linux_dsm_epyc7002/drivers/net/ethernet/toshiba/tc35815.c
Eric W. Biederman 176f792f57 tc35815: Don't receive packets when the napi budget == 0
Processing any incoming packets with a with a napi budget of 0
is incorrect driver behavior.

This matters as netpoll will shortly call drivers with a budget of 0
to avoid receive packet processing happening in hard irq context.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-14 22:52:48 -04:00

2209 lines
64 KiB
C

/*
* tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
*
* Based on skelton.c by Donald Becker.
*
* This driver is a replacement of older and less maintained version.
* This is a header of the older version:
* -----<snip>-----
* Copyright 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* ahennessy@mvista.com
* Copyright (C) 2000-2001 Toshiba Corporation
* static const char *version =
* "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
* -----<snip>-----
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* (C) Copyright TOSHIBA CORPORATION 2004-2005
* All Rights Reserved.
*/
#define DRV_VERSION "1.39"
static const char *version = "tc35815.c:v" DRV_VERSION "\n";
#define MODNAME "tc35815"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/if_vlan.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/prefetch.h>
#include <asm/io.h>
#include <asm/byteorder.h>
enum tc35815_chiptype {
TC35815CF = 0,
TC35815_NWU,
TC35815_TX4939,
};
/* indexed by tc35815_chiptype, above */
static const struct {
const char *name;
} chip_info[] = {
{ "TOSHIBA TC35815CF 10/100BaseTX" },
{ "TOSHIBA TC35815 with Wake on LAN" },
{ "TOSHIBA TC35815/TX4939" },
};
static DEFINE_PCI_DEVICE_TABLE(tc35815_pci_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
{0,}
};
MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
/* see MODULE_PARM_DESC */
static struct tc35815_options {
int speed;
int duplex;
} options;
/*
* Registers
*/
struct tc35815_regs {
__u32 DMA_Ctl; /* 0x00 */
__u32 TxFrmPtr;
__u32 TxThrsh;
__u32 TxPollCtr;
__u32 BLFrmPtr;
__u32 RxFragSize;
__u32 Int_En;
__u32 FDA_Bas;
__u32 FDA_Lim; /* 0x20 */
__u32 Int_Src;
__u32 unused0[2];
__u32 PauseCnt;
__u32 RemPauCnt;
__u32 TxCtlFrmStat;
__u32 unused1;
__u32 MAC_Ctl; /* 0x40 */
__u32 CAM_Ctl;
__u32 Tx_Ctl;
__u32 Tx_Stat;
__u32 Rx_Ctl;
__u32 Rx_Stat;
__u32 MD_Data;
__u32 MD_CA;
__u32 CAM_Adr; /* 0x60 */
__u32 CAM_Data;
__u32 CAM_Ena;
__u32 PROM_Ctl;
__u32 PROM_Data;
__u32 Algn_Cnt;
__u32 CRC_Cnt;
__u32 Miss_Cnt;
};
/*
* Bit assignments
*/
/* DMA_Ctl bit assign ------------------------------------------------------- */
#define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
#define DMA_RxAlign_1 0x00400000
#define DMA_RxAlign_2 0x00800000
#define DMA_RxAlign_3 0x00c00000
#define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
#define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
#define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
#define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
#define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
#define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
#define DMA_TestMode 0x00002000 /* 1:Test Mode */
#define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
#define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
/* RxFragSize bit assign ---------------------------------------------------- */
#define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
#define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
/* MAC_Ctl bit assign ------------------------------------------------------- */
#define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
#define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
#define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
#define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
#define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
#define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
#define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
#define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
#define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
#define MAC_Reset 0x00000004 /* 1:Software Reset */
#define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
#define MAC_HaltReq 0x00000001 /* 1:Halt request */
/* PROM_Ctl bit assign ------------------------------------------------------ */
#define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
#define PROM_Read 0x00004000 /*10:Read operation */
#define PROM_Write 0x00002000 /*01:Write operation */
#define PROM_Erase 0x00006000 /*11:Erase operation */
/*00:Enable or Disable Writting, */
/* as specified in PROM_Addr. */
#define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
/*00xxxx: disable */
/* CAM_Ctl bit assign ------------------------------------------------------- */
#define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
#define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
/* accept other */
#define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
#define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
#define CAM_StationAcc 0x00000001 /* 1:unicast accept */
/* CAM_Ena bit assign ------------------------------------------------------- */
#define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
#define CAM_Ena_Bit(index) (1 << (index))
#define CAM_ENTRY_DESTINATION 0
#define CAM_ENTRY_SOURCE 1
#define CAM_ENTRY_MACCTL 20
/* Tx_Ctl bit assign -------------------------------------------------------- */
#define Tx_En 0x00000001 /* 1:Transmit enable */
#define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
#define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
#define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
#define Tx_FBack 0x00000010 /* 1:Fast Back-off */
#define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
#define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
#define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
#define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
#define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
#define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
#define Tx_EnComp 0x00004000 /* 1:Enable Completion */
/* Tx_Stat bit assign ------------------------------------------------------- */
#define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
#define Tx_ExColl 0x00000010 /* Excessive Collision */
#define Tx_TXDefer 0x00000020 /* Transmit Defered */
#define Tx_Paused 0x00000040 /* Transmit Paused */
#define Tx_IntTx 0x00000080 /* Interrupt on Tx */
#define Tx_Under 0x00000100 /* Underrun */
#define Tx_Defer 0x00000200 /* Deferral */
#define Tx_NCarr 0x00000400 /* No Carrier */
#define Tx_10Stat 0x00000800 /* 10Mbps Status */
#define Tx_LateColl 0x00001000 /* Late Collision */
#define Tx_TxPar 0x00002000 /* Tx Parity Error */
#define Tx_Comp 0x00004000 /* Completion */
#define Tx_Halted 0x00008000 /* Tx Halted */
#define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
/* Rx_Ctl bit assign -------------------------------------------------------- */
#define Rx_EnGood 0x00004000 /* 1:Enable Good */
#define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
#define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
#define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
#define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
#define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
#define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
#define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
#define Rx_ShortEn 0x00000008 /* 1:Short Enable */
#define Rx_LongEn 0x00000004 /* 1:Long Enable */
#define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
#define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
/* Rx_Stat bit assign ------------------------------------------------------- */
#define Rx_Halted 0x00008000 /* Rx Halted */
#define Rx_Good 0x00004000 /* Rx Good */
#define Rx_RxPar 0x00002000 /* Rx Parity Error */
#define Rx_TypePkt 0x00001000 /* Rx Type Packet */
#define Rx_LongErr 0x00000800 /* Rx Long Error */
#define Rx_Over 0x00000400 /* Rx Overflow */
#define Rx_CRCErr 0x00000200 /* Rx CRC Error */
#define Rx_Align 0x00000100 /* Rx Alignment Error */
#define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
#define Rx_IntRx 0x00000040 /* Rx Interrupt */
#define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
#define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
#define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
/* Int_En bit assign -------------------------------------------------------- */
#define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
#define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
#define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
#define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
#define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
#define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
#define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
#define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
