linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_dp.c
Ville Syrjälä 51a9f6dfc0 drm/i915: Turn off g4x DP port in .post_disable()
While Bspec doesn't list a specific sequence for turning off the DP port
on g4x we are getting an underrun if the port is disabled in the
.disable() hook. Looks like the pipe stops when the port stops, and by
that time the plane disable may not have completed yet. Also the plane(s)
seem to end up in some wonky state when this happens as they also signal
another underrun immediately after we turn them back on during the next
enable sequence.

We could add a vblank wait in .disable() to avoid wedging the planes,
but I assume we're still tripping up the pipe in some way. So it seems
better to me to just follow the ILK+ sequence and turn off the DP port
in .post_disable() instead. This sequence doesn't seem to suffer from
this problem. Could be it was always the intended sequence for DP and
the gen4 bspec was just never updated to include it.

Originally we used the bad sequence even on ilk+, but I changed that
in commit 08aff3fe26 ("drm/i915: Move DP port disable to post_disable
for pch platforms") as it was causing issues on those platforms as well.
I left out g4x then only because I didn't have the hardware to test it.
Now that I do it's fairly clear that the ilk+ sequence is also the
right choice for g4x.

v2: Fix whitespace fail (Jani)
    Mention the ilk+ commit (Jani)

Cc: stable@vger.kernel.org
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180613160553.11664-2-ville.syrjala@linux.intel.com
Reviewed-by: Jani Nikula <jani.nikula@intel.com>
2018-06-14 21:13:14 +03:00

6532 lines
180 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <asm/byteorder.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_hdcp.h>
#include "intel_drv.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#define DP_DPRX_ESI_LEN 14
/* Compliance test status bits */
#define INTEL_DP_RESOLUTION_SHIFT_MASK 0
#define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
struct dp_link_dpll {
int clock;
struct dpll dpll;
};
static const struct dp_link_dpll g4x_dpll[] = {
{ 162000,
{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
{ 270000,
{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};
static const struct dp_link_dpll pch_dpll[] = {
{ 162000,
{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
{ 270000,
{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};
static const struct dp_link_dpll vlv_dpll[] = {
{ 162000,
{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
{ 270000,
{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};
/*
* CHV supports eDP 1.4 that have more link rates.
* Below only provides the fixed rate but exclude variable rate.
*/
static const struct dp_link_dpll chv_dpll[] = {
/*
* CHV requires to program fractional division for m2.
* m2 is stored in fixed point format using formula below
* (m2_int << 22) | m2_fraction
*/
{ 162000, /* m2_int = 32, m2_fraction = 1677722 */
{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
{ 270000, /* m2_int = 27, m2_fraction = 0 */
{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
/**
* intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*/
bool intel_dp_is_edp(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
}
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
return intel_dig_port->base.base.dev;
}
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
}
static void intel_dp_link_down(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state);
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state);
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
enum pipe pipe);
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
static const int dp_rates[] = {
162000, 270000, 540000, 810000
};
int i, max_rate;
max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
if (dp_rates[i] > max_rate)
break;
intel_dp->sink_rates[i] = dp_rates[i];
}
intel_dp->num_sink_rates = i;
}
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
int i;
/* Limit results by potentially reduced max rate */
for (i = 0; i < len; i++) {
if (rates[len - i - 1] <= max_rate)
return len - i;
}
return 0;
}
/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
int max_rate)
{
return intel_dp_rate_limit_len(intel_dp->common_rates,
intel_dp->num_common_rates, max_rate);
}
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
{
return intel_dp->common_rates[intel_dp->num_common_rates - 1];
}
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
int source_max = intel_dig_port->max_lanes;
int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
return min(source_max, sink_max);
}
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
return intel_dp->max_link_lane_count;
}
int
intel_dp_link_required(int pixel_clock, int bpp)
{
/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
return DIV_ROUND_UP(pixel_clock * bpp, 8);
}
int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
* link rate that is generally expressed in Gbps. Since, 8 bits of data
* is transmitted every LS_Clk per lane, there is no need to account for
* the channel encoding that is done in the PHY layer here.
*/
return max_link_clock * max_lanes;
}
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int max_dotclk = dev_priv->max_dotclk_freq;
int ds_max_dotclk;
int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
if (type != DP_DS_PORT_TYPE_VGA)
return max_dotclk;
ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
intel_dp->downstream_ports);
if (ds_max_dotclk != 0)
max_dotclk = min(max_dotclk, ds_max_dotclk);
return max_dotclk;
}
static int cnl_max_source_rate(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
enum port port = dig_port->base.port;
u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
/* Low voltage SKUs are limited to max of 5.4G */
if (voltage == VOLTAGE_INFO_0_85V)
return 540000;
/* For this SKU 8.1G is supported in all ports */
if (IS_CNL_WITH_PORT_F(dev_priv))
return 810000;
/* For other SKUs, max rate on ports A and D is 5.4G */
if (port == PORT_A || port == PORT_D)
return 540000;
return 810000;
}
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
{
/* The values must be in increasing order */
static const int cnl_rates[] = {
162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
};
static const int bxt_rates[] = {
162000, 216000, 243000, 270000, 324000, 432000, 540000
};
static const int skl_rates[] = {
162000, 216000, 270000, 324000, 432000, 540000
};
static const int hsw_rates[] = {
162000, 270000, 540000
};
static const int g4x_rates[] = {
162000, 270000
};
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[dig_port->base.port];
const int *source_rates;
int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
/* This should only be done once */
WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
if (IS_CANNONLAKE(dev_priv)) {
source_rates = cnl_rates;
size = ARRAY_SIZE(cnl_rates);
max_rate = cnl_max_source_rate(intel_dp);
} else if (IS_GEN9_LP(dev_priv)) {
source_rates = bxt_rates;
size = ARRAY_SIZE(bxt_rates);
} else if (IS_GEN9_BC(dev_priv)) {
source_rates = skl_rates;
size = ARRAY_SIZE(skl_rates);
} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
IS_BROADWELL(dev_priv)) {
source_rates = hsw_rates;
size = ARRAY_SIZE(hsw_rates);
} else {
source_rates = g4x_rates;
size = ARRAY_SIZE(g4x_rates);
}
if (max_rate && vbt_max_rate)
max_rate = min(max_rate, vbt_max_rate);
else if (vbt_max_rate)
max_rate = vbt_max_rate;
if (max_rate)
size = intel_dp_rate_limit_len(source_rates, size, max_rate);
intel_dp->source_rates = source_rates;
intel_dp->num_source_rates = size;
}
static int intersect_rates(const int *source_rates, int source_len,
const int *sink_rates, int sink_len,
int *common_rates)
{
int i = 0, j = 0, k = 0;
while (i < source_len && j < sink_len) {
if (source_rates[i] == sink_rates[j]) {
if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
return k;
common_rates[k] = source_rates[i];
++k;
++i;
++j;
} else if (source_rates[i] < sink_rates[j]) {
++i;
} else {
++j;
}
}
return k;
}
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
int i;
for (i = 0; i < len; i++)
if (rate == rates[i])
return i;
return -1;
}
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
{
WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
intel_dp->num_source_rates,
intel_dp->sink_rates,
intel_dp->num_sink_rates,
intel_dp->common_rates);
/* Paranoia, there should always be something in common. */
if (WARN_ON(intel_dp->num_common_rates == 0)) {
intel_dp->common_rates[0] = 162000;
intel_dp->num_common_rates = 1;
}
}
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
uint8_t lane_count)
{
/*
* FIXME: we need to synchronize the current link parameters with
* hardware readout. Currently fast link training doesn't work on
* boot-up.
