mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
99e2d8bcb8
RKL only has five universal planes, plus a cursor. Since the bottom-most universal plane is considered the primary plane, set the number of sprites available on this platform to 4. In general, the plane capabilities of the remaining planes stay the same as TGL. However the NV12 Y-plane support moves down to the new top two planes and now only the bottom three planes can be used for NV12 UV. Bspec: 49181 Bspec: 49251 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Lucas De Marchi <lucas.demarchi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200504225227.464666-8-matthew.d.roper@intel.com
1139 lines
33 KiB
C
1139 lines
33 KiB
C
/*
|
|
* Copyright © 2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <drm/drm_print.h>
|
|
#include <drm/i915_pciids.h>
|
|
|
|
#include "display/intel_cdclk.h"
|
|
#include "intel_device_info.h"
|
|
#include "i915_drv.h"
|
|
|
|
#define PLATFORM_NAME(x) [INTEL_##x] = #x
|
|
static const char * const platform_names[] = {
|
|
PLATFORM_NAME(I830),
|
|
PLATFORM_NAME(I845G),
|
|
PLATFORM_NAME(I85X),
|
|
PLATFORM_NAME(I865G),
|
|
PLATFORM_NAME(I915G),
|
|
PLATFORM_NAME(I915GM),
|
|
PLATFORM_NAME(I945G),
|
|
PLATFORM_NAME(I945GM),
|
|
PLATFORM_NAME(G33),
|
|
PLATFORM_NAME(PINEVIEW),
|
|
PLATFORM_NAME(I965G),
|
|
PLATFORM_NAME(I965GM),
|
|
PLATFORM_NAME(G45),
|
|
PLATFORM_NAME(GM45),
|
|
PLATFORM_NAME(IRONLAKE),
|
|
PLATFORM_NAME(SANDYBRIDGE),
|
|
PLATFORM_NAME(IVYBRIDGE),
|
|
PLATFORM_NAME(VALLEYVIEW),
|
|
PLATFORM_NAME(HASWELL),
|
|
PLATFORM_NAME(BROADWELL),
|
|
PLATFORM_NAME(CHERRYVIEW),
|
|
PLATFORM_NAME(SKYLAKE),
|
|
PLATFORM_NAME(BROXTON),
|
|
PLATFORM_NAME(KABYLAKE),
|
|
PLATFORM_NAME(GEMINILAKE),
|
|
PLATFORM_NAME(COFFEELAKE),
|
|
PLATFORM_NAME(CANNONLAKE),
|
|
PLATFORM_NAME(ICELAKE),
|
|
PLATFORM_NAME(ELKHARTLAKE),
|
|
PLATFORM_NAME(TIGERLAKE),
|
|
PLATFORM_NAME(ROCKETLAKE),
|
|
};
|
|
#undef PLATFORM_NAME
|
|
|
|
const char *intel_platform_name(enum intel_platform platform)
|
|
{
|
|
BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
|
|
|
|
if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
|
|
platform_names[platform] == NULL))
|
|
return "<unknown>";
|
|
|
|
return platform_names[platform];
|
|
}
|
|
|
|
static const char *iommu_name(void)
|
|
{
|
|
const char *msg = "n/a";
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
msg = enableddisabled(intel_iommu_gfx_mapped);
|
|
#endif
|
|
|
|
return msg;
|
|
}
|
|
|
|
void intel_device_info_print_static(const struct intel_device_info *info,
|
|
struct drm_printer *p)
|
|
{
|
|
drm_printf(p, "engines: %x\n", info->engine_mask);
|
|
drm_printf(p, "gen: %d\n", info->gen);
|
|
drm_printf(p, "gt: %d\n", info->gt);
|
|
drm_printf(p, "iommu: %s\n", iommu_name());
|
|
drm_printf(p, "memory-regions: %x\n", info->memory_regions);
|
|
drm_printf(p, "page-sizes: %x\n", info->page_sizes);
|
|
drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
|
|
drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
|
|
drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
|
|
drm_printf(p, "dma_mask_size: %u\n", info->dma_mask_size);
|
|
|
|
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
|
|
DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
|
|
#undef PRINT_FLAG
|
|
|
|
#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
|
|
DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
|
|
#undef PRINT_FLAG
|
|
}
|
|
|
|
static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
|
|
{
|
|
int s;
|
|
|
|
drm_printf(p, "slice total: %u, mask=%04x\n",
|
|
hweight8(sseu->slice_mask), sseu->slice_mask);
|
|
drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
|
|
s, intel_sseu_subslices_per_slice(sseu, s),
|
|
intel_sseu_get_subslices(sseu, s));
|
|
}
|
|
drm_printf(p, "EU total: %u\n", sseu->eu_total);
|
|
drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
|
|
drm_printf(p, "has slice power gating: %s\n",
|
|
yesno(sseu->has_slice_pg));
|
|
drm_printf(p, "has subslice power gating: %s\n",
|
|
yesno(sseu->has_subslice_pg));
|
|
drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
|
|
}
|
|
|
|
void intel_device_info_print_runtime(const struct intel_runtime_info *info,
|
|
struct drm_printer *p)
|
|
{
|
|
sseu_dump(&info->sseu, p);
|
|
|
|
drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
|
|
drm_printf(p, "CS timestamp frequency: %u Hz\n",
|
|
info->cs_timestamp_frequency_hz);
|
|
}
|
|
|
|
static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
|
|
int subslice)
|
|
{
|
|
int slice_stride = sseu->max_subslices * sseu->eu_stride;
|
|
|
|
return slice * slice_stride + subslice * sseu->eu_stride;
|
|
}
|
|
|
|
static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
|
|
int subslice)
|
|
{
|
|
int i, offset = sseu_eu_idx(sseu, slice, subslice);
|
|
u16 eu_mask = 0;
|
|
|
|
for (i = 0; i < sseu->eu_stride; i++) {
|
|
eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
|
|
(i * BITS_PER_BYTE);
|
|
}
|
|
|
|
return eu_mask;
|
|
}
|
|
|
|
static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