#define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
#define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
#define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
#define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
/* Exhausted Enable */
/* Int_Src bit assign ------------------------------------------------------- */
#define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
#define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
#define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
#define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
#define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
#define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
#define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
#define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
#define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
#define Int_SWInt 0x00000020 /* 1:Software request & Clear */
#define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
#define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
#define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
#define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
#define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
/* MD_CA bit assign --------------------------------------------------------- */
#define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
#define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
#define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
/*
* Descriptors
*/
/* Frame descripter */
struct FDesc {
volatile __u32 FDNext;
volatile __u32 FDSystem;
volatile __u32 FDStat;
volatile __u32 FDCtl;
};
/* Buffer descripter */
struct BDesc {
volatile __u32 BuffData;
volatile __u32 BDCtl;
};
#define FD_ALIGN 16
/* Frame Descripter bit assign ---------------------------------------------- */
#define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
#define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
#define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
#define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
#define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
#define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
#define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
#define FD_FrmOpt_Packing 0x04000000 /* Rx only */
#define FD_CownsFD 0x80000000 /* FD Controller owner bit */
#define FD_Next_EOL 0x00000001 /* FD EOL indicator */
#define FD_BDCnt_SHIFT 16
/* Buffer Descripter bit assign --------------------------------------------- */
#define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
#define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
#define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
#define BD_CownsBD 0x80000000 /* BD Controller owner bit */
#define BD_RxBDID_SHIFT 16
#define BD_RxBDSeqN_SHIFT 24
/* Some useful constants. */
#define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
Tx_En) /* maybe 0x7b01 */
/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
#define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
#define INT_EN_CMD (Int_NRAbtEn | \
Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
Int_STargAbtEn | \
Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
#define DMA_CTL_CMD DMA_BURST_SIZE
#define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
/* Tuning parameters */
#define DMA_BURST_SIZE 32
#define TX_THRESHOLD 1024
/* used threshold with packet max byte for low pci transfer ability.*/
#define TX_THRESHOLD_MAX 1536
/* setting threshold max value when overrun error occurred this count. */
#define TX_THRESHOLD_KEEP_LIMIT 10
/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
#define FD_PAGE_NUM 4
#define RX_BUF_NUM 128 /* < 256 */
#define RX_FD_NUM 256 /* >= 32 */
#define TX_FD_NUM 128
#if RX_CTL_CMD & Rx_LongEn
#define RX_BUF_SIZE PAGE_SIZE
#elif RX_CTL_CMD & Rx_StripCRC
#define RX_BUF_SIZE \
L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
#else
#define RX_BUF_SIZE \
L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
#endif
#define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
#define NAPI_WEIGHT 16
struct TxFD {
struct FDesc fd;
struct BDesc bd;
struct BDesc unused;
};
struct RxFD {
struct FDesc fd;
struct BDesc bd[0]; /* variable length */
};
struct FrFD {
struct FDesc fd;
struct BDesc bd[RX_BUF_NUM];
};
#define tc_readl(addr) ioread32(addr)
#define tc_writel(d, addr) iowrite32(d, addr)
#define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
/* Information that need to be kept for each controller. */
struct tc35815_local {
struct pci_dev *pci_dev;
struct net_device *dev;
struct napi_struct napi;
/* statistics */
struct {
int max_tx_qlen;
int tx_ints;
int rx_ints;
int tx_underrun;
} lstats;
/* Tx control lock. This protects the transmit buffer ring
* state along with the "tx full" state of the driver. This
* means all netif_queue flow control actions are protected
* by this lock as well.
*/
spinlock_t lock;
spinlock_t rx_lock;
struct mii_bus *mii_bus;
struct phy_device *phy_dev;
int duplex;
int speed;
int link;
struct work_struct restart_work;
/*
* Transmitting: Batch Mode.
* 1 BD in 1 TxFD.
* Receiving: Non-Packing Mode.
* 1 circular FD for Free Buffer List.
* RX_BUF_NUM BD in Free Buffer FD.
* One Free Buffer BD has ETH_FRAME_LEN data buffer.
*/
void *fd_buf; /* for TxFD, RxFD, FrFD */
dma_addr_t fd_buf_dma;
struct TxFD *tfd_base;
unsigned int tfd_start;
unsigned int tfd_end;
struct RxFD *rfd_base;
struct RxFD *rfd_limit;
struct RxFD *rfd_cur;
struct FrFD *fbl_ptr;
unsigned int fbl_count;
struct {
struct sk_buff *skb;
dma_addr_t skb_dma;
} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
u32 msg_enable;
enum tc35815_chiptype chiptype;
};
static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
{
return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
}
#ifdef DEBUG
static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
{
return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
}
#endif
static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
struct pci_dev *hwdev,
dma_addr_t *dma_handle)
{
struct sk_buff *skb;
skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
if (!skb)
return NULL;
*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(hwdev, *dma_handle)) {
dev_kfree_skb_any(skb);
return NULL;
}
skb_reserve(skb, 2); /* make IP header 4byte aligned */
return skb;
}
static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
{
pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
}
/* Index to functions, as function prototypes. */
static int tc35815_open(struct net_device *dev);
static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
static int tc35815_rx(struct net_device *dev, int limit);
static int tc35815_poll(struct napi_struct *napi, int budget);
static void tc35815_txdone(struct net_device *dev);
static int tc35815_close(struct net_device *dev);
static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
static void tc35815_set_multicast_list(struct net_device *dev);
static void tc35815_tx_timeout(struct net_device *dev);
static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tc35815_poll_controller(struct net_device *dev);
#endif
static const struct ethtool_ops tc35815_ethtool_ops;
/* Example routines you must write ;->. */
static void tc35815_chip_reset(struct net_device *dev);
static void tc35815_chip_init(struct net_device *dev);
#ifdef DEBUG
static void panic_queues(struct net_device *dev);
#endif
static void tc35815_restart_work(struct work_struct *work);
static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
struct net_device *dev = bus->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
unsigned long timeout = jiffies + HZ;
tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
udelay(12); /* it takes 32 x 400ns at least */
while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
if (time_after(jiffies, timeout))
return -EIO;
cpu_relax();
}
return tc_readl(&tr->MD_Data) & 0xffff;
}
static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
{
struct net_device *dev = bus->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
unsigned long timeout = jiffies + HZ;
tc_writel(val, &tr->MD_Data);
tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
&tr->MD_CA);
udelay(12); /* it takes 32 x 400ns at least */
while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
if (time_after(jiffies, timeout))
return -EIO;
cpu_relax();
}
return 0;
}
static void tc_handle_link_change(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct phy_device *phydev = lp->phy_dev;
unsigned long flags;
int status_change = 0;
spin_lock_irqsave(&lp->lock, flags);
if (phydev->link &&
(lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
u32 reg;
reg = tc_readl(&tr->MAC_Ctl);
reg |= MAC_HaltReq;
tc_writel(reg, &tr->MAC_Ctl);
if (phydev->duplex == DUPLEX_FULL)
reg |= MAC_FullDup;
else
reg &= ~MAC_FullDup;
tc_writel(reg, &tr->MAC_Ctl);
reg &= ~MAC_HaltReq;
tc_writel(reg, &tr->MAC_Ctl);
/*
* TX4939 PCFG.SPEEDn bit will be changed on
* NETDEV_CHANGE event.
