
|
|
chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS",
|
|
chip->ecc.strength);
|
|
|
|
chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
|
|
|
|
switch (mtd->writesize) {
|
|
case 256:
|
|
nand->config |= CONFIG_PS_256;
|
|
break;
|
|
case 512:
|
|
nand->config |= CONFIG_PS_512;
|
|
break;
|
|
case 1024:
|
|
nand->config |= CONFIG_PS_1024;
|
|
break;
|
|
case 2048:
|
|
nand->config |= CONFIG_PS_2048;
|
|
break;
|
|
case 4096:
|
|
nand->config |= CONFIG_PS_4096;
|
|
break;
|
|
default:
|
|
dev_err(ctrl->dev, "Unsupported writesize %d\n",
|
|
mtd->writesize);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Store complete configuration for HW ECC in config_ecc */
|
|
nand->config_ecc |= nand->config;
|
|
|
|
/* Non-HW ECC read/writes complete OOB */
|
|
nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
|
|
writel_relaxed(nand->config, ctrl->regs + CONFIG);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops tegra_nand_controller_ops = {
|
|
.attach_chip = &tegra_nand_attach_chip,
|
|
.exec_op = tegra_nand_exec_op,
|
|
.setup_data_interface = tegra_nand_setup_data_interface,
|
|
};
|
|
|
|
static int tegra_nand_chips_init(struct device *dev,
|
|
struct tegra_nand_controller *ctrl)
|
|
{
|
|
struct device_node *np = dev->of_node;
|
|
struct device_node *np_nand;
|
|
int nsels, nchips = of_get_child_count(np);
|
|
struct tegra_nand_chip *nand;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *chip;
|
|
int ret;
|
|
u32 cs;
|
|
|
|
if (nchips != 1) {
|
|
dev_err(dev, "Currently only one NAND chip supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
np_nand = of_get_next_child(np, NULL);
|
|
|
|
nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
|
|
if (nsels != 1) {
|
|
dev_err(dev, "Missing/invalid reg property\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Retrieve CS id, currently only single die NAND supported */
|
|
ret = of_property_read_u32(np_nand, "reg", &cs);
|
|
if (ret) {
|
|
dev_err(dev, "could not retrieve reg property: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
|
|
if (!nand)
|
|
return -ENOMEM;
|
|
|
|
nand->cs[0] = cs;
|
|
|
|
nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
|
|
|
|
if (IS_ERR(nand->wp_gpio)) {
|
|
ret = PTR_ERR(nand->wp_gpio);
|
|
dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
chip = &nand->chip;
|
|
chip->controller = &ctrl->controller;
|
|
|
|
mtd = nand_to_mtd(chip);
|
|
|
|
mtd->dev.parent = dev;
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
nand_set_flash_node(chip, np_nand);
|
|
|
|
if (!mtd->name)
|
|
mtd->name = "tegra_nand";
|
|
|
|
chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
|
|
|
|
ret = nand_scan(chip, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mtd_ooblayout_ecc(mtd, 0, &nand->ecc);
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to register mtd device: %d\n", ret);
|
|
nand_cleanup(chip);
|
|
return ret;
|
|
}
|
|
|
|
ctrl->chip = chip;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct reset_control *rst;
|
|
struct tegra_nand_controller *ctrl;
|
|
struct resource *res;
|
|
int err = 0;
|
|
|
|
ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
|
|
if (!ctrl)
|
|
return -ENOMEM;
|
|
|
|
ctrl->dev = &pdev->dev;
|
|
nand_controller_init(&ctrl->controller);
|
|
ctrl->controller.ops = &tegra_nand_controller_ops;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(ctrl->regs))
|
|
return PTR_ERR(ctrl->regs);
|
|
|
|
rst = devm_reset_control_get(&pdev->dev, "nand");
|
|
if (IS_ERR(rst))
|
|
return PTR_ERR(rst);
|
|
|
|
ctrl->clk = devm_clk_get(&pdev->dev, "nand");
|
|
if (IS_ERR(ctrl->clk))
|
|
return PTR_ERR(ctrl->clk);
|
|
|
|
err = clk_prepare_enable(ctrl->clk);
|
|
if (err)
|
|
return err;
|
|
|
|
err = reset_control_reset(rst);
|
|
if (err) {
|
|
dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
|
|
goto err_disable_clk;
|
|
}
|
|
|
|
writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
|
|
writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
|
|
writel_relaxed(INT_MASK, ctrl->regs + IER);
|
|
|
|
init_completion(&ctrl->command_complete);
|
|
init_completion(&ctrl->dma_complete);
|
|
|
|
ctrl->irq = platform_get_irq(pdev, 0);
|
|
err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
|
|
dev_name(&pdev->dev), ctrl);
|
|
if (err) {
|
|
dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
|
|
goto err_disable_clk;
|
|
}
|
|
|
|
writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
|
|
|
|
err = tegra_nand_chips_init(ctrl->dev, ctrl);
|
|
if (err)
|
|
goto err_disable_clk;
|
|
|
|
platform_set_drvdata(pdev, ctrl);
|
|
|
|
return 0;
|
|
|
|
err_disable_clk:
|
|
clk_disable_unprepare(ctrl->clk);
|
|
return err;
|
|
}
|
|
|
|
static int tegra_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
|
|
struct nand_chip *chip = ctrl->chip;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
ret = mtd_device_unregister(mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nand_cleanup(chip);
|
|
|
|
clk_disable_unprepare(ctrl->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id tegra_nand_of_match[] = {
|
|
{ .compatible = "nvidia,tegra20-nand" },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
|
|
|
|
static struct platform_driver tegra_nand_driver = {
|
|
.driver = {
|
|
.name = "tegra-nand",
|
|
.of_match_table = tegra_nand_of_match,
|
|
},
|
|
.probe = tegra_nand_probe,
|
|
.remove = tegra_nand_remove,
|
|
};
|
|
module_platform_driver(tegra_nand_driver);
|
|
|
|
MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
|
|
MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
|
|
MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
|
|
MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
|
|
MODULE_LICENSE("GPL v2");
|