|
|
u16 eu_mask)
|
|
{
|
|
int i, offset = sseu_eu_idx(sseu, slice, subslice);
|
|
|
|
for (i = 0; i < sseu->eu_stride; i++) {
|
|
sseu->eu_mask[offset + i] =
|
|
(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
|
|
}
|
|
}
|
|
|
|
void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
|
|
struct drm_printer *p)
|
|
{
|
|
int s, ss;
|
|
|
|
if (sseu->max_slices == 0) {
|
|
drm_printf(p, "Unavailable\n");
|
|
return;
|
|
}
|
|
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
|
|
s, intel_sseu_subslices_per_slice(sseu, s),
|
|
intel_sseu_get_subslices(sseu, s));
|
|
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
u16 enabled_eus = sseu_get_eus(sseu, s, ss);
|
|
|
|
drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
|
|
ss, hweight16(enabled_eus), enabled_eus);
|
|
}
|
|
}
|
|
}
|
|
|
|
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
|
|
{
|
|
u16 i, total = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
|
|
total += hweight8(sseu->eu_mask[i]);
|
|
|
|
return total;
|
|
}
|
|
|
|
static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
|
|
u8 s_en, u32 ss_en, u16 eu_en)
|
|
{
|
|
int s, ss;
|
|
|
|
/* ss_en represents entire subslice mask across all slices */
|
|
GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
|
|
sizeof(ss_en) * BITS_PER_BYTE);
|
|
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
if ((s_en & BIT(s)) == 0)
|
|
continue;
|
|
|
|
sseu->slice_mask |= BIT(s);
|
|
|
|
intel_sseu_set_subslices(sseu, s, ss_en);
|
|
|
|
for (ss = 0; ss < sseu->max_subslices; ss++)
|
|
if (intel_sseu_has_subslice(sseu, s, ss))
|
|
sseu_set_eus(sseu, s, ss, eu_en);
|
|
}
|
|
sseu->eu_per_subslice = hweight16(eu_en);
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
}
|
|
|
|
static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
|
|
u8 s_en;
|
|
u32 dss_en;
|
|
u16 eu_en = 0;
|
|
u8 eu_en_fuse;
|
|
int eu;
|
|
|
|
/*
|
|
* Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
|
|
* Instead of splitting these, provide userspace with an array
|
|
* of DSS to more closely represent the hardware resource.
|
|
*/
|
|
intel_sseu_set_info(sseu, 1, 6, 16);
|
|
|
|
s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
|
|
|
|
dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
|
|
|
|
/* one bit per pair of EUs */
|
|
eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
|
|
for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
|
|
if (eu_en_fuse & BIT(eu))
|
|
eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
|
|
|
|
gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
|
|
|
|
/* TGL only supports slice-level power gating */
|
|
sseu->has_slice_pg = 1;
|
|
}
|
|
|
|
static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
|
|
u8 s_en;
|
|
u32 ss_en;
|
|
u8 eu_en;
|
|
|
|
if (IS_ELKHARTLAKE(dev_priv))
|
|
intel_sseu_set_info(sseu, 1, 4, 8);
|
|
else
|
|
intel_sseu_set_info(sseu, 1, 8, 8);
|
|
|
|
s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
|
|
ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
|
|
eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
|
|
|
|
gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
|
|
|
|
/* ICL has no power gating restrictions. */
|
|
sseu->has_slice_pg = 1;
|
|
sseu->has_subslice_pg = 1;
|
|
sseu->has_eu_pg = 1;
|
|
}
|
|
|
|
static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
|
|
const u32 fuse2 = I915_READ(GEN8_FUSE2);
|
|
int s, ss;
|
|
const int eu_mask = 0xff;
|
|
u32 subslice_mask, eu_en;
|
|
|
|
intel_sseu_set_info(sseu, 6, 4, 8);
|
|
|
|
sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
|
|
GEN10_F2_S_ENA_SHIFT;
|
|
|
|
/* Slice0 */
|
|
eu_en = ~I915_READ(GEN8_EU_DISABLE0);
|
|
for (ss = 0; ss < sseu->max_subslices; ss++)
|
|
sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
|
|
/* Slice1 */
|
|
sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
|
|
eu_en = ~I915_READ(GEN8_EU_DISABLE1);
|
|
sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
|
|
/* Slice2 */
|
|
sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
|
|
sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
|
|
/* Slice3 */
|
|
sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
|
|
eu_en = ~I915_READ(GEN8_EU_DISABLE2);
|
|
sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
|
|
/* Slice4 */
|
|
sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
|
|
sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
|
|
/* Slice5 */
|
|
sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
|
|
eu_en = ~I915_READ(GEN10_EU_DISABLE3);
|
|
sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
|
|
|
|
subslice_mask = (1 << 4) - 1;
|
|
subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
|
|
GEN10_F2_SS_DIS_SHIFT);
|
|
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
u32 subslice_mask_with_eus = subslice_mask;
|
|
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
if (sseu_get_eus(sseu, s, ss) == 0)
|
|
subslice_mask_with_eus &= ~BIT(ss);
|
|
}
|
|
|
|
/*
|
|
* Slice0 can have up to 3 subslices, but there are only 2 in
|
|
* slice1/2.
