mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 16:06:16 +07:00
e01b16a7e2
Logically, EFX_BUG_ON_PARANOID can never be correct. For, BUG_ON should only be used if it is not possible to continue without potential harm; and since the non-DEBUG driver will continue regardless (as the BUG_ON is compiled out), clearly the BUG_ON cannot be needed in the DEBUG driver. So, replace every EFX_BUG_ON_PARANOID with either an EFX_WARN_ON_PARANOID or the newly defined EFX_WARN_ON_ONCE_PARANOID. Signed-off-by: Edward Cree <ecree@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
452 lines
12 KiB
C
452 lines
12 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2005-2015 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/slab.h>
|
|
#include <net/ipv6.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/cache.h>
|
|
#include "net_driver.h"
|
|
#include "efx.h"
|
|
#include "io.h"
|
|
#include "nic.h"
|
|
#include "tx.h"
|
|
#include "workarounds.h"
|
|
#include "ef10_regs.h"
|
|
|
|
/* Efx legacy TCP segmentation acceleration.
|
|
*
|
|
* Utilises firmware support to go faster than GSO (but not as fast as TSOv2).
|
|
*
|
|
* Requires TX checksum offload support.
|
|
*/
|
|
|
|
#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
|
|
|
|
/**
|
|
* struct tso_state - TSO state for an SKB
|
|
* @out_len: Remaining length in current segment
|
|
* @seqnum: Current sequence number
|
|
* @ipv4_id: Current IPv4 ID, host endian
|
|
* @packet_space: Remaining space in current packet
|
|
* @dma_addr: DMA address of current position
|
|
* @in_len: Remaining length in current SKB fragment
|
|
* @unmap_len: Length of SKB fragment
|
|
* @unmap_addr: DMA address of SKB fragment
|
|
* @protocol: Network protocol (after any VLAN header)
|
|
* @ip_off: Offset of IP header
|
|
* @tcp_off: Offset of TCP header
|
|
* @header_len: Number of bytes of header
|
|
* @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
|
|
* @header_dma_addr: Header DMA address
|
|
* @header_unmap_len: Header DMA mapped length
|
|
*
|
|
* The state used during segmentation. It is put into this data structure
|
|
* just to make it easy to pass into inline functions.
|
|
*/
|
|
struct tso_state {
|
|
/* Output position */
|
|
unsigned int out_len;
|
|
unsigned int seqnum;
|
|
u16 ipv4_id;
|
|
unsigned int packet_space;
|
|
|
|
/* Input position */
|
|
dma_addr_t dma_addr;
|
|
unsigned int in_len;
|
|
unsigned int unmap_len;
|
|
dma_addr_t unmap_addr;
|
|
|
|
__be16 protocol;
|
|
unsigned int ip_off;
|
|
unsigned int tcp_off;
|
|
unsigned int header_len;
|
|
unsigned int ip_base_len;
|
|
dma_addr_t header_dma_addr;
|
|
unsigned int header_unmap_len;
|
|
};
|
|
|
|
static inline void prefetch_ptr(struct efx_tx_queue *tx_queue)
|
|
{
|
|
unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue);
|
|
char *ptr;
|
|
|
|
ptr = (char *) (tx_queue->buffer + insert_ptr);
|
|
prefetch(ptr);
|
|
prefetch(ptr + 0x80);
|
|
|
|
ptr = (char *) (((efx_qword_t *)tx_queue->txd.buf.addr) + insert_ptr);
|
|
prefetch(ptr);
|
|
prefetch(ptr + 0x80);
|
|
}
|
|
|
|
/**
|
|
* efx_tx_queue_insert - push descriptors onto the TX queue
|
|
* @tx_queue: Efx TX queue
|
|
* @dma_addr: DMA address of fragment
|
|
* @len: Length of fragment
|
|
* @final_buffer: The final buffer inserted into the queue
|
|
*
|
|
* Push descriptors onto the TX queue.
