mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 10:25:05 +07:00
3b481d9135
A zoned device with limited resources to open or activate zones may return an error when the host exceeds those limits. The same command may be successful if retried later, but the host needs to wait for specific zone states before it should expect a retry to succeed. Have the block layer provide an appropriate status for these conditions so applications can distinuguish this error for special handling. Cc: linux-api@vger.kernel.org Cc: Niklas Cassel <niklas.cassel@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
1816 lines
48 KiB
C
1816 lines
48 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
|
|
* Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
|
|
* Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
|
|
* kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
|
|
* - July2000
|
|
* bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
|
|
*/
|
|
|
|
/*
|
|
* This handles all read/write requests to block devices
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/blk-cgroup.h>
|
|
#include <linux/t10-pi.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/psi.h>
|
|
#include <linux/sched/sysctl.h>
|
|
#include <linux/blk-crypto.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/block.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-sched.h"
|
|
#include "blk-pm.h"
|
|
#include "blk-rq-qos.h"
|
|
|
|
struct dentry *blk_debugfs_root;
|
|
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
|
|
|
|
DEFINE_IDA(blk_queue_ida);
|
|
|
|
/*
|
|
* For queue allocation
|
|
*/
|
|
struct kmem_cache *blk_requestq_cachep;
|
|
|
|
/*
|
|
* Controlling structure to kblockd
|
|
*/
|
|
static struct workqueue_struct *kblockd_workqueue;
|
|
|
|
/**
|
|
* blk_queue_flag_set - atomically set a queue flag
|
|
* @flag: flag to be set
|
|
* @q: request queue
|
|
*/
|
|
void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
|
|
{
|
|
set_bit(flag, &q->queue_flags);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_flag_set);
|
|
|
|
/**
|
|
* blk_queue_flag_clear - atomically clear a queue flag
|
|
* @flag: flag to be cleared
|
|
* @q: request queue
|
|
*/
|
|
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
|
|
{
|
|
clear_bit(flag, &q->queue_flags);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_flag_clear);
|
|
|
|
/**
|
|
* blk_queue_flag_test_and_set - atomically test and set a queue flag
|
|
* @flag: flag to be set
|
|
* @q: request queue
|
|
*
|
|
* Returns the previous value of @flag - 0 if the flag was not set and 1 if
|
|
* the flag was already set.
|
|
*/
|
|
bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
|
|
{
|
|
return test_and_set_bit(flag, &q->queue_flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
|
|
|
|
void blk_rq_init(struct request_queue *q, struct request *rq)
|
|
{
|
|
memset(rq, 0, sizeof(*rq));
|
|
|
|
INIT_LIST_HEAD(&rq->queuelist);
|
|
rq->q = q;
|
|
rq->__sector = (sector_t) -1;
|
|
INIT_HLIST_NODE(&rq->hash);
|
|
RB_CLEAR_NODE(&rq->rb_node);
|
|
rq->tag = BLK_MQ_NO_TAG;
|
|
rq->internal_tag = BLK_MQ_NO_TAG;
|
|
rq->start_time_ns = ktime_get_ns();
|
|
rq->part = NULL;
|
|
refcount_set(&rq->ref, 1);
|
|
blk_crypto_rq_set_defaults(rq);
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_init);
|
|
|
|
#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
|
|
static const char *const blk_op_name[] = {
|
|
REQ_OP_NAME(READ),
|
|
REQ_OP_NAME(WRITE),
|
|
REQ_OP_NAME(FLUSH),
|
|
REQ_OP_NAME(DISCARD),
|
|
REQ_OP_NAME(SECURE_ERASE),
|
|
REQ_OP_NAME(ZONE_RESET),
|
|
REQ_OP_NAME(ZONE_RESET_ALL),
|
|
REQ_OP_NAME(ZONE_OPEN),
|
|
REQ_OP_NAME(ZONE_CLOSE),
|
|
REQ_OP_NAME(ZONE_FINISH),
|
|
REQ_OP_NAME(ZONE_APPEND),
|
|
REQ_OP_NAME(WRITE_SAME),
|
|
REQ_OP_NAME(WRITE_ZEROES),
|
|
REQ_OP_NAME(SCSI_IN),
|
|
REQ_OP_NAME(SCSI_OUT),
|
|
REQ_OP_NAME(DRV_IN),
|
|
REQ_OP_NAME(DRV_OUT),
|
|
};
|
|
#undef REQ_OP_NAME
|
|
|
|
/**
|
|
* blk_op_str - Return string XXX in the REQ_OP_XXX.
|
|
* @op: REQ_OP_XXX.
|
|
*
|
|
* Description: Centralize block layer function to convert REQ_OP_XXX into
|
|
* string format. Useful in the debugging and tracing bio or request. For
|
|
* invalid REQ_OP_XXX it returns string "UNKNOWN".
|
|
*/
|
|
inline const char *blk_op_str(unsigned int op)
|
|
{
|
|
const char *op_str = "UNKNOWN";
|
|
|
|
if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
|
|
op_str = blk_op_name[op];
|
|
|
|
return op_str;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_op_str);
|
|
|
|
static const struct {
|
|
int errno;
|
|
const char *name;
|
|
} blk_errors[] = {
|
|
[BLK_STS_OK] = { 0, "" },
|
|
[BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
|
|
[BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
|
|
[BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
|
|
[BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
|
|
[BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
|
|
[BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
|
|
[BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
|
|
[BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
|
|
[BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
|
|
[BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
|
|
[BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
|
|
|
|
/* device mapper special case, should not leak out: */
|
|
[BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
|
|
|
|
/* zone device specific errors */
|
|
[BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
|
|
[BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
|
|
|
|
/* everything else not covered above: */
|
|
[BLK_STS_IOERR] = { -EIO, "I/O" },
|
|
};
|
|
|
|
blk_status_t errno_to_blk_status(int errno)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
|
|
if (blk_errors[i].errno == errno)
|
|
return (__force blk_status_t)i;
|
|
}
|
|
|
|
return BLK_STS_IOERR;
|
|
}
|
|
EXPORT_SYMBOL_GPL(errno_to_blk_status);
|
|
|
|
int blk_status_to_errno(blk_status_t status)
|
|
{
|
|
int idx = (__force int)status;
|
|
|
|
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
|
|
return -EIO;
|
|
return blk_errors[idx].errno;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_status_to_errno);
|
|
|
|
static void print_req_error(struct request *req, blk_status_t status,
|
|
const char *caller)
|
|
{
|
|
int idx = (__force int)status;
|
|
|
|
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
|
|
return;
|
|
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
|
|
"phys_seg %u prio class %u\n",
|
|
caller, blk_errors[idx].name,
|
|
req->rq_disk ? req->rq_disk->disk_name : "?",
|
|
blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
|
|
req->cmd_flags & ~REQ_OP_MASK,
|
|
req->nr_phys_segments,
|
|
IOPRIO_PRIO_CLASS(req->ioprio));
|
|
}
|
|
|
|
static void req_bio_endio(struct request *rq, struct bio *bio,
|
|
unsigned int nbytes, blk_status_t error)
|
|
{
|
|
if (error)
|
|
bio->bi_status = error;
|
|
|
|
if (unlikely(rq->rq_flags & RQF_QUIET))
|
|
bio_set_flag(bio, BIO_QUIET);
|
|
|
|
bio_advance(bio, nbytes);
|
|
|
|
if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
|
|
/*
|
|
* Partial zone append completions cannot be supported as the
|
|
* BIO fragments may end up not being written sequentially.