|
|
*/
|
|
intel_sseu_set_subslices(sseu, s, s == 0 ?
|
|
subslice_mask_with_eus :
|
|
subslice_mask_with_eus & 0x3);
|
|
}
|
|
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
|
|
/*
|
|
* CNL is expected to always have a uniform distribution
|
|
* of EU across subslices with the exception that any one
|
|
* EU in any one subslice may be fused off for die
|
|
* recovery.
|
|
*/
|
|
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
|
|
DIV_ROUND_UP(sseu->eu_total,
|
|
intel_sseu_subslice_total(sseu)) :
|
|
0;
|
|
|
|
/* No restrictions on Power Gating */
|
|
sseu->has_slice_pg = 1;
|
|
sseu->has_subslice_pg = 1;
|
|
sseu->has_eu_pg = 1;
|
|
}
|
|
|
|
static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
|
|
u32 fuse;
|
|
u8 subslice_mask = 0;
|
|
|
|
fuse = I915_READ(CHV_FUSE_GT);
|
|
|
|
sseu->slice_mask = BIT(0);
|
|
intel_sseu_set_info(sseu, 1, 2, 8);
|
|
|
|
if (!(fuse & CHV_FGT_DISABLE_SS0)) {
|
|
u8 disabled_mask =
|
|
((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
|
|
CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
|
|
(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
|
|
CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
|
|
|
|
subslice_mask |= BIT(0);
|
|
sseu_set_eus(sseu, 0, 0, ~disabled_mask);
|
|
}
|
|
|
|
if (!(fuse & CHV_FGT_DISABLE_SS1)) {
|
|
u8 disabled_mask =
|
|
((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
|
|
CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
|
|
(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
|
|
CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
|
|
|
|
subslice_mask |= BIT(1);
|
|
sseu_set_eus(sseu, 0, 1, ~disabled_mask);
|
|
}
|
|
|
|
intel_sseu_set_subslices(sseu, 0, subslice_mask);
|
|
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
|
|
/*
|
|
* CHV expected to always have a uniform distribution of EU
|
|
* across subslices.
|
|
*/
|
|
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
|
|
sseu->eu_total /
|
|
intel_sseu_subslice_total(sseu) :
|
|
0;
|
|
/*
|
|
* CHV supports subslice power gating on devices with more than
|
|
* one subslice, and supports EU power gating on devices with
|
|
* more than one EU pair per subslice.
|
|
*/
|
|
sseu->has_slice_pg = 0;
|
|
sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
|
|
sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
|
|
}
|
|
|
|
static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_device_info *info = mkwrite_device_info(dev_priv);
|
|
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
|
|
int s, ss;
|
|
u32 fuse2, eu_disable, subslice_mask;
|
|
const u8 eu_mask = 0xff;
|
|
|
|
fuse2 = I915_READ(GEN8_FUSE2);
|
|
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
|
|
|
|
/* BXT has a single slice and at most 3 subslices. */
|
|
intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
|
|
IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
|
|
|
|
/*
|
|
* The subslice disable field is global, i.e. it applies
|
|
* to each of the enabled slices.
|
|
*/
|
|
subslice_mask = (1 << sseu->max_subslices) - 1;
|
|
subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
|
|
GEN9_F2_SS_DIS_SHIFT);
|
|
|
|
/*
|
|
* Iterate through enabled slices and subslices to
|
|
* count the total enabled EU.
|
|
*/
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
if (!(sseu->slice_mask & BIT(s)))
|
|
/* skip disabled slice */
|
|
continue;
|
|
|
|
intel_sseu_set_subslices(sseu, s, subslice_mask);
|
|
|
|
eu_disable = I915_READ(GEN9_EU_DISABLE(s));
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
int eu_per_ss;
|
|
u8 eu_disabled_mask;
|
|
|
|
if (!intel_sseu_has_subslice(sseu, s, ss))
|
|
/* skip disabled subslice */
|
|
continue;
|
|
|
|
eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
|
|
|
|
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
|
|
|
|
eu_per_ss = sseu->max_eus_per_subslice -
|
|
hweight8(eu_disabled_mask);
|
|
|
|
/*
|
|
* Record which subslice(s) has(have) 7 EUs. we
|
|
* can tune the hash used to spread work among
|
|
* subslices if they are unbalanced.