|
|
*/
|
|
static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
|
|
dma_addr_t dma_addr, unsigned int len,
|
|
struct efx_tx_buffer **final_buffer)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
unsigned int dma_len;
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(len <= 0);
|
|
|
|
while (1) {
|
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
++tx_queue->insert_count;
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(tx_queue->insert_count -
|
|
tx_queue->read_count >=
|
|
tx_queue->efx->txq_entries);
|
|
|
|
buffer->dma_addr = dma_addr;
|
|
|
|
dma_len = tx_queue->efx->type->tx_limit_len(tx_queue,
|
|
dma_addr, len);
|
|
|
|
/* If there's space for everything this is our last buffer. */
|
|
if (dma_len >= len)
|
|
break;
|
|
|
|
buffer->len = dma_len;
|
|
buffer->flags = EFX_TX_BUF_CONT;
|
|
dma_addr += dma_len;
|
|
len -= dma_len;
|
|
}
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(!len);
|
|
buffer->len = len;
|
|
*final_buffer = buffer;
|
|
}
|
|
|
|
/*
|
|
* Verify that our various assumptions about sk_buffs and the conditions
|
|
* under which TSO will be attempted hold true. Return the protocol number.
|
|
*/
|
|
static __be16 efx_tso_check_protocol(struct sk_buff *skb)
|
|
{
|
|
__be16 protocol = skb->protocol;
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
|
|
protocol);
|
|
if (protocol == htons(ETH_P_8021Q)) {
|
|
struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
|
|
|
|
protocol = veh->h_vlan_encapsulated_proto;
|
|
}
|
|
|
|
if (protocol == htons(ETH_P_IP)) {
|
|
EFX_WARN_ON_ONCE_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
|
|
} else {
|
|
EFX_WARN_ON_ONCE_PARANOID(protocol != htons(ETH_P_IPV6));
|
|
EFX_WARN_ON_ONCE_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
|
|
}
|
|
EFX_WARN_ON_ONCE_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) +
|
|
(tcp_hdr(skb)->doff << 2u)) >
|
|
skb_headlen(skb));
|
|
|
|
return protocol;
|
|
}
|
|
|
|
/* Parse the SKB header and initialise state. */
|
|
static int tso_start(struct tso_state *st, struct efx_nic *efx,
|
|
struct efx_tx_queue *tx_queue,
|
|
const struct sk_buff *skb)
|
|
{
|
|
struct device *dma_dev = &efx->pci_dev->dev;
|
|
unsigned int header_len, in_len;
|
|
dma_addr_t dma_addr;
|
|
|
|
st->ip_off = skb_network_header(skb) - skb->data;
|
|
st->tcp_off = skb_transport_header(skb) - skb->data;
|
|
header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
|
|
in_len = skb_headlen(skb) - header_len;
|
|
st->header_len = header_len;
|
|
st->in_len = in_len;
|
|
if (st->protocol == htons(ETH_P_IP)) {
|
|
st->ip_base_len = st->header_len - st->ip_off;
|
|
st->ipv4_id = ntohs(ip_hdr(skb)->id);
|
|
} else {
|
|
st->ip_base_len = st->header_len - st->tcp_off;
|
|
st->ipv4_id = 0;
|
|
}
|
|
st->seqnum = ntohl(tcp_hdr(skb)->seq);
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->urg);
|
|
EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->syn);
|
|
EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->rst);
|
|
|
|
st->out_len = skb->len - header_len;
|
|
|
|
dma_addr = dma_map_single(dma_dev, skb->data,
|
|
skb_headlen(skb), DMA_TO_DEVICE);
|
|
st->header_dma_addr = dma_addr;
|
|
st->header_unmap_len = skb_headlen(skb);
|
|
st->dma_addr = dma_addr + header_len;
|
|
st->unmap_len = 0;
|
|
|
|
return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
|
|
}
|
|
|
|
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
|
|
skb_frag_t *frag)
|
|
{
|
|
st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
|
|
skb_frag_size(frag), DMA_TO_DEVICE);
|
|
if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
|
|
st->unmap_len = skb_frag_size(frag);
|
|
st->in_len = skb_frag_size(frag);
|
|
st->dma_addr = st->unmap_addr;
|
|
return 0;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
|
|
/**
|
|
* tso_fill_packet_with_fragment - form descriptors for the current fragment
|
|
* @tx_queue: Efx TX queue
|
|
* @skb: Socket buffer
|
|
* @st: TSO state
|
|
*
|
|
* Form descriptors for the current fragment, until we reach the end
|
|
* of fragment or end-of-packet.