*/
if (link_rate == 0 ||
link_rate > intel_dp->max_link_rate)
return false;
if (lane_count == 0 ||
lane_count > intel_dp_max_lane_count(intel_dp))
return false;
return true;
}
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
int link_rate, uint8_t lane_count)
{
int index;
index = intel_dp_rate_index(intel_dp->common_rates,
intel_dp->num_common_rates,
link_rate);
if (index > 0) {
intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
intel_dp->max_link_lane_count = lane_count;
} else if (lane_count > 1) {
intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
intel_dp->max_link_lane_count = lane_count >> 1;
} else {
DRM_ERROR("Link Training Unsuccessful\n");
return -1;
}
return 0;
}
static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_connector *intel_connector = to_intel_connector(connector);
struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
int target_clock = mode->clock;
int max_rate, mode_rate, max_lanes, max_link_clock;
int max_dotclk;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
if (intel_dp_is_edp(intel_dp) && fixed_mode) {
if (mode->hdisplay > fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > fixed_mode->vdisplay)
return MODE_PANEL;
target_clock = fixed_mode->clock;
}
max_link_clock = intel_dp_max_link_rate(intel_dp);
max_lanes = intel_dp_max_lane_count(intel_dp);
max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
mode_rate = intel_dp_link_required(target_clock, 18);
if (mode_rate > max_rate || target_clock > max_dotclk)
return MODE_CLOCK_HIGH;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_H_ILLEGAL;
return MODE_OK;
}
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
static void
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
bool force_disable_vdd);
static void
intel_dp_pps_init(struct intel_dp *intel_dp);
static void pps_lock(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
/*
* See intel_power_sequencer_reset() why we need
* a power domain reference here.
*/
intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
mutex_lock(&dev_priv->pps_mutex);
}
static void pps_unlock(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
mutex_unlock(&dev_priv->pps_mutex);
intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
}
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum pipe pipe = intel_dp->pps_pipe;
bool pll_enabled, release_cl_override = false;
enum dpio_phy phy = DPIO_PHY(pipe);
enum dpio_channel ch = vlv_pipe_to_channel(pipe);
uint32_t DP;
if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
"skipping pipe %c power sequencer kick due to port %c being active\n",
pipe_name(pipe), port_name(intel_dig_port->base.port)))
return;
DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
pipe_name(pipe), port_name(intel_dig_port->base.port));
/* Preserve the BIOS-computed detected bit. This is
* supposed to be read-only.
*/
DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
DP |= DP_PORT_WIDTH(1);
DP |= DP_LINK_TRAIN_PAT_1;
if (IS_CHERRYVIEW(dev_priv))
DP |= DP_PIPE_SEL_CHV(pipe);
else
DP |= DP_PIPE_SEL(pipe);
pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
/*
* The DPLL for the pipe must be enabled for this to work.
* So enable temporarily it if it's not already enabled.
*/
if (!pll_enabled) {
release_cl_override = IS_CHERRYVIEW(dev_priv) &&
!chv_phy_powergate_ch(dev_priv, phy, ch, true);
if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
&chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
DRM_ERROR("Failed to force on pll for pipe %c!\n",
pipe_name(pipe));
return;
}
}
/*
* Similar magic as in intel_dp_enable_port().
* We _must_ do this port enable + disable trick
* to make this power sequencer lock onto the port.
* Otherwise even VDD force bit won't work.
*/
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
POSTING_READ(intel_dp->output_reg);
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
POSTING_READ(intel_dp->output_reg);
if (!pll_enabled) {
vlv_force_pll_off(dev_priv, pipe);
if (release_cl_override)
chv_phy_powergate_ch(dev_priv, phy, ch, false);
}
}
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
/*
* We don't have power sequencer currently.
* Pick one that's not used by other ports.
*/
for_each_intel_encoder(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp;
if (encoder->type != INTEL_OUTPUT_DP &&
encoder->type != INTEL_OUTPUT_EDP)
continue;
intel_dp = enc_to_intel_dp(&encoder->base);
if (encoder->type == INTEL_OUTPUT_EDP) {
WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
intel_dp->active_pipe != intel_dp->pps_pipe);
if (intel_dp->pps_pipe != INVALID_PIPE)
pipes &= ~(1 << intel_dp->pps_pipe);
} else {
WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
if (intel_dp->active_pipe != INVALID_PIPE)
pipes &= ~(1 << intel_dp->active_pipe);
}
}
if (pipes == 0)
return INVALID_PIPE;
return ffs(pipes) - 1;
}
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum pipe pipe;
lockdep_assert_held(&dev_priv->pps_mutex);
/* We should never land here with regular DP ports */
WARN_ON(!intel_dp_is_edp(intel_dp));
WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
intel_dp->active_pipe != intel_dp->pps_pipe);
if (intel_dp->pps_pipe != INVALID_PIPE)
return intel_dp->pps_pipe;
pipe = vlv_find_free_pps(dev_priv);
/*
* Didn't find one. This should not happen since there
* are two power sequencers and up to two eDP ports.
*/
if (WARN_ON(pipe == INVALID_PIPE))
pipe = PIPE_A;
vlv_steal_power_sequencer(dev_priv, pipe);
intel_dp->pps_pipe = pipe;
DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
pipe_name(intel_dp->pps_pipe),
port_name(intel_dig_port->base.port));
/* init power sequencer on this pipe and port */
intel_dp_init_panel_power_sequencer(intel_dp);
intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
/*
* Even vdd force doesn't work until we've made
* the power sequencer lock in on the port.
*/
vlv_power_sequencer_kick(intel_dp);
return intel_dp->pps_pipe;
}
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
int backlight_controller = dev_priv->vbt.backlight.controller;
lockdep_assert_held(&dev_priv->pps_mutex);
/* We should never land here with regular DP ports */
WARN_ON(!intel_dp_is_edp(intel_dp));
if (!intel_dp->pps_reset)
return backlight_controller;
intel_dp->pps_reset = false;
/*
* Only the HW needs to be reprogrammed, the SW state is fixed and
* has been setup during connector init.