|
|
*/
|
|
if (eu_per_ss == 7)
|
|
sseu->subslice_7eu[s] |= BIT(ss);
|
|
}
|
|
}
|
|
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
|
|
/*
|
|
* SKL is expected to always have a uniform distribution
|
|
* of EU across subslices with the exception that any one
|
|
* EU in any one subslice may be fused off for die
|
|
* recovery. BXT is expected to be perfectly uniform in EU
|
|
* distribution.
|
|
*/
|
|
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
|
|
DIV_ROUND_UP(sseu->eu_total,
|
|
intel_sseu_subslice_total(sseu)) :
|
|
0;
|
|
/*
|
|
* SKL+ supports slice power gating on devices with more than
|
|
* one slice, and supports EU power gating on devices with
|
|
* more than one EU pair per subslice. BXT+ supports subslice
|
|
* power gating on devices with more than one subslice, and
|
|
* supports EU power gating on devices with more than one EU
|
|
* pair per subslice.
|
|
*/
|
|
sseu->has_slice_pg =
|
|
!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
|
|
sseu->has_subslice_pg =
|
|
IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
|
|
sseu->has_eu_pg = sseu->eu_per_subslice > 2;
|
|
|
|
if (IS_GEN9_LP(dev_priv)) {
|
|
#define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
|
|
info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
|
|
|
|
sseu->min_eu_in_pool = 0;
|
|
if (info->has_pooled_eu) {
|
|
if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
|
|
sseu->min_eu_in_pool = 3;
|
|
else if (IS_SS_DISABLED(1))
|
|
sseu->min_eu_in_pool = 6;
|
|
else
|
|
sseu->min_eu_in_pool = 9;
|
|
}
|
|
#undef IS_SS_DISABLED
|
|
}
|
|
}
|
|
|
|
static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
|
|
int s, ss;
|
|
u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
|
|
|
|
fuse2 = I915_READ(GEN8_FUSE2);
|
|
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
|
|
intel_sseu_set_info(sseu, 3, 3, 8);
|
|
|
|
/*
|
|
* The subslice disable field is global, i.e. it applies
|
|
* to each of the enabled slices.
|
|
*/
|
|
subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
|
|
subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
|
|
GEN8_F2_SS_DIS_SHIFT);
|
|
|
|
eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
|
|
eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
|
|
((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
|
|
(32 - GEN8_EU_DIS0_S1_SHIFT));
|
|
eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
|
|
((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
|
|
(32 - GEN8_EU_DIS1_S2_SHIFT));
|
|
|
|
/*
|
|
* Iterate through enabled slices and subslices to
|
|
* count the total enabled EU.
|
|
*/
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
if (!(sseu->slice_mask & BIT(s)))
|
|
/* skip disabled slice */
|
|
continue;
|
|
|
|
intel_sseu_set_subslices(sseu, s, subslice_mask);
|
|
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
u8 eu_disabled_mask;
|
|
u32 n_disabled;
|
|
|
|
if (!intel_sseu_has_subslice(sseu, s, ss))
|
|
/* skip disabled subslice */
|
|
continue;
|
|
|
|
eu_disabled_mask =
|
|
eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
|
|
|
|
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
|
|
|
|
n_disabled = hweight8(eu_disabled_mask);
|
|
|
|
/*
|
|
* Record which subslices have 7 EUs.
|
|
*/
|
|
if (sseu->max_eus_per_subslice - n_disabled == 7)
|
|
sseu->subslice_7eu[s] |= 1 << ss;
|
|
}
|
|
}
|
|
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
|
|
/*
|
|
* BDW is expected to always have a uniform distribution of EU across
|
|
* subslices with the exception that any one EU in any one subslice may
|
|
* be fused off for die recovery.
|
|
*/
|
|
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
|
|
DIV_ROUND_UP(sseu->eu_total,
|
|
intel_sseu_subslice_total(sseu)) :
|
|
0;
|
|
|
|
/*
|
|
* BDW supports slice power gating on devices with more than
|
|
* one slice.
|
|
*/
|
|
sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
|
|
sseu->has_subslice_pg = 0;
|
|
sseu->has_eu_pg = 0;
|
|
}
|
|
|
|
static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
|
|
u32 fuse1;
|
|
u8 subslice_mask = 0;
|
|
int s, ss;
|
|
|
|
/*
|
|
* There isn't a register to tell us how many slices/subslices. We
|
|
* work off the PCI-ids here.