|
|
*/
|
|
if (bio->bi_iter.bi_size)
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
else
|
|
bio->bi_iter.bi_sector = rq->__sector;
|
|
}
|
|
|
|
/* don't actually finish bio if it's part of flush sequence */
|
|
if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
|
|
bio_endio(bio);
|
|
}
|
|
|
|
void blk_dump_rq_flags(struct request *rq, char *msg)
|
|
{
|
|
printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
|
|
rq->rq_disk ? rq->rq_disk->disk_name : "?",
|
|
(unsigned long long) rq->cmd_flags);
|
|
|
|
printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
|
|
(unsigned long long)blk_rq_pos(rq),
|
|
blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
|
|
printk(KERN_INFO " bio %p, biotail %p, len %u\n",
|
|
rq->bio, rq->biotail, blk_rq_bytes(rq));
|
|
}
|
|
EXPORT_SYMBOL(blk_dump_rq_flags);
|
|
|
|
/**
|
|
* blk_sync_queue - cancel any pending callbacks on a queue
|
|
* @q: the queue
|
|
*
|
|
* Description:
|
|
* The block layer may perform asynchronous callback activity
|
|
* on a queue, such as calling the unplug function after a timeout.
|
|
* A block device may call blk_sync_queue to ensure that any
|
|
* such activity is cancelled, thus allowing it to release resources
|
|
* that the callbacks might use. The caller must already have made sure
|
|
* that its ->submit_bio will not re-add plugging prior to calling
|
|
* this function.
|
|
*
|
|
* This function does not cancel any asynchronous activity arising
|
|
* out of elevator or throttling code. That would require elevator_exit()
|
|
* and blkcg_exit_queue() to be called with queue lock initialized.
|
|
*
|
|
*/
|
|
void blk_sync_queue(struct request_queue *q)
|
|
{
|
|
del_timer_sync(&q->timeout);
|
|
cancel_work_sync(&q->timeout_work);
|
|
}
|
|
EXPORT_SYMBOL(blk_sync_queue);
|
|
|
|
/**
|
|
* blk_set_pm_only - increment pm_only counter
|
|
* @q: request queue pointer
|
|
*/
|
|
void blk_set_pm_only(struct request_queue *q)
|
|
{
|
|
atomic_inc(&q->pm_only);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_set_pm_only);
|
|
|
|
void blk_clear_pm_only(struct request_queue *q)
|
|
{
|
|
int pm_only;
|
|
|
|
pm_only = atomic_dec_return(&q->pm_only);
|
|
WARN_ON_ONCE(pm_only < 0);
|
|
if (pm_only == 0)
|
|
wake_up_all(&q->mq_freeze_wq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_clear_pm_only);
|
|
|
|
/**
|
|
* blk_put_queue - decrement the request_queue refcount
|
|
* @q: the request_queue structure to decrement the refcount for
|
|
*
|
|
* Decrements the refcount of the request_queue kobject. When this reaches 0
|
|
* we'll have blk_release_queue() called.
|
|
*
|
|
* Context: Any context, but the last reference must not be dropped from
|
|
* atomic context.
|
|
*/
|
|
void blk_put_queue(struct request_queue *q)
|
|
{
|
|
kobject_put(&q->kobj);
|
|
}
|
|
EXPORT_SYMBOL(blk_put_queue);
|
|
|
|
void blk_set_queue_dying(struct request_queue *q)
|
|
{
|
|
blk_queue_flag_set(QUEUE_FLAG_DYING, q);
|
|
|
|
/*
|
|
* When queue DYING flag is set, we need to block new req
|
|
* entering queue, so we call blk_freeze_queue_start() to
|
|
* prevent I/O from crossing blk_queue_enter().
|
|
*/
|
|
blk_freeze_queue_start(q);
|
|
|
|
if (queue_is_mq(q))
|
|
blk_mq_wake_waiters(q);
|
|
|
|
/* Make blk_queue_enter() reexamine the DYING flag. */
|
|
wake_up_all(&q->mq_freeze_wq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_set_queue_dying);
|
|
|
|
/**
|
|
* blk_cleanup_queue - shutdown a request queue
|
|
* @q: request queue to shutdown
|
|
*
|
|
* Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
|
|
* put it. All future requests will be failed immediately with -ENODEV.
|
|
*
|
|
* Context: can sleep
|
|
*/
|
|
void blk_cleanup_queue(struct request_queue *q)
|
|
{
|
|
/* cannot be called from atomic context */
|
|
might_sleep();
|
|
|
|
WARN_ON_ONCE(blk_queue_registered(q));
|
|
|
|
/* mark @q DYING, no new request or merges will be allowed afterwards */
|
|
blk_set_queue_dying(q);
|
|
|
|
blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
|
|
blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
|
|
|
|
/*
|
|
* Drain all requests queued before DYING marking. Set DEAD flag to
|
|
* prevent that blk_mq_run_hw_queues() accesses the hardware queues
|
|
* after draining finished.
|
|
*/
|
|
blk_freeze_queue(q);
|
|
|
|
rq_qos_exit(q);
|
|
|
|
blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
|
|
|
|
/* for synchronous bio-based driver finish in-flight integrity i/o */
|
|
blk_flush_integrity();
|
|
|
|
/* @q won't process any more request, flush async actions */
|
|
del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
|
|
blk_sync_queue(q);
|
|
|
|
if (queue_is_mq(q))
|
|
blk_mq_exit_queue(q);
|
|
|
|
/*
|
|
* In theory, request pool of sched_tags belongs to request queue.
|
|
* However, the current implementation requires tag_set for freeing
|
|
* requests, so free the pool now.
|
|
*
|
|
* Queue has become frozen, there can't be any in-queue requests, so
|
|
* it is safe to free requests now.
|
|
*/
|
|
mutex_lock(&q->sysfs_lock);
|
|
if (q->elevator)
|
|
blk_mq_sched_free_requests(q);
|
|
mutex_unlock(&q->sysfs_lock);
|
|
|
|
percpu_ref_exit(&q->q_usage_counter);
|
|
|
|
/* @q is and will stay empty, shutdown and put */
|
|
blk_put_queue(q);
|
|
}
|
|
EXPORT_SYMBOL(blk_cleanup_queue);
|
|
|
|
/**
|
|
* blk_queue_enter() - try to increase q->q_usage_counter
|
|
* @q: request queue pointer
|
|
* @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
|
|
*/
|
|
int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
|
|
{
|
|
const bool pm = flags & BLK_MQ_REQ_PREEMPT;
|
|
|
|
while (true) {
|
|
bool success = false;
|
|
|
|
rcu_read_lock();
|
|
if (percpu_ref_tryget_live(&q->q_usage_counter)) {
|
|
/*
|
|
* The code that increments the pm_only counter is
|
|
* responsible for ensuring that that counter is
|
|
* globally visible before the queue is unfrozen.
|
|
*/
|
|
if (pm || !blk_queue_pm_only(q)) {
|
|
success = true;
|
|
} else {
|
|
percpu_ref_put(&q->q_usage_counter);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (success)
|
|
return 0;
|
|
|
|
if (flags & BLK_MQ_REQ_NOWAIT)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* read pair of barrier in blk_freeze_queue_start(),
|
|
* we need to order reading __PERCPU_REF_DEAD flag of
|
|
* .q_usage_counter and reading .mq_freeze_depth or
|
|
* queue dying flag, otherwise the following wait may
|
|
* never return if the two reads are reordered.