*/
intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
return backlight_controller;
}
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
enum pipe pipe);
static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
return I915_READ(PP_STATUS(pipe)) & PP_ON;
}
static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
}
static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
return true;
}
static enum pipe
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
enum port port,
vlv_pipe_check pipe_check)
{
enum pipe pipe;
for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
PANEL_PORT_SELECT_MASK;
if (port_sel != PANEL_PORT_SELECT_VLV(port))
continue;
if (!pipe_check(dev_priv, pipe))
continue;
return pipe;
}
return INVALID_PIPE;
}
static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->base.port;
lockdep_assert_held(&dev_priv->pps_mutex);
/* try to find a pipe with this port selected */
/* first pick one where the panel is on */
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
vlv_pipe_has_pp_on);
/* didn't find one? pick one where vdd is on */
if (intel_dp->pps_pipe == INVALID_PIPE)
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
vlv_pipe_has_vdd_on);
/* didn't find one? pick one with just the correct port */
if (intel_dp->pps_pipe == INVALID_PIPE)
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
vlv_pipe_any);
/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
if (intel_dp->pps_pipe == INVALID_PIPE) {
DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
port_name(port));
return;
}
DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
port_name(port), pipe_name(intel_dp->pps_pipe));
intel_dp_init_panel_power_sequencer(intel_dp);
intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
}
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
!IS_GEN9_LP(dev_priv)))
return;
/*
* We can't grab pps_mutex here due to deadlock with power_domain
* mutex when power_domain functions are called while holding pps_mutex.
* That also means that in order to use pps_pipe the code needs to
* hold both a power domain reference and pps_mutex, and the power domain
* reference get/put must be done while _not_ holding pps_mutex.
* pps_{lock,unlock}() do these steps in the correct order, so one
* should use them always.
*/
for_each_intel_encoder(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp;
if (encoder->type != INTEL_OUTPUT_DP &&
encoder->type != INTEL_OUTPUT_EDP &&
encoder->type != INTEL_OUTPUT_DDI)
continue;
intel_dp = enc_to_intel_dp(&encoder->base);
/* Skip pure DVI/HDMI DDI encoders */
if (!i915_mmio_reg_valid(intel_dp->output_reg))
continue;
WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
if (encoder->type != INTEL_OUTPUT_EDP)
continue;
if (IS_GEN9_LP(dev_priv))
intel_dp->pps_reset = true;
else
intel_dp->pps_pipe = INVALID_PIPE;
}
}
struct pps_registers {
i915_reg_t pp_ctrl;
i915_reg_t pp_stat;
i915_reg_t pp_on;
i915_reg_t pp_off;
i915_reg_t pp_div;
};
static void intel_pps_get_registers(struct intel_dp *intel_dp,
struct pps_registers *regs)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
int pps_idx = 0;
memset(regs, 0, sizeof(*regs));
if (IS_GEN9_LP(dev_priv))
pps_idx = bxt_power_sequencer_idx(intel_dp);
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
pps_idx = vlv_power_sequencer_pipe(intel_dp);
regs->pp_ctrl = PP_CONTROL(pps_idx);
regs->pp_stat = PP_STATUS(pps_idx);
regs->pp_on = PP_ON_DELAYS(pps_idx);
regs->pp_off = PP_OFF_DELAYS(pps_idx);
if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
!HAS_PCH_ICP(dev_priv))
regs->pp_div = PP_DIVISOR(pps_idx);
}
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
{
struct pps_registers regs;
intel_pps_get_registers(intel_dp, &regs);
return regs.pp_ctrl;
}
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
{
struct pps_registers regs;
intel_pps_get_registers(intel_dp, &regs);
return regs.pp_stat;
}
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
void *unused)
{
struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
edp_notifier);
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
return 0;
pps_lock(intel_dp);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
i915_reg_t pp_ctrl_reg, pp_div_reg;
u32 pp_div;
pp_ctrl_reg = PP_CONTROL(pipe);
pp_div_reg = PP_DIVISOR(pipe);
pp_div = I915_READ(pp_div_reg);
pp_div &= PP_REFERENCE_DIVIDER_MASK;
/* 0x1F write to PP_DIV_REG sets max cycle delay */
I915_WRITE(pp_div_reg, pp_div | 0x1F);
I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
msleep(intel_dp->panel_power_cycle_delay);
}
pps_unlock(intel_dp);
return 0;
}
static bool edp_have_panel_power(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
lockdep_assert_held(&dev_priv->pps_mutex);
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
intel_dp->pps_pipe == INVALID_PIPE)
return false;
return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
}
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
lockdep_assert_held(&dev_priv->pps_mutex);
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
intel_dp->pps_pipe == INVALID_PIPE)
return false;
return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
}
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
if (!intel_dp_is_edp(intel_dp))
return;
if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
WARN(1, "eDP powered off while attempting aux channel communication.\n");
DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
I915_READ(_pp_stat_reg(intel_dp)),
I915_READ(_pp_ctrl_reg(intel_dp)));
}
}
static uint32_t
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
uint32_t status;
bool done;
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
if (has_aux_irq)
done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
msecs_to_jiffies_timeout(10));
else
done = wait_for(C, 10) == 0;
if (!done)
DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
has_aux_irq);
#undef C
return status;
}
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
if (index)
return 0;
/*
* The clock divider is based off the hrawclk, and would like to run at
* 2MHz. So, take the hrawclk value and divide by 2000 and use that
*/
return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
}
static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
if (index)
return 0;
/*
* The clock divider is based off the cdclk or PCH rawclk, and would
* like to run at 2MHz. So, take the cdclk or PCH rawclk value and
* divide by 2000 and use that
*/
if (intel_dp->aux_ch == AUX_CH_A)
return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
else
return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
}
static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
if (intel_dp->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
/* Workaround for non-ULT HSW */
switch (index) {
case 0: return 63;
case 1: return 72;
default: return 0;
}
}
return ilk_get_aux_clock_divider(intel_dp, index);
}
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
/*
* SKL doesn't need us to program the AUX clock divider (Hardware will
* derive the clock from CDCLK automatically). We still implement the
* get_aux_clock_divider vfunc to plug-in into the existing code.
*/
return index ? 0 : 1;
}
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
bool has_aux_irq,
int send_bytes,
uint32_t aux_clock_divider)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
uint32_t precharge, timeout;
if (IS_GEN6(dev_priv))
precharge = 3;
else
precharge = 5;
if (IS_BROADWELL(dev_priv))
timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
else
timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
return DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_DONE |
(has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
timeout |
DP_AUX_CH_CTL_RECEIVE_ERROR |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
}
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
bool has_aux_irq,
int send_bytes,
uint32_t unused)
{
return DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_DONE |
(has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_TIME_OUT_MAX |
DP_AUX_CH_CTL_RECEIVE_ERROR |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
}
static int
intel_dp_aux_xfer(struct intel_dp *intel_dp,
const uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size,
u32 aux_send_ctl_flags)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
i915_reg_t ch_ctl, ch_data[5];
uint32_t aux_clock_divider;
int i, ret, recv_bytes;
uint32_t status;
int try, clock = 0;
bool has_aux_irq = HAS_AUX_IRQ(dev_priv);
bool vdd;
ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
for (i = 0; i < ARRAY_SIZE(ch_data); i++)
ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
pps_lock(intel_dp);
/*
* We will be called with VDD already enabled for dpcd/edid/oui reads.