|
|
*/
|
|
switch (INTEL_INFO(dev_priv)->gt) {
|
|
default:
|
|
MISSING_CASE(INTEL_INFO(dev_priv)->gt);
|
|
/* fall through */
|
|
case 1:
|
|
sseu->slice_mask = BIT(0);
|
|
subslice_mask = BIT(0);
|
|
break;
|
|
case 2:
|
|
sseu->slice_mask = BIT(0);
|
|
subslice_mask = BIT(0) | BIT(1);
|
|
break;
|
|
case 3:
|
|
sseu->slice_mask = BIT(0) | BIT(1);
|
|
subslice_mask = BIT(0) | BIT(1);
|
|
break;
|
|
}
|
|
|
|
fuse1 = I915_READ(HSW_PAVP_FUSE1);
|
|
switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
|
|
default:
|
|
MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
|
|
HSW_F1_EU_DIS_SHIFT);
|
|
/* fall through */
|
|
case HSW_F1_EU_DIS_10EUS:
|
|
sseu->eu_per_subslice = 10;
|
|
break;
|
|
case HSW_F1_EU_DIS_8EUS:
|
|
sseu->eu_per_subslice = 8;
|
|
break;
|
|
case HSW_F1_EU_DIS_6EUS:
|
|
sseu->eu_per_subslice = 6;
|
|
break;
|
|
}
|
|
|
|
intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
|
|
hweight8(subslice_mask),
|
|
sseu->eu_per_subslice);
|
|
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
intel_sseu_set_subslices(sseu, s, subslice_mask);
|
|
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
sseu_set_eus(sseu, s, ss,
|
|
(1UL << sseu->eu_per_subslice) - 1);
|
|
}
|
|
}
|
|
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
|
|
/* No powergating for you. */
|
|
sseu->has_slice_pg = 0;
|
|
sseu->has_subslice_pg = 0;
|
|
sseu->has_eu_pg = 0;
|
|
}
|
|
|
|
static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
|
|
u32 base_freq, frac_freq;
|
|
|
|
base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
|
|
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
|
|
base_freq *= 1000000;
|
|
|
|
frac_freq = ((ts_override &
|
|
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
|
|
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
|
|
frac_freq = 1000000 / (frac_freq + 1);
|
|
|
|
return base_freq + frac_freq;
|
|
}
|
|
|
|
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
|
|
u32 rpm_config_reg)
|
|
{
|
|
u32 f19_2_mhz = 19200000;
|
|
u32 f24_mhz = 24000000;
|
|
u32 crystal_clock = (rpm_config_reg &
|
|
GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
|
|
GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
|
|
|
|
switch (crystal_clock) {
|
|
case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
|
|
return f19_2_mhz;
|
|
case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
|
|
return f24_mhz;
|
|
default:
|
|
MISSING_CASE(crystal_clock);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
|
|
u32 rpm_config_reg)
|
|
{
|
|
u32 f19_2_mhz = 19200000;
|
|
u32 f24_mhz = 24000000;
|
|
u32 f25_mhz = 25000000;
|
|
u32 f38_4_mhz = 38400000;
|
|
u32 crystal_clock = (rpm_config_reg &
|
|
GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
|
|
GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
|
|
|
|
switch (crystal_clock) {
|
|
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
|
|
return f24_mhz;
|
|
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
|
|
return f19_2_mhz;
|
|
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
|
|
return f38_4_mhz;
|
|
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
|
|
return f25_mhz;
|
|
default:
|
|
MISSING_CASE(crystal_clock);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 f12_5_mhz = 12500000;
|
|
u32 f19_2_mhz = 19200000;
|
|
u32 f24_mhz = 24000000;
|
|
|
|
if (INTEL_GEN(dev_priv) <= 4) {
|
|
/* PRMs say:
|
|
*
|
|
* "The value in this register increments once every 16
|
|
* hclks." (through the “Clocking Configuration”
|
|
* (“CLKCFG”) MCHBAR register)
|
|
*/
|
|
return RUNTIME_INFO(dev_priv)->rawclk_freq * 1000 / 16;
|
|
} else if (INTEL_GEN(dev_priv) <= 8) {
|
|
/* PRMs say:
|
|
*
|
|
* "The PCU TSC counts 10ns increments; this timestamp
|
|
* reflects bits 38:3 of the TSC (i.e. 80ns granularity,
|
|
* rolling over every 1.5 hours).
|
|
*/
|
|
return f12_5_mhz;
|
|
} else if (INTEL_GEN(dev_priv) <= 9) {
|
|
u32 ctc_reg = I915_READ(CTC_MODE);
|
|
u32 freq = 0;
|
|
|
|
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
|
|
freq = read_reference_ts_freq(dev_priv);
|
|
} else {
|
|
freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
|
|
|
|
/* Now figure out how the command stream's timestamp
|
|
* register increments from this frequency (it might
|
|
* increment only every few clock cycle).
|
|
*/
|
|
freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
|
|
CTC_SHIFT_PARAMETER_SHIFT);
|
|
}
|
|
|
|
return freq;
|
|
} else if (INTEL_GEN(dev_priv) <= 12) {
|
|
u32 ctc_reg = I915_READ(CTC_MODE);
|
|
u32 freq = 0;
|
|
|
|
/* First figure out the reference frequency. There are 2 ways
|
|
* we can compute the frequency, either through the
|
|
* TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
|
|
* tells us which one we should use.