|
|
*/
|
|
smp_rmb();
|
|
|
|
wait_event(q->mq_freeze_wq,
|
|
(!q->mq_freeze_depth &&
|
|
(pm || (blk_pm_request_resume(q),
|
|
!blk_queue_pm_only(q)))) ||
|
|
blk_queue_dying(q));
|
|
if (blk_queue_dying(q))
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
static inline int bio_queue_enter(struct bio *bio)
|
|
{
|
|
struct request_queue *q = bio->bi_disk->queue;
|
|
bool nowait = bio->bi_opf & REQ_NOWAIT;
|
|
int ret;
|
|
|
|
ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
|
|
if (unlikely(ret)) {
|
|
if (nowait && !blk_queue_dying(q))
|
|
bio_wouldblock_error(bio);
|
|
else
|
|
bio_io_error(bio);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void blk_queue_exit(struct request_queue *q)
|
|
{
|
|
percpu_ref_put(&q->q_usage_counter);
|
|
}
|
|
|
|
static void blk_queue_usage_counter_release(struct percpu_ref *ref)
|
|
{
|
|
struct request_queue *q =
|
|
container_of(ref, struct request_queue, q_usage_counter);
|
|
|
|
wake_up_all(&q->mq_freeze_wq);
|
|
}
|
|
|
|
static void blk_rq_timed_out_timer(struct timer_list *t)
|
|
{
|
|
struct request_queue *q = from_timer(q, t, timeout);
|
|
|
|
kblockd_schedule_work(&q->timeout_work);
|
|
}
|
|
|
|
static void blk_timeout_work(struct work_struct *work)
|
|
{
|
|
}
|
|
|
|
struct request_queue *blk_alloc_queue(int node_id)
|
|
{
|
|
struct request_queue *q;
|
|
int ret;
|
|
|
|
q = kmem_cache_alloc_node(blk_requestq_cachep,
|
|
GFP_KERNEL | __GFP_ZERO, node_id);
|
|
if (!q)
|
|
return NULL;
|
|
|
|
q->last_merge = NULL;
|
|
|
|
q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
|
|
if (q->id < 0)
|
|
goto fail_q;
|
|
|
|
ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
|
|
if (ret)
|
|
goto fail_id;
|
|
|
|
q->backing_dev_info = bdi_alloc(node_id);
|
|
if (!q->backing_dev_info)
|
|
goto fail_split;
|
|
|
|
q->stats = blk_alloc_queue_stats();
|
|
if (!q->stats)
|
|
goto fail_stats;
|
|
|
|
q->node = node_id;
|
|
|
|
atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
|
|
|
|
timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
|
|
laptop_mode_timer_fn, 0);
|
|
timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
|
|
INIT_WORK(&q->timeout_work, blk_timeout_work);
|
|
INIT_LIST_HEAD(&q->icq_list);
|
|
#ifdef CONFIG_BLK_CGROUP
|
|
INIT_LIST_HEAD(&q->blkg_list);
|
|
#endif
|
|
|
|
kobject_init(&q->kobj, &blk_queue_ktype);
|
|
|
|
mutex_init(&q->debugfs_mutex);
|
|
mutex_init(&q->sysfs_lock);
|
|
mutex_init(&q->sysfs_dir_lock);
|
|
spin_lock_init(&q->queue_lock);
|
|
|
|
init_waitqueue_head(&q->mq_freeze_wq);
|
|
mutex_init(&q->mq_freeze_lock);
|
|
|
|
/*
|
|
* Init percpu_ref in atomic mode so that it's faster to shutdown.
|
|
* See blk_register_queue() for details.
|
|
*/
|
|
if (percpu_ref_init(&q->q_usage_counter,
|
|
blk_queue_usage_counter_release,
|
|
PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
|
|
goto fail_bdi;
|
|
|
|
if (blkcg_init_queue(q))
|
|
goto fail_ref;
|
|
|
|
blk_queue_dma_alignment(q, 511);
|
|
blk_set_default_limits(&q->limits);
|
|
q->nr_requests = BLKDEV_MAX_RQ;
|
|
|
|
return q;
|
|
|
|
fail_ref:
|
|
percpu_ref_exit(&q->q_usage_counter);
|
|
fail_bdi:
|
|
blk_free_queue_stats(q->stats);
|
|
fail_stats:
|
|
bdi_put(q->backing_dev_info);
|
|
fail_split:
|
|
bioset_exit(&q->bio_split);
|
|
fail_id:
|
|
ida_simple_remove(&blk_queue_ida, q->id);
|
|
fail_q:
|
|
kmem_cache_free(blk_requestq_cachep, q);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(blk_alloc_queue);
|
|
|
|
/**
|
|
* blk_get_queue - increment the request_queue refcount
|
|
* @q: the request_queue structure to increment the refcount for
|
|
*
|
|
* Increment the refcount of the request_queue kobject.
|
|
*
|
|
* Context: Any context.
|
|
*/
|
|
bool blk_get_queue(struct request_queue *q)
|
|
{
|
|
if (likely(!blk_queue_dying(q))) {
|
|
__blk_get_queue(q);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(blk_get_queue);
|
|
|
|
/**
|
|
* blk_get_request - allocate a request
|
|
* @q: request queue to allocate a request for
|
|
* @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
|
|
* @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
|
|
*/
|
|
struct request *blk_get_request(struct request_queue *q, unsigned int op,
|
|
blk_mq_req_flags_t flags)
|
|
{
|
|
struct request *req;
|
|
|
|
WARN_ON_ONCE(op & REQ_NOWAIT);
|
|
WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
|
|
|
|
req = blk_mq_alloc_request(q, op, flags);
|
|
if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
|
|
q->mq_ops->initialize_rq_fn(req);
|
|
|
|
return req;
|
|
}
|
|
EXPORT_SYMBOL(blk_get_request);
|
|
|
|
void blk_put_request(struct request *req)
|
|
{
|
|
blk_mq_free_request(req);
|
|
}
|
|
EXPORT_SYMBOL(blk_put_request);
|
|
|
|
static void handle_bad_sector(struct bio *bio, sector_t maxsector)
|
|
{
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
pr_info_ratelimited("attempt to access beyond end of device\n"
|
|
"%s: rw=%d, want=%llu, limit=%llu\n",
|
|
bio_devname(bio, b), bio->bi_opf,
|
|
bio_end_sector(bio), maxsector);
|
|
}
|
|
|
|
#ifdef CONFIG_FAIL_MAKE_REQUEST
|
|
|
|
static DECLARE_FAULT_ATTR(fail_make_request);
|
|
|
|
static int __init setup_fail_make_request(char *str)
|
|
{
|
|
return setup_fault_attr(&fail_make_request, str);
|
|
}
|
|
__setup("fail_make_request=", setup_fail_make_request);
|
|
|
|
static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
|
|
{
|
|
return part->make_it_fail && should_fail(&fail_make_request, bytes);
|
|
}
|
|
|
|
static int __init fail_make_request_debugfs(void)
|
|
{
|
|
struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
|
|
NULL, &fail_make_request);
|
|
|
|
return PTR_ERR_OR_ZERO(dir);
|
|
}
|
|
|
|
late_initcall(fail_make_request_debugfs);
|
|
|
|
#else /* CONFIG_FAIL_MAKE_REQUEST */
|
|
|
|
static inline bool should_fail_request(struct hd_struct *part,
|
|
unsigned int bytes)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif /* CONFIG_FAIL_MAKE_REQUEST */
|
|
|
|
static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
|
|
{
|
|
const int op = bio_op(bio);
|
|
|
|
if (part->policy && op_is_write(op)) {
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
|
|
return false;
|
|
|
|
WARN_ONCE(1,
|
|
"Trying to write to read-only block-device %s (partno %d)\n",
|
|
bio_devname(bio, b), part->partno);
|
|
/* Older lvm-tools actually trigger this */
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static noinline int should_fail_bio(struct bio *bio)
|
|
{
|
|
if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
|
|
|
|
/*
|
|
* Check whether this bio extends beyond the end of the device or partition.