*/
/*
* WORKAROUND: enable LostCrS only if half duplex
* operation.
* (TX4939 does not have EnLCarr)
*/
if (phydev->duplex == DUPLEX_HALF &&
lp->chiptype != TC35815_TX4939)
tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
&tr->Tx_Ctl);
lp->speed = phydev->speed;
lp->duplex = phydev->duplex;
status_change = 1;
}
if (phydev->link != lp->link) {
if (phydev->link) {
/* delayed promiscuous enabling */
if (dev->flags & IFF_PROMISC)
tc35815_set_multicast_list(dev);
} else {
lp->speed = 0;
lp->duplex = -1;
}
lp->link = phydev->link;
status_change = 1;
}
spin_unlock_irqrestore(&lp->lock, flags);
if (status_change && netif_msg_link(lp)) {
phy_print_status(phydev);
pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
dev->name,
phy_read(phydev, MII_BMCR),
phy_read(phydev, MII_BMSR),
phy_read(phydev, MII_LPA));
}
}
static int tc_mii_probe(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct phy_device *phydev = NULL;
int phy_addr;
u32 dropmask;
/* find the first phy */
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
if (lp->mii_bus->phy_map[phy_addr]) {
if (phydev) {
printk(KERN_ERR "%s: multiple PHYs found\n",
dev->name);
return -EINVAL;
}
phydev = lp->mii_bus->phy_map[phy_addr];
break;
}
}
if (!phydev) {
printk(KERN_ERR "%s: no PHY found\n", dev->name);
return -ENODEV;
}
/* attach the mac to the phy */
phydev = phy_connect(dev, dev_name(&phydev->dev),
&tc_handle_link_change,
lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
printk(KERN_INFO "%s: attached PHY driver [%s] "
"(mii_bus:phy_addr=%s, id=%x)\n",
dev->name, phydev->drv->name, dev_name(&phydev->dev),
phydev->phy_id);
/* mask with MAC supported features */
phydev->supported &= PHY_BASIC_FEATURES;
dropmask = 0;
if (options.speed == 10)
dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
else if (options.speed == 100)
dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
if (options.duplex == 1)
dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
else if (options.duplex == 2)
dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
phydev->supported &= ~dropmask;
phydev->advertising = phydev->supported;
lp->link = 0;
lp->speed = 0;
lp->duplex = -1;
lp->phy_dev = phydev;
return 0;
}
static int tc_mii_init(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int err;
int i;
lp->mii_bus = mdiobus_alloc();
if (lp->mii_bus == NULL) {
err = -ENOMEM;
goto err_out;
}
lp->mii_bus->name = "tc35815_mii_bus";
lp->mii_bus->read = tc_mdio_read;
lp->mii_bus->write = tc_mdio_write;
snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
(lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
lp->mii_bus->priv = dev;
lp->mii_bus->parent = &lp->pci_dev->dev;
lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
if (!lp->mii_bus->irq) {
err = -ENOMEM;
goto err_out_free_mii_bus;
}
for (i = 0; i < PHY_MAX_ADDR; i++)
lp->mii_bus->irq[i] = PHY_POLL;
err = mdiobus_register(lp->mii_bus);
if (err)
goto err_out_free_mdio_irq;
err = tc_mii_probe(dev);
if (err)
goto err_out_unregister_bus;
return 0;
err_out_unregister_bus:
mdiobus_unregister(lp->mii_bus);
err_out_free_mdio_irq:
kfree(lp->mii_bus->irq);
err_out_free_mii_bus:
mdiobus_free(lp->mii_bus);
err_out:
return err;
}
#ifdef CONFIG_CPU_TX49XX
/*
* Find a platform_device providing a MAC address. The platform code
* should provide a "tc35815-mac" device with a MAC address in its
* platform_data.
*/
static int tc35815_mac_match(struct device *dev, void *data)
{
struct platform_device *plat_dev = to_platform_device(dev);
struct pci_dev *pci_dev = data;
unsigned int id = pci_dev->irq;
return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
}
static int tc35815_read_plat_dev_addr(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct device *pd = bus_find_device(&platform_bus_type, NULL,
lp->pci_dev, tc35815_mac_match);
if (pd) {
if (pd->platform_data)
memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
put_device(pd);
return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
}
return -ENODEV;
}
#else
static int tc35815_read_plat_dev_addr(struct net_device *dev)
{
return -ENODEV;
}
#endif
static int tc35815_init_dev_addr(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int i;
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
;
for (i = 0; i < 6; i += 2) {
unsigned short data;
tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
;
data = tc_readl(&tr->PROM_Data);
dev->dev_addr[i] = data & 0xff;
dev->dev_addr[i+1] = data >> 8;
}
if (!is_valid_ether_addr(dev->dev_addr))
return tc35815_read_plat_dev_addr(dev);
return 0;
}
static const struct net_device_ops tc35815_netdev_ops = {
.ndo_open = tc35815_open,
.ndo_stop = tc35815_close,
.ndo_start_xmit = tc35815_send_packet,
.ndo_get_stats = tc35815_get_stats,
.ndo_set_rx_mode = tc35815_set_multicast_list,
.ndo_tx_timeout = tc35815_tx_timeout,
.ndo_do_ioctl = tc35815_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = tc35815_poll_controller,
#endif
};
static int tc35815_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
void __iomem *ioaddr = NULL;
struct net_device *dev;
struct tc35815_local *lp;
int rc;
static int printed_version;
if (!printed_version++) {
printk(version);
dev_printk(KERN_DEBUG, &pdev->dev,
"speed:%d duplex:%d\n",
options.speed, options.duplex);
}
if (!pdev->irq) {
dev_warn(&pdev->dev, "no IRQ assigned.\n");
return -ENODEV;
}
/* dev zeroed in alloc_etherdev */
dev = alloc_etherdev(sizeof(*lp));
if (dev == NULL)
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
lp = netdev_priv(dev);
lp->dev = dev;
/* enable device (incl. PCI PM wakeup), and bus-mastering */
rc = pcim_enable_device(pdev);
if (rc)
goto err_out;
rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
if (rc)
goto err_out;
pci_set_master(pdev);
ioaddr = pcim_iomap_table(pdev)[1];
/* Initialize the device structure. */
dev->netdev_ops = &tc35815_netdev_ops;