|
|
*/
|
|
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
|
|
freq = read_reference_ts_freq(dev_priv);
|
|
} else {
|
|
u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
|
|
|
|
if (INTEL_GEN(dev_priv) <= 10)
|
|
freq = gen10_get_crystal_clock_freq(dev_priv,
|
|
rpm_config_reg);
|
|
else
|
|
freq = gen11_get_crystal_clock_freq(dev_priv,
|
|
rpm_config_reg);
|
|
|
|
/* Now figure out how the command stream's timestamp
|
|
* register increments from this frequency (it might
|
|
* increment only every few clock cycle).
|
|
*/
|
|
freq >>= 3 - ((rpm_config_reg &
|
|
GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
|
|
GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
|
|
}
|
|
|
|
return freq;
|
|
}
|
|
|
|
MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
|
|
return 0;
|
|
}
|
|
|
|
#undef INTEL_VGA_DEVICE
|
|
#define INTEL_VGA_DEVICE(id, info) (id)
|
|
|
|
static const u16 subplatform_ult_ids[] = {
|
|
INTEL_HSW_ULT_GT1_IDS(0),
|
|
INTEL_HSW_ULT_GT2_IDS(0),
|
|
INTEL_HSW_ULT_GT3_IDS(0),
|
|
INTEL_BDW_ULT_GT1_IDS(0),
|
|
INTEL_BDW_ULT_GT2_IDS(0),
|
|
INTEL_BDW_ULT_GT3_IDS(0),
|
|
INTEL_BDW_ULT_RSVD_IDS(0),
|
|
INTEL_SKL_ULT_GT1_IDS(0),
|
|
INTEL_SKL_ULT_GT2_IDS(0),
|
|
INTEL_SKL_ULT_GT3_IDS(0),
|
|
INTEL_KBL_ULT_GT1_IDS(0),
|
|
INTEL_KBL_ULT_GT2_IDS(0),
|
|
INTEL_KBL_ULT_GT3_IDS(0),
|
|
INTEL_CFL_U_GT2_IDS(0),
|
|
INTEL_CFL_U_GT3_IDS(0),
|
|
INTEL_WHL_U_GT1_IDS(0),
|
|
INTEL_WHL_U_GT2_IDS(0),
|
|
INTEL_WHL_U_GT3_IDS(0),
|
|
INTEL_CML_U_GT1_IDS(0),
|
|
INTEL_CML_U_GT2_IDS(0),
|
|
};
|
|
|
|
static const u16 subplatform_ulx_ids[] = {
|
|
INTEL_HSW_ULX_GT1_IDS(0),
|
|
INTEL_HSW_ULX_GT2_IDS(0),
|
|
INTEL_BDW_ULX_GT1_IDS(0),
|
|
INTEL_BDW_ULX_GT2_IDS(0),
|
|
INTEL_BDW_ULX_GT3_IDS(0),
|
|
INTEL_BDW_ULX_RSVD_IDS(0),
|
|
INTEL_SKL_ULX_GT1_IDS(0),
|
|
INTEL_SKL_ULX_GT2_IDS(0),
|
|
INTEL_KBL_ULX_GT1_IDS(0),
|
|
INTEL_KBL_ULX_GT2_IDS(0),
|
|
INTEL_AML_KBL_GT2_IDS(0),
|
|
INTEL_AML_CFL_GT2_IDS(0),
|
|
};
|
|
|
|
static const u16 subplatform_portf_ids[] = {
|
|
INTEL_CNL_PORT_F_IDS(0),
|
|
INTEL_ICL_PORT_F_IDS(0),
|
|
};
|
|
|
|
static bool find_devid(u16 id, const u16 *p, unsigned int num)
|
|
{
|
|
for (; num; num--, p++) {
|
|
if (*p == id)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void intel_device_info_subplatform_init(struct drm_i915_private *i915)
|
|
{
|
|
const struct intel_device_info *info = INTEL_INFO(i915);
|
|
const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
|
|
const unsigned int pi = __platform_mask_index(rinfo, info->platform);
|
|
const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
|
|
u16 devid = INTEL_DEVID(i915);
|
|
u32 mask = 0;
|
|
|
|
/* Make sure IS_<platform> checks are working. */
|
|
RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
|
|
|
|
/* Find and mark subplatform bits based on the PCI device id. */
|
|
if (find_devid(devid, subplatform_ult_ids,
|
|
ARRAY_SIZE(subplatform_ult_ids))) {
|
|
mask = BIT(INTEL_SUBPLATFORM_ULT);
|
|
} else if (find_devid(devid, subplatform_ulx_ids,
|
|
ARRAY_SIZE(subplatform_ulx_ids))) {
|
|
mask = BIT(INTEL_SUBPLATFORM_ULX);
|
|
if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
|
|
/* ULX machines are also considered ULT. */
|
|
mask |= BIT(INTEL_SUBPLATFORM_ULT);
|
|
}
|
|
} else if (find_devid(devid, subplatform_portf_ids,
|
|
ARRAY_SIZE(subplatform_portf_ids))) {
|
|
mask = BIT(INTEL_SUBPLATFORM_PORTF);
|
|
}
|
|
|
|
GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
|
|
|
|
RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
|
|
}
|
|
|
|
/**
|
|
* intel_device_info_runtime_init - initialize runtime info
|
|
* @dev_priv: the i915 device
|
|
*
|
|
* Determine various intel_device_info fields at runtime.