|
|
* This may well happen - the kernel calls bread() without checking the size of
|
|
* the device, e.g., when mounting a file system.
|
|
*/
|
|
static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
|
|
{
|
|
unsigned int nr_sectors = bio_sectors(bio);
|
|
|
|
if (nr_sectors && maxsector &&
|
|
(nr_sectors > maxsector ||
|
|
bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
|
|
handle_bad_sector(bio, maxsector);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remap block n of partition p to block n+start(p) of the disk.
|
|
*/
|
|
static inline int blk_partition_remap(struct bio *bio)
|
|
{
|
|
struct hd_struct *p;
|
|
int ret = -EIO;
|
|
|
|
rcu_read_lock();
|
|
p = __disk_get_part(bio->bi_disk, bio->bi_partno);
|
|
if (unlikely(!p))
|
|
goto out;
|
|
if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
|
|
goto out;
|
|
if (unlikely(bio_check_ro(bio, p)))
|
|
goto out;
|
|
|
|
if (bio_sectors(bio)) {
|
|
if (bio_check_eod(bio, part_nr_sects_read(p)))
|
|
goto out;
|
|
bio->bi_iter.bi_sector += p->start_sect;
|
|
trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
|
|
bio->bi_iter.bi_sector - p->start_sect);
|
|
}
|
|
bio->bi_partno = 0;
|
|
ret = 0;
|
|
out:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check write append to a zoned block device.
|
|
*/
|
|
static inline blk_status_t blk_check_zone_append(struct request_queue *q,
|
|
struct bio *bio)
|
|
{
|
|
sector_t pos = bio->bi_iter.bi_sector;
|
|
int nr_sectors = bio_sectors(bio);
|
|
|
|
/* Only applicable to zoned block devices */
|
|
if (!blk_queue_is_zoned(q))
|
|
return BLK_STS_NOTSUPP;
|
|
|
|
/* The bio sector must point to the start of a sequential zone */
|
|
if (pos & (blk_queue_zone_sectors(q) - 1) ||
|
|
!blk_queue_zone_is_seq(q, pos))
|
|
return BLK_STS_IOERR;
|
|
|
|
/*
|
|
* Not allowed to cross zone boundaries. Otherwise, the BIO will be
|
|
* split and could result in non-contiguous sectors being written in
|
|
* different zones.
|
|
*/
|
|
if (nr_sectors > q->limits.chunk_sectors)
|
|
return BLK_STS_IOERR;
|
|
|
|
/* Make sure the BIO is small enough and will not get split */
|
|
if (nr_sectors > q->limits.max_zone_append_sectors)
|
|
return BLK_STS_IOERR;
|
|
|
|
bio->bi_opf |= REQ_NOMERGE;
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static noinline_for_stack bool submit_bio_checks(struct bio *bio)
|
|
{
|
|
struct request_queue *q = bio->bi_disk->queue;
|
|
blk_status_t status = BLK_STS_IOERR;
|
|
struct blk_plug *plug;
|
|
|
|
might_sleep();
|
|
|
|
plug = blk_mq_plug(q, bio);
|
|
if (plug && plug->nowait)
|
|
bio->bi_opf |= REQ_NOWAIT;
|
|
|
|
/*
|
|
* For a REQ_NOWAIT based request, return -EOPNOTSUPP
|
|
* if queue does not support NOWAIT.
|
|
*/
|
|
if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
|
|
goto not_supported;
|
|
|
|
if (should_fail_bio(bio))
|
|
goto end_io;
|
|
|
|
if (bio->bi_partno) {
|
|
if (unlikely(blk_partition_remap(bio)))
|
|
goto end_io;
|
|
} else {
|
|
if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
|
|
goto end_io;
|
|
if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
|
|
goto end_io;
|
|
}
|
|
|
|
/*
|
|
* Filter flush bio's early so that bio based drivers without flush
|
|
* support don't have to worry about them.
|
|
*/
|
|
if (op_is_flush(bio->bi_opf) &&
|
|
!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
|
|
bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
|
|
if (!bio_sectors(bio)) {
|
|
status = BLK_STS_OK;
|
|
goto end_io;
|
|
}
|
|
}
|
|
|
|
if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
|
|
bio->bi_opf &= ~REQ_HIPRI;
|
|
|
|
switch (bio_op(bio)) {
|
|
case REQ_OP_DISCARD:
|
|
if (!blk_queue_discard(q))
|
|
goto not_supported;
|
|
break;
|
|
case REQ_OP_SECURE_ERASE:
|
|
if (!blk_queue_secure_erase(q))
|
|
goto not_supported;
|
|
break;
|
|
case REQ_OP_WRITE_SAME:
|
|
if (!q->limits.max_write_same_sectors)
|
|
goto not_supported;
|
|
break;
|
|
case REQ_OP_ZONE_APPEND:
|
|
status = blk_check_zone_append(q, bio);
|
|
if (status != BLK_STS_OK)
|
|
goto end_io;
|
|
break;
|
|
case REQ_OP_ZONE_RESET:
|
|
case REQ_OP_ZONE_OPEN:
|
|
case REQ_OP_ZONE_CLOSE:
|
|
case REQ_OP_ZONE_FINISH:
|
|
if (!blk_queue_is_zoned(q))
|
|
goto not_supported;
|
|
break;
|
|
case REQ_OP_ZONE_RESET_ALL:
|
|
if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
|
|
goto not_supported;
|
|
break;
|
|
case REQ_OP_WRITE_ZEROES:
|
|
if (!q->limits.max_write_zeroes_sectors)
|
|
goto not_supported;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Various block parts want %current->io_context, so allocate it up
|
|
* front rather than dealing with lots of pain to allocate it only
|
|
* where needed. This may fail and the block layer knows how to live
|
|
* with it.
|
|
*/
|
|
if (unlikely(!current->io_context))
|
|
create_task_io_context(current, GFP_ATOMIC, q->node);
|
|
|
|
if (blk_throtl_bio(bio)) {
|
|
blkcg_bio_issue_init(bio);
|
|
return false;
|
|
}
|
|
|
|
blk_cgroup_bio_start(bio);
|
|
blkcg_bio_issue_init(bio);
|
|
|
|
if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
|
|
trace_block_bio_queue(q, bio);
|
|
/* Now that enqueuing has been traced, we need to trace
|
|
* completion as well.
|
|
*/
|
|
bio_set_flag(bio, BIO_TRACE_COMPLETION);
|
|
}
|
|
return true;
|
|
|
|
not_supported:
|
|
status = BLK_STS_NOTSUPP;
|
|
end_io:
|
|
bio->bi_status = status;
|
|
bio_endio(bio);
|
|
return false;
|
|
}
|
|
|
|
static blk_qc_t __submit_bio(struct bio *bio)
|
|
{
|
|
struct gendisk *disk = bio->bi_disk;
|
|
blk_qc_t ret = BLK_QC_T_NONE;
|
|
|
|
if (blk_crypto_bio_prep(&bio)) {
|
|
if (!disk->fops->submit_bio)
|
|
return blk_mq_submit_bio(bio);
|
|
ret = disk->fops->submit_bio(bio);
|
|
}
|
|
blk_queue_exit(disk->queue);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The loop in this function may be a bit non-obvious, and so deserves some
|
|
* explanation:
|
|
*
|
|
* - Before entering the loop, bio->bi_next is NULL (as all callers ensure
|
|
* that), so we have a list with a single bio.