* In such cases we want to leave VDD enabled and it's up to upper layers
* to turn it off. But for eg. i2c-dev access we need to turn it on/off
* ourselves.
*/
vdd = edp_panel_vdd_on(intel_dp);
/* dp aux is extremely sensitive to irq latency, hence request the
* lowest possible wakeup latency and so prevent the cpu from going into
* deep sleep states.
*/
pm_qos_update_request(&dev_priv->pm_qos, 0);
intel_dp_check_edp(intel_dp);
/* Try to wait for any previous AUX channel activity */
for (try = 0; try < 3; try++) {
status = I915_READ_NOTRACE(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
msleep(1);
}
if (try == 3) {
static u32 last_status = -1;
const u32 status = I915_READ(ch_ctl);
if (status != last_status) {
WARN(1, "dp_aux_ch not started status 0x%08x\n",
status);
last_status = status;
}
ret = -EBUSY;
goto out;
}
/* Only 5 data registers! */
if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
ret = -E2BIG;
goto out;
}
while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
has_aux_irq,
send_bytes,
aux_clock_divider);
send_ctl |= aux_send_ctl_flags;
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4)
I915_WRITE(ch_data[i >> 2],
intel_dp_pack_aux(send + i,
send_bytes - i));
/* Send the command and wait for it to complete */
I915_WRITE(ch_ctl, send_ctl);
status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
/* Clear done status and any errors */
I915_WRITE(ch_ctl,
status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
* 400us delay required for errors and timeouts
* Timeout errors from the HW already meet this
* requirement so skip to next iteration
*/
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
continue;
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
usleep_range(400, 500);
continue;
}
if (status & DP_AUX_CH_CTL_DONE)
goto done;
}
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
ret = -EBUSY;
goto out;
}
done:
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
ret = -EIO;
goto out;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
ret = -ETIMEDOUT;
goto out;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
/*
* By BSpec: "Message sizes of 0 or >20 are not allowed."
* We have no idea of what happened so we return -EBUSY so
* drm layer takes care for the necessary retries.
*/
if (recv_bytes == 0 || recv_bytes > 20) {
DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
recv_bytes);
ret = -EBUSY;
goto out;
}
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
recv + i, recv_bytes - i);
ret = recv_bytes;
out:
pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
if (vdd)
edp_panel_vdd_off(intel_dp, false);
pps_unlock(intel_dp);
return ret;
}
#define BARE_ADDRESS_SIZE 3
#define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
const struct drm_dp_aux_msg *msg)
{
txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
txbuf[1] = (msg->address >> 8) & 0xff;
txbuf[2] = msg->address & 0xff;
txbuf[3] = msg->size - 1;
}
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
{
struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
uint8_t txbuf[20], rxbuf[20];
size_t txsize, rxsize;
int ret;
intel_dp_aux_header(txbuf, msg);
switch (msg->request & ~DP_AUX_I2C_MOT) {
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
case DP_AUX_I2C_WRITE_STATUS_UPDATE:
txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
rxsize = 2; /* 0 or 1 data bytes */
if (WARN_ON(txsize > 20))
return -E2BIG;
WARN_ON(!msg->buffer != !msg->size);
if (msg->buffer)
memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
rxbuf, rxsize, 0);
if (ret > 0) {
msg->reply = rxbuf[0] >> 4;
if (ret > 1) {
/* Number of bytes written in a short write. */
ret = clamp_t(int, rxbuf[1], 0, msg->size);
} else {
/* Return payload size. */
ret = msg->size;
}
}
break;
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
rxsize = msg->size + 1;
if (WARN_ON(rxsize > 20))
return -E2BIG;
ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
rxbuf, rxsize, 0);
if (ret > 0) {
msg->reply = rxbuf[0] >> 4;
/*
* Assume happy day, and copy the data. The caller is
* expected to check msg->reply before touching it.
*
* Return payload size.
*/
ret--;
memcpy(msg->buffer, rxbuf + 1, ret);
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static enum aux_ch intel_aux_ch(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
enum aux_ch aux_ch;
if (!info->alternate_aux_channel) {
aux_ch = (enum aux_ch) port;
DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
aux_ch_name(aux_ch), port_name(port));
return aux_ch;
}
switch (info->alternate_aux_channel) {
case DP_AUX_A:
aux_ch = AUX_CH_A;
break;
case DP_AUX_B:
aux_ch = AUX_CH_B;
break;
case DP_AUX_C:
aux_ch = AUX_CH_C;
break;
case DP_AUX_D:
aux_ch = AUX_CH_D;
break;
case DP_AUX_E:
aux_ch = AUX_CH_E;
break;
case DP_AUX_F:
aux_ch = AUX_CH_F;
break;
default:
MISSING_CASE(info->alternate_aux_channel);
aux_ch = AUX_CH_A;
break;
}
DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
aux_ch_name(aux_ch), port_name(port));
return aux_ch;
}
static enum intel_display_power_domain
intel_aux_power_domain(struct intel_dp *intel_dp)
{
switch (intel_dp->aux_ch) {
case AUX_CH_A:
return POWER_DOMAIN_AUX_A;
case AUX_CH_B:
return POWER_DOMAIN_AUX_B;
case AUX_CH_C:
return POWER_DOMAIN_AUX_C;
case AUX_CH_D:
return POWER_DOMAIN_AUX_D;
case AUX_CH_E:
return POWER_DOMAIN_AUX_E;
case AUX_CH_F:
return POWER_DOMAIN_AUX_F;
default:
MISSING_CASE(intel_dp->aux_ch);
return POWER_DOMAIN_AUX_A;
}
}
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
enum aux_ch aux_ch = intel_dp->aux_ch;
switch (aux_ch) {
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_CTL(AUX_CH_B);
}
}
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
enum aux_ch aux_ch = intel_dp->aux_ch;
switch (aux_ch) {
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_DATA(AUX_CH_B, index);
}
}
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
enum aux_ch aux_ch = intel_dp->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
return DP_AUX_CH_CTL(aux_ch);
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return PCH_DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_CTL(AUX_CH_A);
}
}
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
enum aux_ch aux_ch = intel_dp->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
return DP_AUX_CH_DATA(aux_ch, index);
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return PCH_DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_DATA(AUX_CH_A, index);
}
}
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
enum aux_ch aux_ch = intel_dp->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
case AUX_CH_E:
case AUX_CH_F:
return DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_CTL(AUX_CH_A);
}
}
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
enum aux_ch aux_ch = intel_dp->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
case AUX_CH_E:
case AUX_CH_F:
return DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_DATA(AUX_CH_A, index);
}
}
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
kfree(intel_dp->aux.name);
}
static void
intel_dp_aux_init(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