dev->ethtool_ops = &tc35815_ethtool_ops;
dev->watchdog_timeo = TC35815_TX_TIMEOUT;
netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
dev->irq = pdev->irq;
dev->base_addr = (unsigned long)ioaddr;
INIT_WORK(&lp->restart_work, tc35815_restart_work);
spin_lock_init(&lp->lock);
spin_lock_init(&lp->rx_lock);
lp->pci_dev = pdev;
lp->chiptype = ent->driver_data;
lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
pci_set_drvdata(pdev, dev);
/* Soft reset the chip. */
tc35815_chip_reset(dev);
/* Retrieve the ethernet address. */
if (tc35815_init_dev_addr(dev)) {
dev_warn(&pdev->dev, "not valid ether addr\n");
eth_hw_addr_random(dev);
}
rc = register_netdev(dev);
if (rc)
goto err_out;
printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
dev->name,
chip_info[ent->driver_data].name,
dev->base_addr,
dev->dev_addr,
dev->irq);
rc = tc_mii_init(dev);
if (rc)
goto err_out_unregister;
return 0;
err_out_unregister:
unregister_netdev(dev);
err_out:
free_netdev(dev);
return rc;
}
static void tc35815_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tc35815_local *lp = netdev_priv(dev);
phy_disconnect(lp->phy_dev);
mdiobus_unregister(lp->mii_bus);
kfree(lp->mii_bus->irq);
mdiobus_free(lp->mii_bus);
unregister_netdev(dev);
free_netdev(dev);
}
static int
tc35815_init_queues(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int i;
unsigned long fd_addr;
if (!lp->fd_buf) {
BUG_ON(sizeof(struct FDesc) +
sizeof(struct BDesc) * RX_BUF_NUM +
sizeof(struct FDesc) * RX_FD_NUM +
sizeof(struct TxFD) * TX_FD_NUM >
PAGE_SIZE * FD_PAGE_NUM);
lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
PAGE_SIZE * FD_PAGE_NUM,
&lp->fd_buf_dma);
if (!lp->fd_buf)
return -ENOMEM;
for (i = 0; i < RX_BUF_NUM; i++) {
lp->rx_skbs[i].skb =
alloc_rxbuf_skb(dev, lp->pci_dev,
&lp->rx_skbs[i].skb_dma);
if (!lp->rx_skbs[i].skb) {
while (--i >= 0) {
free_rxbuf_skb(lp->pci_dev,
lp->rx_skbs[i].skb,
lp->rx_skbs[i].skb_dma);
lp->rx_skbs[i].skb = NULL;
}
pci_free_consistent(lp->pci_dev,
PAGE_SIZE * FD_PAGE_NUM,
lp->fd_buf,
lp->fd_buf_dma);
lp->fd_buf = NULL;
return -ENOMEM;
}
}
printk(KERN_DEBUG "%s: FD buf %p DataBuf",
dev->name, lp->fd_buf);
printk("\n");
} else {
for (i = 0; i < FD_PAGE_NUM; i++)
clear_page((void *)((unsigned long)lp->fd_buf +
i * PAGE_SIZE));
}
fd_addr = (unsigned long)lp->fd_buf;
/* Free Descriptors (for Receive) */
lp->rfd_base = (struct RxFD *)fd_addr;
fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
for (i = 0; i < RX_FD_NUM; i++)
lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
lp->rfd_cur = lp->rfd_base;
lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
/* Transmit Descriptors */
lp->tfd_base = (struct TxFD *)fd_addr;
fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
for (i = 0; i < TX_FD_NUM; i++) {
lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
}
lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
lp->tfd_start = 0;
lp->tfd_end = 0;
/* Buffer List (for Receive) */
lp->fbl_ptr = (struct FrFD *)fd_addr;
lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
/*
* move all allocated skbs to head of rx_skbs[] array.
* fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
* tc35815_rx() had failed.
*/
lp->fbl_count = 0;
for (i = 0; i < RX_BUF_NUM; i++) {
if (lp->rx_skbs[i].skb) {
if (i != lp->fbl_count) {
lp->rx_skbs[lp->fbl_count].skb =
lp->rx_skbs[i].skb;
lp->rx_skbs[lp->fbl_count].skb_dma =
lp->rx_skbs[i].skb_dma;
}
lp->fbl_count++;
}
}
for (i = 0; i < RX_BUF_NUM; i++) {
if (i >= lp->fbl_count) {
lp->fbl_ptr->bd[i].BuffData = 0;
lp->fbl_ptr->bd[i].BDCtl = 0;
continue;
}
lp->fbl_ptr->bd[i].BuffData =
cpu_to_le32(lp->rx_skbs[i].skb_dma);
/* BDID is index of FrFD.bd[] */
lp->fbl_ptr->bd[i].BDCtl =
cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
RX_BUF_SIZE);
}
printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
return 0;
}
static void
tc35815_clear_queues(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int i;
for (i = 0; i < TX_FD_NUM; i++) {
u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
struct sk_buff *skb =
fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[i].skb != skb) {
printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[i].skb != skb);
#endif
if (skb) {
pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[i].skb = NULL;
lp->tx_skbs[i].skb_dma = 0;
dev_kfree_skb_any(skb);
}
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
}
tc35815_init_queues(dev);
}
static void
tc35815_free_queues(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int i;
if (lp->tfd_base) {
for (i = 0; i < TX_FD_NUM; i++) {
u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
struct sk_buff *skb =
fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[i].skb != skb) {
printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[i].skb != skb);
#endif
if (skb) {
dev_kfree_skb(skb);
pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[i].skb = NULL;
lp->tx_skbs[i].skb_dma = 0;
}
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
}
}
lp->rfd_base = NULL;
lp->rfd_limit = NULL;
lp->rfd_cur = NULL;
lp->fbl_ptr = NULL;
for (i = 0; i < RX_BUF_NUM; i++) {
if (lp->rx_skbs[i].skb) {
free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
lp->rx_skbs[i].skb_dma);
lp->rx_skbs[i].skb = NULL;
}
}
if (lp->fd_buf) {
pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
lp->fd_buf, lp->fd_buf_dma);
lp->fd_buf = NULL;
}
}
static void
dump_txfd(struct TxFD *fd)
{
printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
printk("BD: ");
printk(" %08x %08x",
le32_to_cpu(fd->bd.BuffData),
le32_to_cpu(fd->bd.BDCtl));
printk("\n");
}
static int
dump_rxfd(struct RxFD *fd)
{
int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
if (bd_count > 8)
bd_count = 8;
printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
return 0;
printk("BD: ");
for (i = 0; i < bd_count; i++)
printk(" %08x %08x",
le32_to_cpu(fd->bd[i].BuffData),