|
|
* - We pretend that we have just taken it off a longer list, so we assign
|
|
* bio_list to a pointer to the bio_list_on_stack, thus initialising the
|
|
* bio_list of new bios to be added. ->submit_bio() may indeed add some more
|
|
* bios through a recursive call to submit_bio_noacct. If it did, we find a
|
|
* non-NULL value in bio_list and re-enter the loop from the top.
|
|
* - In this case we really did just take the bio of the top of the list (no
|
|
* pretending) and so remove it from bio_list, and call into ->submit_bio()
|
|
* again.
|
|
*
|
|
* bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
|
|
* bio_list_on_stack[1] contains bios that were submitted before the current
|
|
* ->submit_bio_bio, but that haven't been processed yet.
|
|
*/
|
|
static blk_qc_t __submit_bio_noacct(struct bio *bio)
|
|
{
|
|
struct bio_list bio_list_on_stack[2];
|
|
blk_qc_t ret = BLK_QC_T_NONE;
|
|
|
|
BUG_ON(bio->bi_next);
|
|
|
|
bio_list_init(&bio_list_on_stack[0]);
|
|
current->bio_list = bio_list_on_stack;
|
|
|
|
do {
|
|
struct request_queue *q = bio->bi_disk->queue;
|
|
struct bio_list lower, same;
|
|
|
|
if (unlikely(bio_queue_enter(bio) != 0))
|
|
continue;
|
|
|
|
/*
|
|
* Create a fresh bio_list for all subordinate requests.
|
|
*/
|
|
bio_list_on_stack[1] = bio_list_on_stack[0];
|
|
bio_list_init(&bio_list_on_stack[0]);
|
|
|
|
ret = __submit_bio(bio);
|
|
|
|
/*
|
|
* Sort new bios into those for a lower level and those for the
|
|
* same level.
|
|
*/
|
|
bio_list_init(&lower);
|
|
bio_list_init(&same);
|
|
while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
|
|
if (q == bio->bi_disk->queue)
|
|
bio_list_add(&same, bio);
|
|
else
|
|
bio_list_add(&lower, bio);
|
|
|
|
/*
|
|
* Now assemble so we handle the lowest level first.
|
|
*/
|
|
bio_list_merge(&bio_list_on_stack[0], &lower);
|
|
bio_list_merge(&bio_list_on_stack[0], &same);
|
|
bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
|
|
} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
|
|
|
|
current->bio_list = NULL;
|
|
return ret;
|
|
}
|
|
|
|
static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
|
|
{
|
|
struct bio_list bio_list[2] = { };
|
|
blk_qc_t ret = BLK_QC_T_NONE;
|
|
|
|
current->bio_list = bio_list;
|
|
|
|
do {
|
|
struct gendisk *disk = bio->bi_disk;
|
|
|
|
if (unlikely(bio_queue_enter(bio) != 0))
|
|
continue;
|
|
|
|
if (!blk_crypto_bio_prep(&bio)) {
|
|
blk_queue_exit(disk->queue);
|
|
ret = BLK_QC_T_NONE;
|
|
continue;
|
|
}
|
|
|
|
ret = blk_mq_submit_bio(bio);
|
|
} while ((bio = bio_list_pop(&bio_list[0])));
|
|
|
|
current->bio_list = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* submit_bio_noacct - re-submit a bio to the block device layer for I/O
|
|
* @bio: The bio describing the location in memory and on the device.
|
|
*
|
|
* This is a version of submit_bio() that shall only be used for I/O that is
|
|
* resubmitted to lower level drivers by stacking block drivers. All file
|
|
* systems and other upper level users of the block layer should use
|
|
* submit_bio() instead.
|
|
*/
|
|
blk_qc_t submit_bio_noacct(struct bio *bio)
|
|
{
|
|
if (!submit_bio_checks(bio))
|
|
return BLK_QC_T_NONE;
|
|
|
|
/*
|
|
* We only want one ->submit_bio to be active at a time, else stack
|
|
* usage with stacked devices could be a problem. Use current->bio_list
|
|
* to collect a list of requests submited by a ->submit_bio method while
|
|
* it is active, and then process them after it returned.
|
|
*/
|
|
if (current->bio_list) {
|
|
bio_list_add(¤t->bio_list[0], bio);
|
|
return BLK_QC_T_NONE;
|
|
}
|
|
|
|
if (!bio->bi_disk->fops->submit_bio)
|
|
return __submit_bio_noacct_mq(bio);
|
|
return __submit_bio_noacct(bio);
|
|
}
|
|
EXPORT_SYMBOL(submit_bio_noacct);
|
|
|
|
/**
|
|
* submit_bio - submit a bio to the block device layer for I/O
|
|
* @bio: The &struct bio which describes the I/O
|
|
*
|
|
* submit_bio() is used to submit I/O requests to block devices. It is passed a
|
|
* fully set up &struct bio that describes the I/O that needs to be done. The
|
|
* bio will be send to the device described by the bi_disk and bi_partno fields.
|
|
*
|
|
* The success/failure status of the request, along with notification of
|
|
* completion, is delivered asynchronously through the ->bi_end_io() callback
|
|
* in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
|
|
* been called.
|
|
*/
|
|
blk_qc_t submit_bio(struct bio *bio)
|
|
{
|
|
if (blkcg_punt_bio_submit(bio))
|
|
return BLK_QC_T_NONE;
|
|
|
|
/*
|
|
* If it's a regular read/write or a barrier with data attached,
|
|
* go through the normal accounting stuff before submission.
|
|
*/
|
|
if (bio_has_data(bio)) {
|
|
unsigned int count;
|
|
|
|
if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
|
|
count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
|
|
else
|
|
count = bio_sectors(bio);
|
|
|
|
if (op_is_write(bio_op(bio))) {
|
|
count_vm_events(PGPGOUT, count);
|
|
} else {
|
|
task_io_account_read(bio->bi_iter.bi_size);
|
|
count_vm_events(PGPGIN, count);
|
|
}
|
|
|
|
if (unlikely(block_dump)) {
|
|
char b[BDEVNAME_SIZE];
|
|
printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
|
|
current->comm, task_pid_nr(current),
|
|
op_is_write(bio_op(bio)) ? "WRITE" : "READ",
|
|
(unsigned long long)bio->bi_iter.bi_sector,
|
|
bio_devname(bio, b), count);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we're reading data that is part of the userspace workingset, count
|
|
* submission time as memory stall. When the device is congested, or
|
|
* the submitting cgroup IO-throttled, submission can be a significant
|
|
* part of overall IO time.
|
|
*/
|
|
if (unlikely(bio_op(bio) == REQ_OP_READ &&
|
|
bio_flagged(bio, BIO_WORKINGSET))) {
|
|
unsigned long pflags;
|
|
blk_qc_t ret;
|
|
|
|
psi_memstall_enter(&pflags);
|
|
ret = submit_bio_noacct(bio);
|
|
psi_memstall_leave(&pflags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
return submit_bio_noacct(bio);
|
|
}
|
|
EXPORT_SYMBOL(submit_bio);
|
|
|
|
/**
|
|
* blk_cloned_rq_check_limits - Helper function to check a cloned request
|
|
* for the new queue limits
|
|
* @q: the queue
|
|
* @rq: the request being checked
|
|
*
|
|
* Description:
|
|
* @rq may have been made based on weaker limitations of upper-level queues
|
|
* in request stacking drivers, and it may violate the limitation of @q.
|
|
* Since the block layer and the underlying device driver trust @rq
|
|
* after it is inserted to @q, it should be checked against @q before
|
|
* the insertion using this generic function.