intel_dp->aux_ch = intel_aux_ch(intel_dp);
intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp);
if (INTEL_GEN(dev_priv) >= 9) {
intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
intel_dp->aux_ch_data_reg = skl_aux_data_reg;
} else if (HAS_PCH_SPLIT(dev_priv)) {
intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
} else {
intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
}
if (INTEL_GEN(dev_priv) >= 9)
intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
else if (HAS_PCH_SPLIT(dev_priv))
intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
else
intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
if (INTEL_GEN(dev_priv) >= 9)
intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
else
intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
drm_dp_aux_init(&intel_dp->aux);
/* Failure to allocate our preferred name is not critical */
intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
port_name(encoder->port));
intel_dp->aux.transfer = intel_dp_aux_transfer;
}
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
{
int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
return max_rate >= 540000;
}
static void
intel_dp_set_clock(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
const struct dp_link_dpll *divisor = NULL;
int i, count = 0;
if (IS_G4X(dev_priv)) {
divisor = g4x_dpll;
count = ARRAY_SIZE(g4x_dpll);
} else if (HAS_PCH_SPLIT(dev_priv)) {
divisor = pch_dpll;
count = ARRAY_SIZE(pch_dpll);
} else if (IS_CHERRYVIEW(dev_priv)) {
divisor = chv_dpll;
count = ARRAY_SIZE(chv_dpll);
} else if (IS_VALLEYVIEW(dev_priv)) {
divisor = vlv_dpll;
count = ARRAY_SIZE(vlv_dpll);
}
if (divisor && count) {
for (i = 0; i < count; i++) {
if (pipe_config->port_clock == divisor[i].clock) {
pipe_config->dpll = divisor[i].dpll;
pipe_config->clock_set = true;
break;
}
}
}
}
static void snprintf_int_array(char *str, size_t len,
const int *array, int nelem)
{
int i;
str[0] = '\0';
for (i = 0; i < nelem; i++) {
int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
if (r >= len)
return;
str += r;
len -= r;
}
}
static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
char str[128]; /* FIXME: too big for stack? */
if ((drm_debug & DRM_UT_KMS) == 0)
return;
snprintf_int_array(str, sizeof(str),
intel_dp->source_rates, intel_dp->num_source_rates);
DRM_DEBUG_KMS("source rates: %s\n", str);
snprintf_int_array(str, sizeof(str),
intel_dp->sink_rates, intel_dp->num_sink_rates);
DRM_DEBUG_KMS("sink rates: %s\n", str);
snprintf_int_array(str, sizeof(str),
intel_dp->common_rates, intel_dp->num_common_rates);
DRM_DEBUG_KMS("common rates: %s\n", str);
}
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
int len;
len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
if (WARN_ON(len <= 0))
return 162000;
return intel_dp->common_rates[len - 1];
}
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
int i = intel_dp_rate_index(intel_dp->sink_rates,
intel_dp->num_sink_rates, rate);
if (WARN_ON(i < 0))
i = 0;
return i;
}
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
uint8_t *link_bw, uint8_t *rate_select)
{
/* eDP 1.4 rate select method. */
if (intel_dp->use_rate_select) {
*link_bw = 0;
*rate_select =
intel_dp_rate_select(intel_dp, port_clock);
} else {
*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
*rate_select = 0;
}
}
struct link_config_limits {
int min_clock, max_clock;
int min_lane_count, max_lane_count;
int min_bpp, max_bpp;
};
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_connector *intel_connector = intel_dp->attached_connector;
int bpp, bpc;
bpp = pipe_config->pipe_bpp;
bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
if (bpc > 0)
bpp = min(bpp, 3*bpc);
if (intel_dp_is_edp(intel_dp)) {
/* Get bpp from vbt only for panels that dont have bpp in edid */
if (intel_connector->base.display_info.bpc == 0 &&
dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
dev_priv->vbt.edp.bpp);
bpp = dev_priv->vbt.edp.bpp;
}
}
return bpp;
}
/* Adjust link config limits based on compliance test requests. */
static void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits)
{
/* For DP Compliance we override the computed bpp for the pipe */
if (intel_dp->compliance.test_data.bpc != 0) {
int bpp = 3 * intel_dp->compliance.test_data.bpc;
limits->min_bpp = limits->max_bpp = bpp;
pipe_config->dither_force_disable = bpp == 6 * 3;
DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
}
/* Use values requested by Compliance Test Request */
if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
int index;
/* Validate the compliance test data since max values
* might have changed due to link train fallback.
*/
if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
intel_dp->compliance.test_lane_count)) {
index = intel_dp_rate_index(intel_dp->common_rates,
intel_dp->num_common_rates,
intel_dp->compliance.test_link_rate);
if (index >= 0)
limits->min_clock = limits->max_clock = index;
limits->min_lane_count = limits->max_lane_count =
intel_dp->compliance.test_lane_count;
}
}
}
/* Optimize link config in order: max bpp, min clock, min lanes */
static bool
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
const struct link_config_limits *limits)
{
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
int bpp, clock, lane_count;
int mode_rate, link_clock, link_avail;
for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
bpp);
for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
for (lane_count = limits->min_lane_count;
lane_count <= limits->max_lane_count;
lane_count <<= 1) {
link_clock = intel_dp->common_rates[clock];
link_avail = intel_dp_max_data_rate(link_clock,
lane_count);
if (mode_rate <= link_avail) {
pipe_config->lane_count = lane_count;
pipe_config->pipe_bpp = bpp;
pipe_config->port_clock = link_clock;
return true;
}
}
}
}
return false;
}
static bool
intel_dp_compute_link_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct link_config_limits limits;
int common_len;
common_len = intel_dp_common_len_rate_limit(intel_dp,
intel_dp->max_link_rate);
/* No common link rates between source and sink */
WARN_ON(common_len <= 0);
limits.min_clock = 0;
limits.max_clock = common_len - 1;
limits.min_lane_count = 1;
limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
limits.min_bpp = 6 * 3;
limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
if (intel_dp_is_edp(intel_dp)) {
/*
* Use the maximum clock and number of lanes the eDP panel
* advertizes being capable of. The panels are generally
* designed to support only a single clock and lane
* configuration, and typically these values correspond to the
* native resolution of the panel.
*/
limits.min_lane_count = limits.max_lane_count;
limits.min_clock = limits.max_clock;
}
intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
DRM_DEBUG_KMS("DP link computation with max lane count %i "
"max rate %d max bpp %d pixel clock %iKHz\n",
limits.max_lane_count,
intel_dp->common_rates[limits.max_clock],
limits.max_bpp, adjusted_mode->crtc_clock);
/*
* Optimize for slow and wide. This is the place to add alternative
* optimization policy.