|
|
*/
|
|
static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
|
|
const struct sk_buff *skb,
|
|
struct tso_state *st)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
int n;
|
|
|
|
if (st->in_len == 0)
|
|
return;
|
|
if (st->packet_space == 0)
|
|
return;
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(st->in_len <= 0);
|
|
EFX_WARN_ON_ONCE_PARANOID(st->packet_space <= 0);
|
|
|
|
n = min(st->in_len, st->packet_space);
|
|
|
|
st->packet_space -= n;
|
|
st->out_len -= n;
|
|
st->in_len -= n;
|
|
|
|
efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
|
|
|
|
if (st->out_len == 0) {
|
|
/* Transfer ownership of the skb */
|
|
buffer->skb = skb;
|
|
buffer->flags = EFX_TX_BUF_SKB;
|
|
} else if (st->packet_space != 0) {
|
|
buffer->flags = EFX_TX_BUF_CONT;
|
|
}
|
|
|
|
if (st->in_len == 0) {
|
|
/* Transfer ownership of the DMA mapping */
|
|
buffer->unmap_len = st->unmap_len;
|
|
buffer->dma_offset = buffer->unmap_len - buffer->len;
|
|
st->unmap_len = 0;
|
|
}
|
|
|
|
st->dma_addr += n;
|
|
}
|
|
|
|
|
|
#define TCP_FLAGS_OFFSET 13
|
|
|
|
/**
|
|
* tso_start_new_packet - generate a new header and prepare for the new packet
|
|
* @tx_queue: Efx TX queue
|
|
* @skb: Socket buffer
|
|
* @st: TSO state
|
|
*
|
|
* Generate a new header and prepare for the new packet. Return 0 on
|
|
* success, or -%ENOMEM if failed to alloc header, or other negative error.
|
|
*/
|
|
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
|
const struct sk_buff *skb,
|
|
struct tso_state *st)
|
|
{
|
|
struct efx_tx_buffer *buffer =
|
|
efx_tx_queue_get_insert_buffer(tx_queue);
|
|
bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
|
|
u8 tcp_flags_mask, tcp_flags;
|
|
|
|
if (!is_last) {
|
|
st->packet_space = skb_shinfo(skb)->gso_size;
|
|
tcp_flags_mask = 0x09; /* mask out FIN and PSH */
|
|
} else {
|
|
st->packet_space = st->out_len;
|
|
tcp_flags_mask = 0x00;
|
|
}
|
|
|
|
if (WARN_ON(!st->header_unmap_len))
|
|
return -EINVAL;
|
|
/* Send the original headers with a TSO option descriptor
|
|
* in front
|
|
*/
|
|
tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] & ~tcp_flags_mask;
|
|
|
|
buffer->flags = EFX_TX_BUF_OPTION;
|
|
buffer->len = 0;
|
|
buffer->unmap_len = 0;
|
|
EFX_POPULATE_QWORD_5(buffer->option,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE,
|
|
ESE_DZ_TX_OPTION_DESC_TSO,
|
|
ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
|
|
ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
|
|
ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
|
|
++tx_queue->insert_count;
|
|
|
|
/* We mapped the headers in tso_start(). Unmap them
|
|
* when the last segment is completed.