le32_to_cpu(fd->bd[i].BDCtl));
printk("\n");
return bd_count;
}
#ifdef DEBUG
static void
dump_frfd(struct FrFD *fd)
{
int i;
printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
printk("BD: ");
for (i = 0; i < RX_BUF_NUM; i++)
printk(" %08x %08x",
le32_to_cpu(fd->bd[i].BuffData),
le32_to_cpu(fd->bd[i].BDCtl));
printk("\n");
}
static void
panic_queues(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int i;
printk("TxFD base %p, start %u, end %u\n",
lp->tfd_base, lp->tfd_start, lp->tfd_end);
printk("RxFD base %p limit %p cur %p\n",
lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
printk("FrFD %p\n", lp->fbl_ptr);
for (i = 0; i < TX_FD_NUM; i++)
dump_txfd(&lp->tfd_base[i]);
for (i = 0; i < RX_FD_NUM; i++) {
int bd_count = dump_rxfd(&lp->rfd_base[i]);
i += (bd_count + 1) / 2; /* skip BDs */
}
dump_frfd(lp->fbl_ptr);
panic("%s: Illegal queue state.", dev->name);
}
#endif
static void print_eth(const u8 *add)
{
printk(KERN_DEBUG "print_eth(%p)\n", add);
printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
add + 6, add, add[12], add[13]);
}
static int tc35815_tx_full(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
}
static void tc35815_restart(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int ret;
if (lp->phy_dev) {
ret = phy_init_hw(lp->phy_dev);
if (ret)
printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
}
spin_lock_bh(&lp->rx_lock);
spin_lock_irq(&lp->lock);
tc35815_chip_reset(dev);
tc35815_clear_queues(dev);
tc35815_chip_init(dev);
/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
tc35815_set_multicast_list(dev);
spin_unlock_irq(&lp->lock);
spin_unlock_bh(&lp->rx_lock);
netif_wake_queue(dev);
}
static void tc35815_restart_work(struct work_struct *work)
{
struct tc35815_local *lp =
container_of(work, struct tc35815_local, restart_work);
struct net_device *dev = lp->dev;
tc35815_restart(dev);
}
static void tc35815_schedule_restart(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
unsigned long flags;
/* disable interrupts */
spin_lock_irqsave(&lp->lock, flags);
tc_writel(0, &tr->Int_En);
tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
schedule_work(&lp->restart_work);
spin_unlock_irqrestore(&lp->lock, flags);
}
static void tc35815_tx_timeout(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
dev->name, tc_readl(&tr->Tx_Stat));
/* Try to restart the adaptor. */
tc35815_schedule_restart(dev);
dev->stats.tx_errors++;
}
/*
* Open/initialize the controller. This is called (in the current kernel)
* sometime after booting when the 'ifconfig' program is run.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int
tc35815_open(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
/*
* This is used if the interrupt line can turned off (shared).
* See 3c503.c for an example of selecting the IRQ at config-time.
*/
if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
dev->name, dev))
return -EAGAIN;
tc35815_chip_reset(dev);
if (tc35815_init_queues(dev) != 0) {
free_irq(dev->irq, dev);
return -EAGAIN;
}
napi_enable(&lp->napi);
/* Reset the hardware here. Don't forget to set the station address. */
spin_lock_irq(&lp->lock);
tc35815_chip_init(dev);
spin_unlock_irq(&lp->lock);
netif_carrier_off(dev);
/* schedule a link state check */
phy_start(lp->phy_dev);
/* We are now ready to accept transmit requeusts from
* the queueing layer of the networking.
*/
netif_start_queue(dev);
return 0;
}
/* This will only be invoked if your driver is _not_ in XOFF state.
* What this means is that you need not check it, and that this
* invariant will hold if you make sure that the netif_*_queue()
* calls are done at the proper times.
*/
static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct TxFD *txfd;
unsigned long flags;
/* If some error occurs while trying to transmit this
* packet, you should return '1' from this function.
* In such a case you _may not_ do anything to the
* SKB, it is still owned by the network queueing
* layer when an error is returned. This means you
* may not modify any SKB fields, you may not free
* the SKB, etc.
*/
/* This is the most common case for modern hardware.
* The spinlock protects this code from the TX complete
* hardware interrupt handler. Queue flow control is
* thus managed under this lock as well.
*/
spin_lock_irqsave(&lp->lock, flags);
/* failsafe... (handle txdone now if half of FDs are used) */
if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
TX_FD_NUM / 2)
tc35815_txdone(dev);
if (netif_msg_pktdata(lp))
print_eth(skb->data);
#ifdef DEBUG
if (lp->tx_skbs[lp->tfd_start].skb) {
printk("%s: tx_skbs conflict.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
#endif
lp->tx_skbs[lp->tfd_start].skb = skb;
lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
/*add to ring */
txfd = &lp->tfd_base[lp->tfd_start];
txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
txfd->bd.BDCtl = cpu_to_le32(skb->len);
txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
if (lp->tfd_start == lp->tfd_end) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
/* Start DMA Transmitter. */
txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
if (netif_msg_tx_queued(lp)) {
printk("%s: starting TxFD.\n", dev->name);
dump_txfd(txfd);
}
tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
} else {
txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
if (netif_msg_tx_queued(lp)) {
printk("%s: queueing TxFD.\n", dev->name);
dump_txfd(txfd);
}
}
lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
/* If we just used up the very last entry in the
* TX ring on this device, tell the queueing
* layer to send no more.
*/
if (tc35815_tx_full(dev)) {
if (netif_msg_tx_queued(lp))
printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
netif_stop_queue(dev);
}
/* When the TX completion hw interrupt arrives, this
* is when the transmit statistics are updated.