*/
if (!intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits))
return false;
DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
pipe_config->lane_count, pipe_config->port_clock,
pipe_config->pipe_bpp);
DRM_DEBUG_KMS("DP link rate required %i available %i\n",
intel_dp_link_required(adjusted_mode->crtc_clock,
pipe_config->pipe_bpp),
intel_dp_max_data_rate(pipe_config->port_clock,
pipe_config->lane_count));
return true;
}
bool
intel_dp_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = encoder->port;
struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct intel_digital_connector_state *intel_conn_state =
to_intel_digital_connector_state(conn_state);
bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
DP_DPCD_QUIRK_LIMITED_M_N);
if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
pipe_config->has_pch_encoder = true;
pipe_config->has_drrs = false;
if (IS_G4X(dev_priv) || port == PORT_A)
pipe_config->has_audio = false;
else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
pipe_config->has_audio = intel_dp->has_audio;
else
pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
adjusted_mode);
if (INTEL_GEN(dev_priv) >= 9) {
int ret;
ret = skl_update_scaler_crtc(pipe_config);
if (ret)
return ret;
}
if (HAS_GMCH_DISPLAY(dev_priv))
intel_gmch_panel_fitting(intel_crtc, pipe_config,
conn_state->scaling_mode);
else
intel_pch_panel_fitting(intel_crtc, pipe_config,
conn_state->scaling_mode);
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
return false;
if (HAS_GMCH_DISPLAY(dev_priv) &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
return false;
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
return false;
if (!intel_dp_compute_link_config(encoder, pipe_config))
return false;
if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
/*
* See:
* CEA-861-E - 5.1 Default Encoding Parameters
* VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
*/
pipe_config->limited_color_range =
pipe_config->pipe_bpp != 18 &&
drm_default_rgb_quant_range(adjusted_mode) ==
HDMI_QUANTIZATION_RANGE_LIMITED;
} else {
pipe_config->limited_color_range =
intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
}
intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count,
adjusted_mode->crtc_clock,
pipe_config->port_clock,
&pipe_config->dp_m_n,
reduce_m_n);
if (intel_connector->panel.downclock_mode != NULL &&
dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
pipe_config->has_drrs = true;
intel_link_compute_m_n(pipe_config->pipe_bpp,
pipe_config->lane_count,
intel_connector->panel.downclock_mode->clock,
pipe_config->port_clock,
&pipe_config->dp_m2_n2,
reduce_m_n);
}
if (!HAS_DDI(dev_priv))
intel_dp_set_clock(encoder, pipe_config);
intel_psr_compute_config(intel_dp, pipe_config);
return true;
}
void intel_dp_set_link_params(struct intel_dp *intel_dp,
int link_rate, uint8_t lane_count,
bool link_mst)
{
intel_dp->link_trained = false;
intel_dp->link_rate = link_rate;
intel_dp->lane_count = lane_count;
intel_dp->link_mst = link_mst;
}
static void intel_dp_prepare(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = encoder->port;
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
pipe_config->lane_count,
intel_crtc_has_type(pipe_config,
INTEL_OUTPUT_DP_MST));
/*
* There are four kinds of DP registers:
*
* IBX PCH
* SNB CPU
* IVB CPU
* CPT PCH
*
* IBX PCH and CPU are the same for almost everything,
* except that the CPU DP PLL is configured in this
* register
*
* CPT PCH is quite different, having many bits moved
* to the TRANS_DP_CTL register instead. That
* configuration happens (oddly) in ironlake_pch_enable
*/
/* Preserve the BIOS-computed detected bit. This is
* supposed to be read-only.
*/
intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
/* Handle DP bits in common between all three register formats */
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
/* Split out the IBX/CPU vs CPT settings */
if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
intel_dp->DP |= DP_ENHANCED_FRAMING;
intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
u32 trans_dp;
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
trans_dp |= TRANS_DP_ENH_FRAMING;
else
trans_dp &= ~TRANS_DP_ENH_FRAMING;
I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
} else {
if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
intel_dp->DP |= DP_COLOR_RANGE_16_235;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
intel_dp->DP |= DP_ENHANCED_FRAMING;
if (IS_CHERRYVIEW(dev_priv))
intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
else
intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
}
}
#define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
#define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
#define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
#define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
static void intel_pps_verify_state(struct intel_dp *intel_dp);
static void wait_panel_status(struct intel_dp *intel_dp,
u32 mask,
u32 value)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
i915_reg_t pp_stat_reg, pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
intel_pps_verify_state(intel_dp);
pp_stat_reg = _pp_stat_reg(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
mask, value,
I915_READ(pp_stat_reg),
I915_READ(pp_ctrl_reg));
if (intel_wait_for_register(dev_priv,
pp_stat_reg, mask, value,
5000))
DRM_ERROR("Panel status timeout: status %08x control %08x\n",
I915_READ(pp_stat_reg),
I915_READ(pp_ctrl_reg));
DRM_DEBUG_KMS("Wait complete\n");
}
static void wait_panel_on(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power on\n");
wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
}
static void wait_panel_off(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power off time\n");
wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
}
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
{
ktime_t panel_power_on_time;
s64 panel_power_off_duration;
DRM_DEBUG_KMS("Wait for panel power cycle\n");
/* take the difference of currrent time and panel power off time
* and then make panel wait for t11_t12 if needed. */
panel_power_on_time = ktime_get_boottime();
panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
/* When we disable the VDD override bit last we have to do the manual
* wait. */
if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
wait_remaining_ms_from_jiffies(jiffies,
intel_dp->panel_power_cycle_delay - panel_power_off_duration);
wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
}
static void wait_backlight_on(struct intel_dp *intel_dp)
{
wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
intel_dp->backlight_on_delay);
}
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
{
wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
intel_dp->backlight_off_delay);
}
/* Read the current pp_control value, unlocking the register if it
* is locked
*/
static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
u32 control;
lockdep_assert_held(&dev_priv->pps_mutex);
control = I915_READ(_pp_ctrl_reg(intel_dp));
if (WARN_ON(!HAS_DDI(dev_priv) &&
(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
control &= ~PANEL_UNLOCK_MASK;
control |= PANEL_UNLOCK_REGS;
}
return control;
}
/*
* Must be paired with edp_panel_vdd_off().
* Must hold pps_mutex around the whole on/off sequence.
* Can be nested with intel_edp_panel_vdd_{on,off}() calls.
*/
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
u32 pp;
i915_reg_t pp_stat_reg, pp_ctrl_reg;
bool need_to_disable = !intel_dp->want_panel_vdd;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!intel_dp_is_edp(intel_dp))
return false;
cancel_delayed_work(&intel_dp->panel_vdd_work);
intel_dp->want_panel_vdd = true;
if (edp_have_panel_vdd(intel_dp))
return need_to_disable;
intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
port_name(intel_dig_port->base.port));
if (!edp_have_panel_power(intel_dp))
wait_panel_power_cycle(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
pp |= EDP_FORCE_VDD;
pp_stat_reg = _pp_stat_reg(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
/*
* If the panel wasn't on, delay before accessing aux channel
*/
if (!edp_have_panel_power(intel_dp)) {
DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
port_name(intel_dig_port->base.port));
msleep(intel_dp->panel_power_up_delay);
}
return need_to_disable;
}
/*
* Must be paired with intel_edp_panel_vdd_off() or
* intel_edp_panel_off().
* Nested calls to these functions are not allowed since
* we drop the lock. Caller must use some higher level
* locking to prevent nested calls from other threads.