|
|
*/
|
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
buffer->dma_addr = st->header_dma_addr;
|
|
buffer->len = st->header_len;
|
|
if (is_last) {
|
|
buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
|
|
buffer->unmap_len = st->header_unmap_len;
|
|
buffer->dma_offset = 0;
|
|
/* Ensure we only unmap them once in case of a
|
|
* later DMA mapping error and rollback
|
|
*/
|
|
st->header_unmap_len = 0;
|
|
} else {
|
|
buffer->flags = EFX_TX_BUF_CONT;
|
|
buffer->unmap_len = 0;
|
|
}
|
|
++tx_queue->insert_count;
|
|
|
|
st->seqnum += skb_shinfo(skb)->gso_size;
|
|
|
|
/* Linux leaves suitable gaps in the IP ID space for us to fill. */
|
|
++st->ipv4_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
|
|
* @tx_queue: Efx TX queue
|
|
* @skb: Socket buffer
|
|
* @data_mapped: Did we map the data? Always set to true
|
|
* by this on success.
|
|
*
|
|
* Context: You must hold netif_tx_lock() to call this function.
|
|
*
|
|
* Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
|
|
* @skb was not enqueued. @skb is consumed unless return value is
|
|
* %EINVAL.
|
|
*/
|
|
int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|
struct sk_buff *skb,
|
|
bool *data_mapped)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
int frag_i, rc;
|
|
struct tso_state state;
|
|
|
|
if (tx_queue->tso_version != 1)
|
|
return -EINVAL;
|
|
|
|
prefetch(skb->data);
|
|
|
|
/* Find the packet protocol and sanity-check it */
|
|
state.protocol = efx_tso_check_protocol(skb);
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(tx_queue->write_count != tx_queue->insert_count);
|
|
|
|
rc = tso_start(&state, efx, tx_queue, skb);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
if (likely(state.in_len == 0)) {
|
|
/* Grab the first payload fragment. */
|
|
EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->nr_frags < 1);
|
|
frag_i = 0;
|
|
rc = tso_get_fragment(&state, efx,
|
|
skb_shinfo(skb)->frags + frag_i);
|
|
if (rc)
|
|
goto fail;
|
|
} else {
|
|
/* Payload starts in the header area. */
|
|
frag_i = -1;
|
|
}
|
|
|
|
rc = tso_start_new_packet(tx_queue, skb, &state);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
prefetch_ptr(tx_queue);
|
|
|
|
while (1) {
|
|
tso_fill_packet_with_fragment(tx_queue, skb, &state);
|
|
|
|
/* Move onto the next fragment? */
|
|
if (state.in_len == 0) {
|
|
if (++frag_i >= skb_shinfo(skb)->nr_frags)
|
|
/* End of payload reached. */
|
|
break;
|
|
rc = tso_get_fragment(&state, efx,
|
|
skb_shinfo(skb)->frags + frag_i);
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
|
|
/* Start at new packet? */
|
|
if (state.packet_space == 0) {
|
|
rc = tso_start_new_packet(tx_queue, skb, &state);
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
*data_mapped = true;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
if (rc == -ENOMEM)
|
|
netif_err(efx, tx_err, efx->net_dev,
|
|
"Out of memory for TSO headers, or DMA mapping error\n");
|
|
else
|
|
netif_err(efx, tx_err, efx->net_dev, "TSO failed, rc = %d\n", rc);
|
|
|
|
/* Free the DMA mapping we were in the process of writing out */
|
|
if (state.unmap_len) {
|
|
dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
|
|
state.unmap_len, DMA_TO_DEVICE);
|
|
}
|
|
|
|
/* Free the header DMA mapping */
|
|
if (state.header_unmap_len)
|
|
dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
|
|
state.header_unmap_len, DMA_TO_DEVICE);
|
|
|
|
return rc;
|
|
}
|