*/
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
}
#define FATAL_ERROR_INT \
(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
{
static int count;
printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
dev->name, status);
if (status & Int_IntPCI)
printk(" IntPCI");
if (status & Int_DmParErr)
printk(" DmParErr");
if (status & Int_IntNRAbt)
printk(" IntNRAbt");
printk("\n");
if (count++ > 100)
panic("%s: Too many fatal errors.", dev->name);
printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
/* Try to restart the adaptor. */
tc35815_schedule_restart(dev);
}
static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
{
struct tc35815_local *lp = netdev_priv(dev);
int ret = -1;
/* Fatal errors... */
if (status & FATAL_ERROR_INT) {
tc35815_fatal_error_interrupt(dev, status);
return 0;
}
/* recoverable errors */
if (status & Int_IntFDAEx) {
if (netif_msg_rx_err(lp))
dev_warn(&dev->dev,
"Free Descriptor Area Exhausted (%#x).\n",
status);
dev->stats.rx_dropped++;
ret = 0;
}
if (status & Int_IntBLEx) {
if (netif_msg_rx_err(lp))
dev_warn(&dev->dev,
"Buffer List Exhausted (%#x).\n",
status);
dev->stats.rx_dropped++;
ret = 0;
}
if (status & Int_IntExBD) {
if (netif_msg_rx_err(lp))
dev_warn(&dev->dev,
"Excessive Buffer Descriptiors (%#x).\n",
status);
dev->stats.rx_length_errors++;
ret = 0;
}
/* normal notification */
if (status & Int_IntMacRx) {
/* Got a packet(s). */
ret = tc35815_rx(dev, limit);
lp->lstats.rx_ints++;
}
if (status & Int_IntMacTx) {
/* Transmit complete. */
lp->lstats.tx_ints++;
spin_lock_irq(&lp->lock);
tc35815_txdone(dev);
spin_unlock_irq(&lp->lock);
if (ret < 0)
ret = 0;
}
return ret;
}
/*
* The typical workload of the driver:
* Handle the network interface interrupts.
*/
static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct tc35815_local *lp = netdev_priv(dev);
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
u32 dmactl = tc_readl(&tr->DMA_Ctl);
if (!(dmactl & DMA_IntMask)) {
/* disable interrupts */
tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
if (napi_schedule_prep(&lp->napi))
__napi_schedule(&lp->napi);
else {
printk(KERN_ERR "%s: interrupt taken in poll\n",
dev->name);
BUG();
}
(void)tc_readl(&tr->Int_Src); /* flush */
return IRQ_HANDLED;
}
return IRQ_NONE;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tc35815_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
tc35815_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/* We have a good packet(s), get it/them out of the buffers. */
static int
tc35815_rx(struct net_device *dev, int limit)
{
struct tc35815_local *lp = netdev_priv(dev);
unsigned int fdctl;
int i;
int received = 0;
while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
int pkt_len = fdctl & FD_FDLength_MASK;
int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
#ifdef DEBUG
struct RxFD *next_rfd;
#endif
#if (RX_CTL_CMD & Rx_StripCRC) == 0
pkt_len -= ETH_FCS_LEN;
#endif
if (netif_msg_rx_status(lp))
dump_rxfd(lp->rfd_cur);
if (status & Rx_Good) {
struct sk_buff *skb;
unsigned char *data;
int cur_bd;
if (--limit < 0)
break;
BUG_ON(bd_count > 1);
cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
& BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
#ifdef DEBUG
if (cur_bd >= RX_BUF_NUM) {
printk("%s: invalid BDID.\n", dev->name);
panic_queues(dev);
}
BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
(le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
if (!lp->rx_skbs[cur_bd].skb) {
printk("%s: NULL skb.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(cur_bd >= RX_BUF_NUM);
#endif
skb = lp->rx_skbs[cur_bd].skb;
prefetch(skb->data);
lp->rx_skbs[cur_bd].skb = NULL;
pci_unmap_single(lp->pci_dev,
lp->rx_skbs[cur_bd].skb_dma,
RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
memmove(skb->data, skb->data - NET_IP_ALIGN,
pkt_len);
data = skb_put(skb, pkt_len);
if (netif_msg_pktdata(lp))
print_eth(data);
skb->protocol = eth_type_trans(skb, dev);
netif_receive_skb(skb);
received++;
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
} else {
dev->stats.rx_errors++;
if (netif_msg_rx_err(lp))
dev_info(&dev->dev, "Rx error (status %x)\n",
status & Rx_Stat_Mask);
/* WORKAROUND: LongErr and CRCErr means Overflow. */
if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
status &= ~(Rx_LongErr|Rx_CRCErr);
status |= Rx_Over;
}
if (status & Rx_LongErr)
dev->stats.rx_length_errors++;
if (status & Rx_Over)
dev->stats.rx_fifo_errors++;
if (status & Rx_CRCErr)
dev->stats.rx_crc_errors++;
if (status & Rx_Align)
dev->stats.rx_frame_errors++;
}
if (bd_count > 0) {
/* put Free Buffer back to controller */
int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
unsigned char id =
(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
#ifdef DEBUG
if (id >= RX_BUF_NUM) {
printk("%s: invalid BDID.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(id >= RX_BUF_NUM);
#endif
/* free old buffers */
lp->fbl_count--;
while (lp->fbl_count < RX_BUF_NUM)
{
unsigned char curid =
(id + 1 + lp->fbl_count) % RX_BUF_NUM;
struct BDesc *bd = &lp->fbl_ptr->bd[curid];
#ifdef DEBUG
bdctl = le32_to_cpu(bd->BDCtl);
if (bdctl & BD_CownsBD) {
printk("%s: Freeing invalid BD.\n",
dev->name);
panic_queues(dev);
}
#endif
/* pass BD to controller */
if (!lp->rx_skbs[curid].skb) {
lp->rx_skbs[curid].skb =
alloc_rxbuf_skb(dev,
lp->pci_dev,
&lp->rx_skbs[curid].skb_dma);
if (!lp->rx_skbs[curid].skb)
break; /* try on next reception */
bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
}
/* Note: BDLength was modified by chip. */
bd->BDCtl = cpu_to_le32(BD_CownsBD |
(curid << BD_RxBDID_SHIFT) |
RX_BUF_SIZE);
lp->fbl_count++;
}
}
/* put RxFD back to controller */
#ifdef DEBUG
next_rfd = fd_bus_to_virt(lp,
le32_to_cpu(lp->rfd_cur->fd.FDNext));
if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
printk("%s: RxFD FDNext invalid.\n", dev->name);
panic_queues(dev);
}
#endif
for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
/* pass FD to controller */
#ifdef DEBUG
lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
#else
lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
#endif
lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
lp->rfd_cur++;
}
if (lp->rfd_cur > lp->rfd_limit)
lp->rfd_cur = lp->rfd_base;
#ifdef DEBUG
if (lp->rfd_cur != next_rfd)
printk("rfd_cur = %p, next_rfd %p\n",
lp->rfd_cur, next_rfd);
#endif
}
return received;
}
static int tc35815_poll(struct napi_struct *napi, int budget)
{
struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