|
|
*
|
|
* Use it when either:
|
|
* - it's judged too laborious to fill n static structures with the limit
|
|
* when a simple if statement does the job,
|
|
* - run-time checks (eg read fuse/strap registers) are needed.
|
|
*
|
|
* This function needs to be called:
|
|
* - after the MMIO has been setup as we are reading registers,
|
|
* - after the PCH has been detected,
|
|
* - before the first usage of the fields it can tweak.
|
|
*/
|
|
void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_device_info *info = mkwrite_device_info(dev_priv);
|
|
struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
|
|
enum pipe pipe;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 10) {
|
|
for_each_pipe(dev_priv, pipe)
|
|
runtime->num_scalers[pipe] = 2;
|
|
} else if (IS_GEN(dev_priv, 9)) {
|
|
runtime->num_scalers[PIPE_A] = 2;
|
|
runtime->num_scalers[PIPE_B] = 2;
|
|
runtime->num_scalers[PIPE_C] = 1;
|
|
}
|
|
|
|
BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
|
|
|
|
if (IS_ROCKETLAKE(dev_priv))
|
|
for_each_pipe(dev_priv, pipe)
|
|
runtime->num_sprites[pipe] = 4;
|
|
else if (INTEL_GEN(dev_priv) >= 11)
|
|
for_each_pipe(dev_priv, pipe)
|
|
runtime->num_sprites[pipe] = 6;
|
|
else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
|
|
for_each_pipe(dev_priv, pipe)
|
|
runtime->num_sprites[pipe] = 3;
|
|
else if (IS_BROXTON(dev_priv)) {
|
|
/*
|
|
* Skylake and Broxton currently don't expose the topmost plane as its
|
|
* use is exclusive with the legacy cursor and we only want to expose
|
|
* one of those, not both. Until we can safely expose the topmost plane
|
|
* as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
|
|
* we don't expose the topmost plane at all to prevent ABI breakage
|
|
* down the line.
|
|
*/
|
|
|
|
runtime->num_sprites[PIPE_A] = 2;
|
|
runtime->num_sprites[PIPE_B] = 2;
|
|
runtime->num_sprites[PIPE_C] = 1;
|
|
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
for_each_pipe(dev_priv, pipe)
|
|
runtime->num_sprites[pipe] = 2;
|
|
} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
|
|
for_each_pipe(dev_priv, pipe)
|
|
runtime->num_sprites[pipe] = 1;
|
|
}
|
|
|
|
if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
|
|
HAS_PCH_SPLIT(dev_priv)) {
|
|
u32 fuse_strap = I915_READ(FUSE_STRAP);
|
|
u32 sfuse_strap = I915_READ(SFUSE_STRAP);
|
|
|
|
/*
|
|
* SFUSE_STRAP is supposed to have a bit signalling the display
|
|
* is fused off. Unfortunately it seems that, at least in
|
|
* certain cases, fused off display means that PCH display
|
|
* reads don't land anywhere. In that case, we read 0s.
|
|
*
|
|
* On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
|
|
* should be set when taking over after the firmware.
|
|
*/
|
|
if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
|
|
sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
|
|
(HAS_PCH_CPT(dev_priv) &&
|
|
!(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
|
|
drm_info(&dev_priv->drm,
|
|
"Display fused off, disabling\n");
|
|
info->pipe_mask = 0;
|
|
info->cpu_transcoder_mask = 0;
|
|
} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
|
|
drm_info(&dev_priv->drm, "PipeC fused off\n");
|
|
info->pipe_mask &= ~BIT(PIPE_C);
|
|
info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
|
|
}
|
|
} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
|
|
u32 dfsm = I915_READ(SKL_DFSM);
|
|
|
|
if (dfsm & SKL_DFSM_PIPE_A_DISABLE) {
|
|
info->pipe_mask &= ~BIT(PIPE_A);
|
|
info->cpu_transcoder_mask &= ~BIT(TRANSCODER_A);
|
|
}
|
|
if (dfsm & SKL_DFSM_PIPE_B_DISABLE) {
|
|
info->pipe_mask &= ~BIT(PIPE_B);
|
|
info->cpu_transcoder_mask &= ~BIT(TRANSCODER_B);
|
|
}
|
|
if (dfsm & SKL_DFSM_PIPE_C_DISABLE) {
|
|
info->pipe_mask &= ~BIT(PIPE_C);
|
|
info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
|
|
}
|
|
if (INTEL_GEN(dev_priv) >= 12 &&
|
|
(dfsm & TGL_DFSM_PIPE_D_DISABLE)) {
|
|
info->pipe_mask &= ~BIT(PIPE_D);
|
|
info->cpu_transcoder_mask &= ~BIT(TRANSCODER_D);
|
|
}
|
|
|
|