|
|
*
|
|
* Request stacking drivers like request-based dm may change the queue
|
|
* limits when retrying requests on other queues. Those requests need
|
|
* to be checked against the new queue limits again during dispatch.
|
|
*/
|
|
static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
|
|
struct request *rq)
|
|
{
|
|
unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
|
|
|
|
if (blk_rq_sectors(rq) > max_sectors) {
|
|
/*
|
|
* SCSI device does not have a good way to return if
|
|
* Write Same/Zero is actually supported. If a device rejects
|
|
* a non-read/write command (discard, write same,etc.) the
|
|
* low-level device driver will set the relevant queue limit to
|
|
* 0 to prevent blk-lib from issuing more of the offending
|
|
* operations. Commands queued prior to the queue limit being
|
|
* reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
|
|
* errors being propagated to upper layers.
|
|
*/
|
|
if (max_sectors == 0)
|
|
return BLK_STS_NOTSUPP;
|
|
|
|
printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
|
|
__func__, blk_rq_sectors(rq), max_sectors);
|
|
return BLK_STS_IOERR;
|
|
}
|
|
|
|
/*
|
|
* queue's settings related to segment counting like q->bounce_pfn
|
|
* may differ from that of other stacking queues.
|
|
* Recalculate it to check the request correctly on this queue's
|
|
* limitation.
|
|
*/
|
|
rq->nr_phys_segments = blk_recalc_rq_segments(rq);
|
|
if (rq->nr_phys_segments > queue_max_segments(q)) {
|
|
printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
|
|
__func__, rq->nr_phys_segments, queue_max_segments(q));
|
|
return BLK_STS_IOERR;
|
|
}
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
/**
|
|
* blk_insert_cloned_request - Helper for stacking drivers to submit a request
|
|
* @q: the queue to submit the request
|
|
* @rq: the request being queued
|
|
*/
|
|
blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
|
|
{
|
|
blk_status_t ret;
|
|
|
|
ret = blk_cloned_rq_check_limits(q, rq);
|
|
if (ret != BLK_STS_OK)
|
|
return ret;
|
|
|
|
if (rq->rq_disk &&
|
|
should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
|
|
return BLK_STS_IOERR;
|
|
|
|
if (blk_crypto_insert_cloned_request(rq))
|
|
return BLK_STS_IOERR;
|
|
|
|
if (blk_queue_io_stat(q))
|
|
blk_account_io_start(rq);
|
|
|
|
/*
|
|
* Since we have a scheduler attached on the top device,
|
|
* bypass a potential scheduler on the bottom device for
|
|
* insert.
|
|
*/
|
|
return blk_mq_request_issue_directly(rq, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
|
|
|
|
/**
|
|
* blk_rq_err_bytes - determine number of bytes till the next failure boundary
|
|
* @rq: request to examine
|
|
*
|
|
* Description:
|
|
* A request could be merge of IOs which require different failure
|
|
* handling. This function determines the number of bytes which
|
|
* can be failed from the beginning of the request without
|
|
* crossing into area which need to be retried further.
|
|
*
|
|
* Return:
|
|
* The number of bytes to fail.
|
|
*/
|
|
unsigned int blk_rq_err_bytes(const struct request *rq)
|
|
{
|
|
unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
|
|
unsigned int bytes = 0;
|
|
struct bio *bio;
|
|
|
|
if (!(rq->rq_flags & RQF_MIXED_MERGE))
|
|
return blk_rq_bytes(rq);
|
|
|
|
/*
|
|
* Currently the only 'mixing' which can happen is between
|
|
* different fastfail types. We can safely fail portions
|
|
* which have all the failfast bits that the first one has -
|
|
* the ones which are at least as eager to fail as the first
|
|
* one.
|
|
*/
|
|
for (bio = rq->bio; bio; bio = bio->bi_next) {
|
|
if ((bio->bi_opf & ff) != ff)
|
|
break;
|
|
bytes += bio->bi_iter.bi_size;
|
|
}
|
|
|
|
/* this could lead to infinite loop */
|
|
BUG_ON(blk_rq_bytes(rq) && !bytes);
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
|
|
|
|
static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
|
|
{
|
|
unsigned long stamp;
|
|
again:
|
|
stamp = READ_ONCE(part->stamp);
|
|
if (unlikely(stamp != now)) {
|
|
if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
|
|
__part_stat_add(part, io_ticks, end ? now - stamp : 1);
|
|
}
|
|
if (part->partno) {
|
|
part = &part_to_disk(part)->part0;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
static void blk_account_io_completion(struct request *req, unsigned int bytes)
|
|
{
|
|
if (req->part && blk_do_io_stat(req)) {
|
|
const int sgrp = op_stat_group(req_op(req));
|
|
struct hd_struct *part;
|
|
|
|
part_stat_lock();
|
|
part = req->part;
|
|
part_stat_add(part, sectors[sgrp], bytes >> 9);
|
|
part_stat_unlock();
|
|
}
|
|
}
|
|
|
|
void blk_account_io_done(struct request *req, u64 now)
|
|
{
|
|
/*
|
|
* Account IO completion. flush_rq isn't accounted as a
|
|
* normal IO on queueing nor completion. Accounting the
|
|
* containing request is enough.
|
|
*/
|
|
if (req->part && blk_do_io_stat(req) &&
|
|
!(req->rq_flags & RQF_FLUSH_SEQ)) {
|
|
const int sgrp = op_stat_group(req_op(req));
|
|
struct hd_struct *part;
|
|
|
|
part_stat_lock();
|
|
part = req->part;
|
|
|
|
update_io_ticks(part, jiffies, true);
|
|
part_stat_inc(part, ios[sgrp]);
|
|
part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
|
|
part_stat_unlock();
|
|
|
|
hd_struct_put(part);
|
|
}
|
|
}
|
|
|
|
void blk_account_io_start(struct request *rq)
|
|
{
|
|
if (!blk_do_io_stat(rq))
|
|
return;
|
|
|
|
rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
|
|
|
|
part_stat_lock();
|
|
update_io_ticks(rq->part, jiffies, false);
|
|
part_stat_unlock();
|
|
}
|
|
|
|
static unsigned long __part_start_io_acct(struct hd_struct *part,
|
|
unsigned int sectors, unsigned int op)
|
|
{
|
|
const int sgrp = op_stat_group(op);
|
|
unsigned long now = READ_ONCE(jiffies);
|
|
|
|
part_stat_lock();
|
|
update_io_ticks(part, now, false);
|
|
part_stat_inc(part, ios[sgrp]);
|
|
part_stat_add(part, sectors[sgrp], sectors);
|
|
part_stat_local_inc(part, in_flight[op_is_write(op)]);
|
|
part_stat_unlock();
|
|
|
|
return now;
|
|
}
|
|
|
|
unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
|
|
struct bio *bio)
|
|
{
|
|
*part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
|
|
|
|
return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
|
|
}
|
|
EXPORT_SYMBOL_GPL(part_start_io_acct);
|
|
|
|
unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
|
|
unsigned int op)
|
|
{
|
|
return __part_start_io_acct(&disk->part0, sectors, op);
|
|
}
|
|
EXPORT_SYMBOL(disk_start_io_acct);
|
|
|
|
static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
|
|
unsigned long start_time)
|
|
{
|
|
const int sgrp = op_stat_group(op);
|
|
unsigned long now = READ_ONCE(jiffies);
|
|
unsigned long duration = now - start_time;
|
|
|
|
part_stat_lock();
|
|
update_io_ticks(part, now, true);
|
|
part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
|
|
part_stat_local_dec(part, in_flight[op_is_write(op)]);
|
|
part_stat_unlock();
|
|
}
|
|
|
|
void part_end_io_acct(struct hd_struct *part, struct bio *bio,
|
|
unsigned long start_time)
|
|
{
|
|
__part_end_io_acct(part, bio_op(bio), start_time);
|
|
hd_struct_put(part);
|
|
}
|
|
EXPORT_SYMBOL_GPL(part_end_io_acct);
|
|
|
|
void disk_end_io_acct(struct gendisk *disk, unsigned int op,
|
|
unsigned long start_time)
|
|
{
|
|
__part_end_io_acct(&disk->part0, op, start_time);
|
|
}
|
|
EXPORT_SYMBOL(disk_end_io_acct);
|
|
|
|
/*
|
|
* Steal bios from a request and add them to a bio list.