struct net_device *dev = lp->dev;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int received = 0, handled;
u32 status;
if (budget <= 0)
return received;
spin_lock(&lp->rx_lock);
status = tc_readl(&tr->Int_Src);
do {
/* BLEx, FDAEx will be cleared later */
tc_writel(status & ~(Int_BLEx | Int_FDAEx),
&tr->Int_Src); /* write to clear */
handled = tc35815_do_interrupt(dev, status, budget - received);
if (status & (Int_BLEx | Int_FDAEx))
tc_writel(status & (Int_BLEx | Int_FDAEx),
&tr->Int_Src);
if (handled >= 0) {
received += handled;
if (received >= budget)
break;
}
status = tc_readl(&tr->Int_Src);
} while (status);
spin_unlock(&lp->rx_lock);
if (received < budget) {
napi_complete(napi);
/* enable interrupts */
tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
}
return received;
}
#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
static void
tc35815_check_tx_stat(struct net_device *dev, int status)
{
struct tc35815_local *lp = netdev_priv(dev);
const char *msg = NULL;
/* count collisions */
if (status & Tx_ExColl)
dev->stats.collisions += 16;
if (status & Tx_TxColl_MASK)
dev->stats.collisions += status & Tx_TxColl_MASK;
/* TX4939 does not have NCarr */
if (lp->chiptype == TC35815_TX4939)
status &= ~Tx_NCarr;
/* WORKAROUND: ignore LostCrS in full duplex operation */
if (!lp->link || lp->duplex == DUPLEX_FULL)
status &= ~Tx_NCarr;
if (!(status & TX_STA_ERR)) {
/* no error. */
dev->stats.tx_packets++;
return;
}
dev->stats.tx_errors++;
if (status & Tx_ExColl) {
dev->stats.tx_aborted_errors++;
msg = "Excessive Collision.";
}
if (status & Tx_Under) {
dev->stats.tx_fifo_errors++;
msg = "Tx FIFO Underrun.";
if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
lp->lstats.tx_underrun++;
if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
msg = "Tx FIFO Underrun.Change Tx threshold to max.";
}
}
}
if (status & Tx_Defer) {
dev->stats.tx_fifo_errors++;
msg = "Excessive Deferral.";
}
if (status & Tx_NCarr) {
dev->stats.tx_carrier_errors++;
msg = "Lost Carrier Sense.";
}
if (status & Tx_LateColl) {
dev->stats.tx_aborted_errors++;
msg = "Late Collision.";
}
if (status & Tx_TxPar) {
dev->stats.tx_fifo_errors++;
msg = "Transmit Parity Error.";
}
if (status & Tx_SQErr) {
dev->stats.tx_heartbeat_errors++;
msg = "Signal Quality Error.";
}
if (msg && netif_msg_tx_err(lp))
printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
}
/* This handles TX complete events posted by the device
* via interrupts.
*/
static void
tc35815_txdone(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct TxFD *txfd;
unsigned int fdctl;
txfd = &lp->tfd_base[lp->tfd_end];
while (lp->tfd_start != lp->tfd_end &&
!((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
int status = le32_to_cpu(txfd->fd.FDStat);
struct sk_buff *skb;
unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
if (netif_msg_tx_done(lp)) {
printk("%s: complete TxFD.\n", dev->name);
dump_txfd(txfd);
}
tc35815_check_tx_stat(dev, status);
skb = fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[lp->tfd_end].skb != skb) {
printk("%s: tx_skbs mismatch.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
#endif
if (skb) {
dev->stats.tx_bytes += skb->len;
pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[lp->tfd_end].skb = NULL;
lp->tx_skbs[lp->tfd_end].skb_dma = 0;
dev_kfree_skb_any(skb);
}
txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
txfd = &lp->tfd_base[lp->tfd_end];
#ifdef DEBUG
if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
printk("%s: TxFD FDNext invalid.\n", dev->name);
panic_queues(dev);
}
#endif
if (fdnext & FD_Next_EOL) {
/* DMA Transmitter has been stopping... */
if (lp->tfd_end != lp->tfd_start) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
struct TxFD *txhead = &lp->tfd_base[head];
int qlen = (lp->tfd_start + TX_FD_NUM
- lp->tfd_end) % TX_FD_NUM;
#ifdef DEBUG
if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
printk("%s: TxFD FDCtl invalid.\n", dev->name);
panic_queues(dev);
}
#endif
/* log max queue length */
if (lp->lstats.max_tx_qlen < qlen)
lp->lstats.max_tx_qlen = qlen;
/* start DMA Transmitter again */
txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
if (netif_msg_tx_queued(lp)) {
printk("%s: start TxFD on queue.\n",
dev->name);
dump_txfd(txfd);
}
tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
}
break;
}
}
/* If we had stopped the queue due to a "tx full"
* condition, and space has now been made available,
* wake up the queue.
*/
if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
netif_wake_queue(dev);
}
/* The inverse routine to tc35815_open(). */
static int
tc35815_close(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
netif_stop_queue(dev);
napi_disable(&lp->napi);
if (lp->phy_dev)
phy_stop(lp->phy_dev);
cancel_work_sync(&lp->restart_work);
/* Flush the Tx and disable Rx here. */
tc35815_chip_reset(dev);
free_irq(dev->irq, dev);
tc35815_free_queues(dev);
return 0;
}
/*
* Get the current statistics.
* This may be called with the card open or closed.
*/
static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
if (netif_running(dev))
/* Update the statistics from the device registers. */
dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
return &dev->stats;
}
static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
{
struct tc35815_local *lp = netdev_priv(dev);
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int cam_index = index * 6;
u32 cam_data;
u32 saved_addr;
saved_addr = tc_readl(&tr->CAM_Adr);
if (netif_msg_hw(lp))
printk(KERN_DEBUG "%s: CAM %d: %pM\n",
dev->name, index, addr);
if (index & 1) {
/* read modify write */
tc_writel(cam_index - 2, &tr->CAM_Adr);
cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
cam_data |= addr[0] << 8 | addr[1];
tc_writel(cam_data, &tr->CAM_Data);
/* write whole word */
tc_writel(cam_index + 2, &tr->CAM_Adr);
cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
tc_writel(cam_data, &tr->CAM_Data);
} else {
/* write whole word */
tc_writel(cam_index, &tr->CAM_Adr);
cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
tc_writel(cam_data, &tr->CAM_Data);
/* read modify write */
tc_writel(cam_index + 4, &tr->CAM_Adr);
cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
cam_data |= addr[4] << 24 | (addr[5] << 16);
tc_writel(cam_data, &tr->CAM_Data);
}
tc_writel(saved_addr, &tr->CAM_Adr);
}
/*
* Set or clear the multicast filter for this adaptor.
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, clear multicast list
* num_addrs > 0 Multicast mode, receive normal and MC packets,
* and do best-effort filtering.