if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
|
|
info->display.has_hdcp = 0;
|
|
|
|
if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
|
|
info->display.has_fbc = 0;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
|
|
info->display.has_csr = 0;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 10 &&
|
|
(dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
|
|
info->display.has_dsc = 0;
|
|
}
|
|
|
|
/* Initialize slice/subslice/EU info */
|
|
if (IS_HASWELL(dev_priv))
|
|
hsw_sseu_info_init(dev_priv);
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
cherryview_sseu_info_init(dev_priv);
|
|
else if (IS_BROADWELL(dev_priv))
|
|
bdw_sseu_info_init(dev_priv);
|
|
else if (IS_GEN(dev_priv, 9))
|
|
gen9_sseu_info_init(dev_priv);
|
|
else if (IS_GEN(dev_priv, 10))
|
|
gen10_sseu_info_init(dev_priv);
|
|
else if (IS_GEN(dev_priv, 11))
|
|
gen11_sseu_info_init(dev_priv);
|
|
else if (INTEL_GEN(dev_priv) >= 12)
|
|
gen12_sseu_info_init(dev_priv);
|
|
|
|
if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
|
|
drm_info(&dev_priv->drm,
|
|
"Disabling ppGTT for VT-d support\n");
|
|
info->ppgtt_type = INTEL_PPGTT_NONE;
|
|
}
|
|
|
|
runtime->rawclk_freq = intel_read_rawclk(dev_priv);
|
|
drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
|
|
|
|
/* Initialize command stream timestamp frequency */
|
|
runtime->cs_timestamp_frequency_hz =
|
|
read_timestamp_frequency(dev_priv);
|
|
if (runtime->cs_timestamp_frequency_hz) {
|
|
runtime->cs_timestamp_period_ns =
|
|
i915_cs_timestamp_ticks_to_ns(dev_priv, 1);
|
|
drm_dbg(&dev_priv->drm,
|
|
"CS timestamp wraparound in %lldms\n",
|
|
div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
|
|
S32_MAX),
|
|
USEC_PER_SEC));
|
|
}
|
|
}
|
|
|
|
void intel_driver_caps_print(const struct intel_driver_caps *caps,
|
|
struct drm_printer *p)
|
|
{
|
|
drm_printf(p, "Has logical contexts? %s\n",
|
|
yesno(caps->has_logical_contexts));
|
|
drm_printf(p, "scheduler: %x\n", caps->scheduler);
|
|
}
|
|
|
|
/*
|
|
* Determine which engines are fused off in our particular hardware. Since the
|
|
* fuse register is in the blitter powerwell, we need forcewake to be ready at
|
|
* this point (but later we need to prune the forcewake domains for engines that
|
|
* are indeed fused off).
|
|
*/
|
|
void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_device_info *info = mkwrite_device_info(dev_priv);
|
|
unsigned int logical_vdbox = 0;
|
|
unsigned int i;
|
|
u32 media_fuse;
|
|
u16 vdbox_mask;
|
|
u16 vebox_mask;
|
|
|
|
if (INTEL_GEN(dev_priv) < 11)
|
|
return;
|
|
|
|
media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
|
|
|
|
vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
|
|
vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
|
|
GEN11_GT_VEBOX_DISABLE_SHIFT;
|
|
|
|
for (i = 0; i < I915_MAX_VCS; i++) {
|
|
if (!HAS_ENGINE(dev_priv, _VCS(i))) {
|
|
vdbox_mask &= ~BIT(i);
|
|
continue;
|
|
}
|
|
|
|
if (!(BIT(i) & vdbox_mask)) {
|
|
info->engine_mask &= ~BIT(_VCS(i));
|
|
drm_dbg(&dev_priv->drm, "vcs%u fused off\n", i);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* In Gen11, only even numbered logical VDBOXes are
|
|
* hooked up to an SFC (Scaler & Format Converter) unit.
|
|
* In TGL each VDBOX has access to an SFC.
|
|
*/
|
|
if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
|
|
RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
|
|
}
|
|
drm_dbg(&dev_priv->drm, "vdbox enable: %04x, instances: %04lx\n",
|
|
vdbox_mask, VDBOX_MASK(dev_priv));
|
|
GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
|
|
|
|
for (i = 0; i < I915_MAX_VECS; i++) {
|
|
if (!HAS_ENGINE(dev_priv, _VECS(i))) {
|
|
vebox_mask &= ~BIT(i);
|
|
continue;
|
|
}
|
|
|
|
if (!(BIT(i) & vebox_mask)) {
|
|
info->engine_mask &= ~BIT(_VECS(i));
|
|
drm_dbg(&dev_priv->drm, "vecs%u fused off\n", i);
|
|
}
|
|
}
|
|
drm_dbg(&dev_priv->drm, "vebox enable: %04x, instances: %04lx\n",
|
|
vebox_mask, VEBOX_MASK(dev_priv));
|
|
GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
|
|
}
|