*/
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
{
bool vdd;
if (!intel_dp_is_edp(intel_dp))
return;
pps_lock(intel_dp);
vdd = edp_panel_vdd_on(intel_dp);
pps_unlock(intel_dp);
I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
port_name(dp_to_dig_port(intel_dp)->base.port));
}
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_digital_port *intel_dig_port =
dp_to_dig_port(intel_dp);
u32 pp;
i915_reg_t pp_stat_reg, pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
WARN_ON(intel_dp->want_panel_vdd);
if (!edp_have_panel_vdd(intel_dp))
return;
DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
port_name(intel_dig_port->base.port));
pp = ironlake_get_pp_control(intel_dp);
pp &= ~EDP_FORCE_VDD;
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
pp_stat_reg = _pp_stat_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
/* Make sure sequencer is idle before allowing subsequent activity */
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
if ((pp & PANEL_POWER_ON) == 0)
intel_dp->panel_power_off_time = ktime_get_boottime();
intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
}
static void edp_panel_vdd_work(struct work_struct *__work)
{
struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
struct intel_dp, panel_vdd_work);
pps_lock(intel_dp);
if (!intel_dp->want_panel_vdd)
edp_panel_vdd_off_sync(intel_dp);
pps_unlock(intel_dp);
}
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
unsigned long delay;
/*
* Queue the timer to fire a long time from now (relative to the power
* down delay) to keep the panel power up across a sequence of
* operations.
*/
delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}
/*
* Must be paired with edp_panel_vdd_on().
* Must hold pps_mutex around the whole on/off sequence.
* Can be nested with intel_edp_panel_vdd_{on,off}() calls.
*/
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
lockdep_assert_held(&dev_priv->pps_mutex);
if (!intel_dp_is_edp(intel_dp))
return;
I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
port_name(dp_to_dig_port(intel_dp)->base.port));
intel_dp->want_panel_vdd = false;
if (sync)
edp_panel_vdd_off_sync(intel_dp);
else
edp_panel_vdd_schedule_off(intel_dp);
}
static void edp_panel_on(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
u32 pp;
i915_reg_t pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!intel_dp_is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
port_name(dp_to_dig_port(intel_dp)->base.port));
if (WARN(edp_have_panel_power(intel_dp),
"eDP port %c panel power already on\n",
port_name(dp_to_dig_port(intel_dp)->base.port)))
return;
wait_panel_power_cycle(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
if (IS_GEN5(dev_priv)) {
/* ILK workaround: disable reset around power sequence */
pp &= ~PANEL_POWER_RESET;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
}
pp |= PANEL_POWER_ON;
if (!IS_GEN5(dev_priv))
pp |= PANEL_POWER_RESET;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
wait_panel_on(intel_dp);
intel_dp->last_power_on = jiffies;
if (IS_GEN5(dev_priv)) {
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
}
}
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
if (!intel_dp_is_edp(intel_dp))
return;
pps_lock(intel_dp);
edp_panel_on(intel_dp);
pps_unlock(intel_dp);
}
static void edp_panel_off(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
u32 pp;
i915_reg_t pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!intel_dp_is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
port_name(dp_to_dig_port(intel_dp)->base.port));
WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
port_name(dp_to_dig_port(intel_dp)->base.port));
pp = ironlake_get_pp_control(intel_dp);
/* We need to switch off panel power _and_ force vdd, for otherwise some
* panels get very unhappy and cease to work. */
pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
EDP_BLC_ENABLE);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
intel_dp->want_panel_vdd = false;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
wait_panel_off(intel_dp);
intel_dp->panel_power_off_time = ktime_get_boottime();
/* We got a reference when we enabled the VDD. */
intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
}
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
if (!intel_dp_is_edp(intel_dp))
return;
pps_lock(intel_dp);
edp_panel_off(intel_dp);
pps_unlock(intel_dp);
}
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
u32 pp;
i915_reg_t pp_ctrl_reg;
/*
* If we enable the backlight right away following a panel power
* on, we may see slight flicker as the panel syncs with the eDP
* link. So delay a bit to make sure the image is solid before
* allowing it to appear.
*/
wait_backlight_on(intel_dp);
pps_lock(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
pp |= EDP_BLC_ENABLE;
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
pps_unlock(intel_dp);
}
/* Enable backlight PWM and backlight PP control. */
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
if (!intel_dp_is_edp(intel_dp))
return;
DRM_DEBUG_KMS("\n");
intel_panel_enable_backlight(crtc_state, conn_state);
_intel_edp_backlight_on(intel_dp);
}
/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
u32 pp;
i915_reg_t pp_ctrl_reg;
if (!intel_dp_is_edp(intel_dp))
return;
pps_lock(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
pp &= ~EDP_BLC_ENABLE;
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
pps_unlock(intel_dp);
intel_dp->last_backlight_off = jiffies;
edp_wait_backlight_off(intel_dp);
}
/* Disable backlight PP control and backlight PWM. */
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
if (!intel_dp_is_edp(intel_dp))
return;
DRM_DEBUG_KMS("\n");
_intel_edp_backlight_off(intel_dp);
intel_panel_disable_backlight(old_conn_state);
}
/*
* Hook for controlling the panel power control backlight through the bl_power
* sysfs attribute. Take care to handle multiple calls.
*/
static void intel_edp_backlight_power(struct intel_connector *connector,
bool enable)
{
struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
bool is_enabled;
pps_lock(intel_dp);
is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
pps_unlock(intel_dp);
if (is_enabled == enable)
return;
DRM_DEBUG_KMS("panel power control backlight %s\n",
enable ? "enable" : "disable");
if (enable)
_intel_edp_backlight_on(intel_dp);
else
_intel_edp_backlight_off(intel_dp);
}
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
I915_STATE_WARN(cur_state != state,
"DP port %c state assertion failure (expected %s, current %s)\n",
port_name(dig_port->base.port),
onoff(state), onoff(cur_state));
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)
static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
I915_STATE_WARN(cur_state != state,
"eDP PLL state assertion failure (expected %s, current %s)\n",
onoff(state), onoff(cur_state));
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
const struct intel_crtc_state *pipe_config)
{
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
assert_pipe_disabled(dev_priv, crtc->pipe);
assert_dp_port_disabled(intel_dp);
assert_edp_pll_disabled(dev_priv);
DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
pipe_config->port_clock);
intel_dp->DP &= ~DP_PLL_FREQ_MASK;
if (pipe_config->port_clock == 162000)
intel_dp->DP |= DP_PLL_FREQ_162MHZ;
else
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
I915_WRITE(DP_A, intel_dp->DP);
POSTING_READ(DP_A);
udelay(500);
/*
* [DevILK] Work around required when enabling DP PLL
* while a pipe is enabled going to FDI:
* 1. Wait for the start of vertical blank on the enabled pipe going to FDI
* 2. Program DP PLL enable
*/
if (IS_GEN5(dev_priv))
intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
intel_dp->DP |= DP_PLL_ENABLE;
I915_WRITE(DP_A, intel_dp->DP);
POSTING_READ(DP_A);
udelay(200);
}
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
assert_pipe_disabled(dev_priv, crtc->pipe);
assert_dp_port_disabled(intel_dp);
assert_edp_pll_enabled(dev_priv);
DRM_DEBUG_KMS("disabling eDP PLL\n");
intel_dp->DP &= ~DP_PLL_ENABLE;
I915_WRITE(DP_A, intel_dp->DP);
POSTING_READ(DP_A);
udelay(200);
}
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
/*
* DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
* be capable of signalling downstream hpd with a long pulse.