|
|
* The request must not have been partially completed before.
|
|
*/
|
|
void blk_steal_bios(struct bio_list *list, struct request *rq)
|
|
{
|
|
if (rq->bio) {
|
|
if (list->tail)
|
|
list->tail->bi_next = rq->bio;
|
|
else
|
|
list->head = rq->bio;
|
|
list->tail = rq->biotail;
|
|
|
|
rq->bio = NULL;
|
|
rq->biotail = NULL;
|
|
}
|
|
|
|
rq->__data_len = 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_steal_bios);
|
|
|
|
/**
|
|
* blk_update_request - Special helper function for request stacking drivers
|
|
* @req: the request being processed
|
|
* @error: block status code
|
|
* @nr_bytes: number of bytes to complete @req
|
|
*
|
|
* Description:
|
|
* Ends I/O on a number of bytes attached to @req, but doesn't complete
|
|
* the request structure even if @req doesn't have leftover.
|
|
* If @req has leftover, sets it up for the next range of segments.
|
|
*
|
|
* This special helper function is only for request stacking drivers
|
|
* (e.g. request-based dm) so that they can handle partial completion.
|
|
* Actual device drivers should use blk_mq_end_request instead.
|
|
*
|
|
* Passing the result of blk_rq_bytes() as @nr_bytes guarantees
|
|
* %false return from this function.
|
|
*
|
|
* Note:
|
|
* The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
|
|
* blk_rq_bytes() and in blk_update_request().
|
|
*
|
|
* Return:
|
|
* %false - this request doesn't have any more data
|
|
* %true - this request has more data
|
|
**/
|
|
bool blk_update_request(struct request *req, blk_status_t error,
|
|
unsigned int nr_bytes)
|
|
{
|
|
int total_bytes;
|
|
|
|
trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
|
|
|
|
if (!req->bio)
|
|
return false;
|
|
|
|
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
|
if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
|
|
error == BLK_STS_OK)
|
|
req->q->integrity.profile->complete_fn(req, nr_bytes);
|
|
#endif
|
|
|
|
if (unlikely(error && !blk_rq_is_passthrough(req) &&
|
|
!(req->rq_flags & RQF_QUIET)))
|
|
print_req_error(req, error, __func__);
|
|
|
|
blk_account_io_completion(req, nr_bytes);
|
|
|
|
total_bytes = 0;
|
|
while (req->bio) {
|
|
struct bio *bio = req->bio;
|
|
unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
|
|
|
|
if (bio_bytes == bio->bi_iter.bi_size)
|
|
req->bio = bio->bi_next;
|
|
|
|
/* Completion has already been traced */
|
|
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
|
|
req_bio_endio(req, bio, bio_bytes, error);
|
|
|
|
total_bytes += bio_bytes;
|
|
nr_bytes -= bio_bytes;
|
|
|
|
if (!nr_bytes)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* completely done
|
|
*/
|
|
if (!req->bio) {
|
|
/*
|
|
* Reset counters so that the request stacking driver
|
|
* can find how many bytes remain in the request
|
|
* later.
|
|
*/
|
|
req->__data_len = 0;
|
|
return false;
|
|
}
|
|
|
|
req->__data_len -= total_bytes;
|
|
|
|
/* update sector only for requests with clear definition of sector */
|
|
if (!blk_rq_is_passthrough(req))
|
|
req->__sector += total_bytes >> 9;
|
|
|
|
/* mixed attributes always follow the first bio */
|
|
if (req->rq_flags & RQF_MIXED_MERGE) {
|
|
req->cmd_flags &= ~REQ_FAILFAST_MASK;
|
|
req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
|
|
}
|
|
|
|
if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
|
|
/*
|
|
* If total number of sectors is less than the first segment
|
|
* size, something has gone terribly wrong.
|
|
*/
|
|
if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
|
|
blk_dump_rq_flags(req, "request botched");
|
|
req->__data_len = blk_rq_cur_bytes(req);
|
|
}
|
|
|
|
/* recalculate the number of segments */
|
|
req->nr_phys_segments = blk_recalc_rq_segments(req);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_update_request);
|
|
|
|
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
|
|
/**
|
|
* rq_flush_dcache_pages - Helper function to flush all pages in a request
|
|
* @rq: the request to be flushed
|
|
*
|
|
* Description:
|
|
* Flush all pages in @rq.
|
|
*/
|
|
void rq_flush_dcache_pages(struct request *rq)
|
|
{
|
|
struct req_iterator iter;
|
|
struct bio_vec bvec;
|
|
|
|
rq_for_each_segment(bvec, rq, iter)
|
|
flush_dcache_page(bvec.bv_page);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
|
|
#endif
|
|
|
|
/**
|
|
* blk_lld_busy - Check if underlying low-level drivers of a device are busy
|
|
* @q : the queue of the device being checked
|
|
*
|
|
* Description:
|
|
* Check if underlying low-level drivers of a device are busy.
|
|
* If the drivers want to export their busy state, they must set own
|
|
* exporting function using blk_queue_lld_busy() first.
|
|
*
|
|
* Basically, this function is used only by request stacking drivers
|
|
* to stop dispatching requests to underlying devices when underlying
|
|
* devices are busy. This behavior helps more I/O merging on the queue
|
|
* of the request stacking driver and prevents I/O throughput regression
|
|
* on burst I/O load.
|
|
*
|
|
* Return:
|
|
* 0 - Not busy (The request stacking driver should dispatch request)
|
|
* 1 - Busy (The request stacking driver should stop dispatching request)
|
|
*/
|
|
int blk_lld_busy(struct request_queue *q)
|
|
{
|
|
if (queue_is_mq(q) && q->mq_ops->busy)
|
|
return q->mq_ops->busy(q);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_lld_busy);
|
|
|
|
/**
|
|
* blk_rq_unprep_clone - Helper function to free all bios in a cloned request
|
|
* @rq: the clone request to be cleaned up
|
|
*
|
|
* Description:
|
|
* Free all bios in @rq for a cloned request.
|
|
*/
|
|
void blk_rq_unprep_clone(struct request *rq)
|
|
{
|
|
struct bio *bio;
|
|
|
|
while ((bio = rq->bio) != NULL) {
|
|
rq->bio = bio->bi_next;
|
|
|
|
bio_put(bio);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
|
|
|
|
/**
|
|
* blk_rq_prep_clone - Helper function to setup clone request
|
|
* @rq: the request to be setup
|
|
* @rq_src: original request to be cloned
|
|
* @bs: bio_set that bios for clone are allocated from
|
|
* @gfp_mask: memory allocation mask for bio
|
|
* @bio_ctr: setup function to be called for each clone bio.
|
|
* Returns %0 for success, non %0 for failure.