*/
static void
tc35815_set_multicast_list(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
if (dev->flags & IFF_PROMISC) {
/* With some (all?) 100MHalf HUB, controller will hang
* if we enabled promiscuous mode before linkup... */
struct tc35815_local *lp = netdev_priv(dev);
if (!lp->link)
return;
/* Enable promiscuous mode */
tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
} else if ((dev->flags & IFF_ALLMULTI) ||
netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
/* CAM 0, 1, 20 are reserved. */
/* Disable promiscuous mode, use normal mode. */
tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
} else if (!netdev_mc_empty(dev)) {
struct netdev_hw_addr *ha;
int i;
int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
tc_writel(0, &tr->CAM_Ctl);
/* Walk the address list, and load the filter */
i = 0;
netdev_for_each_mc_addr(ha, dev) {
/* entry 0,1 is reserved. */
tc35815_set_cam_entry(dev, i + 2, ha->addr);
ena_bits |= CAM_Ena_Bit(i + 2);
i++;
}
tc_writel(ena_bits, &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
} else {
tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
}
}
static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct tc35815_local *lp = netdev_priv(dev);
strlcpy(info->driver, MODNAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
}
static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tc35815_local *lp = netdev_priv(dev);
if (!lp->phy_dev)
return -ENODEV;
return phy_ethtool_gset(lp->phy_dev, cmd);
}
static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tc35815_local *lp = netdev_priv(dev);
if (!lp->phy_dev)
return -ENODEV;
return phy_ethtool_sset(lp->phy_dev, cmd);
}
static u32 tc35815_get_msglevel(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
return lp->msg_enable;
}
static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
{
struct tc35815_local *lp = netdev_priv(dev);
lp->msg_enable = datum;
}
static int tc35815_get_sset_count(struct net_device *dev, int sset)
{
struct tc35815_local *lp = netdev_priv(dev);
switch (sset) {
case ETH_SS_STATS:
return sizeof(lp->lstats) / sizeof(int);
default:
return -EOPNOTSUPP;
}
}
static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
{
struct tc35815_local *lp = netdev_priv(dev);
data[0] = lp->lstats.max_tx_qlen;
data[1] = lp->lstats.tx_ints;
data[2] = lp->lstats.rx_ints;
data[3] = lp->lstats.tx_underrun;
}
static struct {
const char str[ETH_GSTRING_LEN];
} ethtool_stats_keys[] = {
{ "max_tx_qlen" },
{ "tx_ints" },
{ "rx_ints" },
{ "tx_underrun" },
};
static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
}
static const struct ethtool_ops tc35815_ethtool_ops = {
.get_drvinfo = tc35815_get_drvinfo,
.get_settings = tc35815_get_settings,
.set_settings = tc35815_set_settings,
.get_link = ethtool_op_get_link,
.get_msglevel = tc35815_get_msglevel,
.set_msglevel = tc35815_set_msglevel,
.get_strings = tc35815_get_strings,
.get_sset_count = tc35815_get_sset_count,
.get_ethtool_stats = tc35815_get_ethtool_stats,
};
static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct tc35815_local *lp = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
if (!lp->phy_dev)
return -ENODEV;
return phy_mii_ioctl(lp->phy_dev, rq, cmd);
}
static void tc35815_chip_reset(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int i;
/* reset the controller */
tc_writel(MAC_Reset, &tr->MAC_Ctl);
udelay(4); /* 3200ns */
i = 0;
while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
if (i++ > 100) {
printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
break;
}
mdelay(1);
}
tc_writel(0, &tr->MAC_Ctl);
/* initialize registers to default value */
tc_writel(0, &tr->DMA_Ctl);
tc_writel(0, &tr->TxThrsh);
tc_writel(0, &tr->TxPollCtr);
tc_writel(0, &tr->RxFragSize);
tc_writel(0, &tr->Int_En);
tc_writel(0, &tr->FDA_Bas);
tc_writel(0, &tr->FDA_Lim);
tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
tc_writel(0, &tr->CAM_Ctl);
tc_writel(0, &tr->Tx_Ctl);
tc_writel(0, &tr->Rx_Ctl);
tc_writel(0, &tr->CAM_Ena);
(void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
/* initialize internal SRAM */
tc_writel(DMA_TestMode, &tr->DMA_Ctl);
for (i = 0; i < 0x1000; i += 4) {
tc_writel(i, &tr->CAM_Adr);
tc_writel(0, &tr->CAM_Data);
}
tc_writel(0, &tr->DMA_Ctl);
}
static void tc35815_chip_init(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
unsigned long txctl = TX_CTL_CMD;
/* load station address to CAM */
tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
/* Enable CAM (broadcast and unicast) */
tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
if (HAVE_DMA_RXALIGN(lp))
tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
else
tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
tc_writel(0, &tr->TxPollCtr); /* Batch mode */
tc_writel(TX_THRESHOLD, &tr->TxThrsh);
tc_writel(INT_EN_CMD, &tr->Int_En);
/* set queues */
tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
&tr->FDA_Lim);
/*
* Activation method:
* First, enable the MAC Transmitter and the DMA Receive circuits.
* Then enable the DMA Transmitter and the MAC Receive circuits.
*/
tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
/* start MAC transmitter */
/* TX4939 does not have EnLCarr */
if (lp->chiptype == TC35815_TX4939)
txctl &= ~Tx_EnLCarr;
/* WORKAROUND: ignore LostCrS in full duplex operation */
if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
txctl &= ~Tx_EnLCarr;
tc_writel(txctl, &tr->Tx_Ctl);
}
#ifdef CONFIG_PM
static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tc35815_local *lp = netdev_priv(dev);
unsigned long flags;
pci_save_state(pdev);
if (!netif_running(dev))
return 0;
netif_device_detach(dev);
if (lp->phy_dev)
phy_stop(lp->phy_dev);
spin_lock_irqsave(&lp->lock, flags);
tc35815_chip_reset(dev);
spin_unlock_irqrestore(&lp->lock, flags);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
static int tc35815_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tc35815_local *lp = netdev_priv(dev);
pci_restore_state(pdev);
if (!netif_running(dev))
return 0;
pci_set_power_state(pdev, PCI_D0);
tc35815_restart(dev);
netif_carrier_off(dev);
if (lp->phy_dev)
phy_start(lp->phy_dev);
netif_device_attach(dev);
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver tc35815_pci_driver = {
.name = MODNAME,
.id_table = tc35815_pci_tbl,
.probe = tc35815_init_one,
.remove = tc35815_remove_one,
#ifdef CONFIG_PM
.suspend = tc35815_suspend,
.resume = tc35815_resume,
#endif
};
module_param_named(speed, options.speed, int, 0);
MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
module_param_named(duplex, options.duplex, int, 0);
MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
module_pci_driver(tc35815_pci_driver);
MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
MODULE_LICENSE("GPL");