|
|
* @data: private data to be passed to @bio_ctr
|
|
*
|
|
* Description:
|
|
* Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
|
|
* Also, pages which the original bios are pointing to are not copied
|
|
* and the cloned bios just point same pages.
|
|
* So cloned bios must be completed before original bios, which means
|
|
* the caller must complete @rq before @rq_src.
|
|
*/
|
|
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
|
|
struct bio_set *bs, gfp_t gfp_mask,
|
|
int (*bio_ctr)(struct bio *, struct bio *, void *),
|
|
void *data)
|
|
{
|
|
struct bio *bio, *bio_src;
|
|
|
|
if (!bs)
|
|
bs = &fs_bio_set;
|
|
|
|
__rq_for_each_bio(bio_src, rq_src) {
|
|
bio = bio_clone_fast(bio_src, gfp_mask, bs);
|
|
if (!bio)
|
|
goto free_and_out;
|
|
|
|
if (bio_ctr && bio_ctr(bio, bio_src, data))
|
|
goto free_and_out;
|
|
|
|
if (rq->bio) {
|
|
rq->biotail->bi_next = bio;
|
|
rq->biotail = bio;
|
|
} else {
|
|
rq->bio = rq->biotail = bio;
|
|
}
|
|
bio = NULL;
|
|
}
|
|
|
|
/* Copy attributes of the original request to the clone request. */
|
|
rq->__sector = blk_rq_pos(rq_src);
|
|
rq->__data_len = blk_rq_bytes(rq_src);
|
|
if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
|
|
rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
|
|
rq->special_vec = rq_src->special_vec;
|
|
}
|
|
rq->nr_phys_segments = rq_src->nr_phys_segments;
|
|
rq->ioprio = rq_src->ioprio;
|
|
|
|
if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
|
|
goto free_and_out;
|
|
|
|
return 0;
|
|
|
|
free_and_out:
|
|
if (bio)
|
|
bio_put(bio);
|
|
blk_rq_unprep_clone(rq);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
|
|
|
|
int kblockd_schedule_work(struct work_struct *work)
|
|
{
|
|
return queue_work(kblockd_workqueue, work);
|
|
}
|
|
EXPORT_SYMBOL(kblockd_schedule_work);
|
|
|
|
int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
|
|
unsigned long delay)
|
|
{
|
|
return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
|
|
}
|
|
EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
|
|
|
|
/**
|
|
* blk_start_plug - initialize blk_plug and track it inside the task_struct
|
|
* @plug: The &struct blk_plug that needs to be initialized
|
|
*
|
|
* Description:
|
|
* blk_start_plug() indicates to the block layer an intent by the caller
|
|
* to submit multiple I/O requests in a batch. The block layer may use
|
|
* this hint to defer submitting I/Os from the caller until blk_finish_plug()
|
|
* is called. However, the block layer may choose to submit requests
|
|
* before a call to blk_finish_plug() if the number of queued I/Os
|
|
* exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
|
|
* %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
|
|
* the task schedules (see below).
|
|
*
|
|
* Tracking blk_plug inside the task_struct will help with auto-flushing the
|
|
* pending I/O should the task end up blocking between blk_start_plug() and
|
|
* blk_finish_plug(). This is important from a performance perspective, but
|
|
* also ensures that we don't deadlock. For instance, if the task is blocking
|
|
* for a memory allocation, memory reclaim could end up wanting to free a
|
|
* page belonging to that request that is currently residing in our private
|
|
* plug. By flushing the pending I/O when the process goes to sleep, we avoid
|
|
* this kind of deadlock.
|
|
*/
|
|
void blk_start_plug(struct blk_plug *plug)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
/*
|
|
* If this is a nested plug, don't actually assign it.
|
|
*/
|
|
if (tsk->plug)
|
|
return;
|
|
|
|
INIT_LIST_HEAD(&plug->mq_list);
|
|
INIT_LIST_HEAD(&plug->cb_list);
|
|
plug->rq_count = 0;
|
|
plug->multiple_queues = false;
|
|
plug->nowait = false;
|
|
|
|
/*
|
|
* Store ordering should not be needed here, since a potential
|
|
* preempt will imply a full memory barrier
|
|
*/
|
|
tsk->plug = plug;
|
|
}
|
|
EXPORT_SYMBOL(blk_start_plug);
|
|
|
|
static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
|
|
{
|
|
LIST_HEAD(callbacks);
|
|
|
|
while (!list_empty(&plug->cb_list)) {
|
|
list_splice_init(&plug->cb_list, &callbacks);
|
|
|
|
while (!list_empty(&callbacks)) {
|
|
struct blk_plug_cb *cb = list_first_entry(&callbacks,
|
|
struct blk_plug_cb,
|
|
list);
|
|
list_del(&cb->list);
|
|
cb->callback(cb, from_schedule);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
|
|
int size)
|
|
{
|
|
struct blk_plug *plug = current->plug;
|
|
struct blk_plug_cb *cb;
|
|
|
|
if (!plug)
|
|
return NULL;
|
|
|
|
list_for_each_entry(cb, &plug->cb_list, list)
|
|
if (cb->callback == unplug && cb->data == data)
|
|
return cb;
|
|
|
|
/* Not currently on the callback list */
|
|
BUG_ON(size < sizeof(*cb));
|
|
cb = kzalloc(size, GFP_ATOMIC);
|
|
if (cb) {
|
|
cb->data = data;
|
|
cb->callback = unplug;
|
|
list_add(&cb->list, &plug->cb_list);
|
|
}
|
|
return cb;
|
|
}
|
|
EXPORT_SYMBOL(blk_check_plugged);
|
|
|
|
void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
|
|
{
|
|
flush_plug_callbacks(plug, from_schedule);
|
|
|
|
if (!list_empty(&plug->mq_list))
|
|
blk_mq_flush_plug_list(plug, from_schedule);
|
|
}
|
|
|
|
/**
|
|
* blk_finish_plug - mark the end of a batch of submitted I/O
|
|
* @plug: The &struct blk_plug passed to blk_start_plug()
|
|
*
|
|
* Description:
|
|
* Indicate that a batch of I/O submissions is complete. This function
|
|
* must be paired with an initial call to blk_start_plug(). The intent
|
|
* is to allow the block layer to optimize I/O submission. See the
|
|
* documentation for blk_start_plug() for more information.
|
|
*/
|
|
void blk_finish_plug(struct blk_plug *plug)
|
|
{
|
|
if (plug != current->plug)
|
|
return;
|
|
blk_flush_plug_list(plug, false);
|
|
|
|
current->plug = NULL;
|
|
}
|
|
EXPORT_SYMBOL(blk_finish_plug);
|
|
|
|
void blk_io_schedule(void)
|
|
{
|
|
/* Prevent hang_check timer from firing at us during very long I/O */
|
|
unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
|
|
|
|
if (timeout)
|
|
io_schedule_timeout(timeout);
|
|
else
|
|
io_schedule();
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_io_schedule);
|
|
|
|
int __init blk_dev_init(void)
|
|
{
|
|
BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
|
|
BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
|
|
sizeof_field(struct request, cmd_flags));
|
|
BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
|
|
sizeof_field(struct bio, bi_opf));
|
|
|
|
/* used for unplugging and affects IO latency/throughput - HIGHPRI */
|
|
kblockd_workqueue = alloc_workqueue("kblockd",
|
|
WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
|
|
if (!kblockd_workqueue)
|
|
panic("Failed to create kblockd\n");
|
|
|
|
blk_requestq_cachep = kmem_cache_create("request_queue",
|
|
sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
|
|
|
|
blk_debugfs_root = debugfs_create_dir("block", NULL);
|
|
|
|
return 0;
|
|
}
|