* Whether or not that means D3 is safe to use is not clear,
* but let's assume so until proven otherwise.
*
* FIXME should really check all downstream ports...
*/
return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}
/* If the sink supports it, try to set the power state appropriately */
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
{
int ret, i;
/* Should have a valid DPCD by this point */
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (mode != DRM_MODE_DPMS_ON) {
if (downstream_hpd_needs_d0(intel_dp))
return;
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
DP_SET_POWER_D3);
} else {
struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
/*
* When turning on, we need to retry for 1ms to give the sink
* time to wake up.
*/
for (i = 0; i < 3; i++) {
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
DP_SET_POWER_D0);
if (ret == 1)
break;
msleep(1);
}
if (ret == 1 && lspcon->active)
lspcon_wait_pcon_mode(lspcon);
}
if (ret != 1)
DRM_DEBUG_KMS("failed to %s sink power state\n",
mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
}
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
enum port port, enum pipe *pipe)
{
enum pipe p;
for_each_pipe(dev_priv, p) {
u32 val = I915_READ(TRANS_DP_CTL(p));
if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
*pipe = p;
return true;
}
}
DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
/* must initialize pipe to something for the asserts */
*pipe = PIPE_A;
return false;
}
bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
i915_reg_t dp_reg, enum port port,
enum pipe *pipe)
{
bool ret;
u32 val;
val = I915_READ(dp_reg);
ret = val & DP_PORT_EN;
/* asserts want to know the pipe even if the port is disabled */
if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
ret &= cpt_dp_port_selected(dev_priv, port, pipe);
else if (IS_CHERRYVIEW(dev_priv))
*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
else
*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
return ret;
}
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
bool ret;
if (!intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain))
return false;
ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
encoder->port, pipe);
intel_display_power_put(dev_priv, encoder->power_domain);
return ret;
}
static void intel_dp_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
u32 tmp, flags = 0;
enum port port = encoder->port;
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
if (encoder->type == INTEL_OUTPUT_EDP)
pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
else
pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
tmp = I915_READ(intel_dp->output_reg);
pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
} else {
if (tmp & DP_SYNC_HS_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (tmp & DP_SYNC_VS_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
}
pipe_config->base.adjusted_mode.flags |= flags;
if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
pipe_config->limited_color_range = true;
pipe_config->lane_count =
((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
intel_dp_get_m_n(crtc, pipe_config);
if (port == PORT_A) {
if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
pipe_config->port_clock = 162000;
else
pipe_config->port_clock = 270000;
}
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
}
}
static void intel_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_dp->link_trained = false;
if (old_crtc_state->has_audio)
intel_audio_codec_disable(encoder,
old_crtc_state, old_conn_state);
/* Make sure the panel is off before trying to change the mode. But also
* ensure that we have vdd while we switch off the panel. */
intel_edp_panel_vdd_on(intel_dp);
intel_edp_backlight_off(old_conn_state);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
intel_edp_panel_off(intel_dp);
}
static void g4x_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}
static void vlv_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_psr_disable(intel_dp, old_crtc_state);
intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}
static void g4x_post_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = encoder->port;
/*
* Bspec does not list a specific disable sequence for g4x DP.
* Follow the ilk+ sequence (disable pipe before the port) for
* g4x DP as it does not suffer from underruns like the normal
* g4x modeset sequence (disable pipe after the port).
*/
intel_dp_link_down(encoder, old_crtc_state);
/* Only ilk+ has port A */
if (port == PORT_A)
ironlake_edp_pll_off(intel_dp, old_crtc_state);
}
static void vlv_post_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_dp_link_down(encoder, old_crtc_state);
}
static void chv_post_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
intel_dp_link_down(encoder, old_crtc_state);
mutex_lock(&dev_priv->sb_lock);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, old_crtc_state, true);
mutex_unlock(&dev_priv->sb_lock);
}
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
uint32_t *DP,
uint8_t dp_train_pat)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->base.port;
if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
dp_train_pat & DP_TRAINING_PATTERN_MASK);
if (HAS_DDI(dev_priv)) {
uint32_t temp = I915_READ(DP_TP_CTL(port));
if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
else
temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
break;
case DP_TRAINING_PATTERN_1:
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
break;
case DP_TRAINING_PATTERN_2:
temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
break;
case DP_TRAINING_PATTERN_3:
temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
break;
}
I915_WRITE(DP_TP_CTL(port), temp);
} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
(HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
*DP &= ~DP_LINK_TRAIN_MASK_CPT;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
*DP |= DP_LINK_TRAIN_OFF_CPT;
break;
case DP_TRAINING_PATTERN_1:
*DP |= DP_LINK_TRAIN_PAT_1_CPT;
break;
case DP_TRAINING_PATTERN_2:
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
break;
case DP_TRAINING_PATTERN_3:
DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
break;
}
} else {
*DP &= ~DP_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
*DP |= DP_LINK_TRAIN_OFF;
break;
case DP_TRAINING_PATTERN_1:
*DP |= DP_LINK_TRAIN_PAT_1;
break;
case DP_TRAINING_PATTERN_2:
*DP |= DP_LINK_TRAIN_PAT_2;
break;
case DP_TRAINING_PATTERN_3:
DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
*DP |= DP_LINK_TRAIN_PAT_2;
break;
}
}
}
static void intel_dp_enable_port(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
/* enable with pattern 1 (as per spec) */
intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
/*
* Magic for VLV/CHV. We _must_ first set up the register
* without actually enabling the port, and then do another
* write to enable the port. Otherwise link training will
* fail when the power sequencer is freshly used for this port.
*/
intel_dp->DP |= DP_PORT_EN;
if (old_crtc_state->has_audio)
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
POSTING_READ(intel_dp->output_reg);
}
static void intel_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
uint32_t dp_reg = I915_READ(intel_dp->output_reg);
enum pipe pipe = crtc->pipe;
if (WARN_ON(dp_reg & DP_PORT_EN))
return;
pps_lock(intel_dp);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
vlv_init_panel_power_sequencer(encoder, pipe_config);
intel_dp_enable_port(intel_dp, pipe_config);
edp_panel_vdd_on(intel_dp);
edp_panel_on(intel_dp);
edp_panel_vdd_off(intel_dp, true);
pps_unlock(intel_dp);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
unsigned int lane_mask = 0x0;
if (IS_CHERRYVIEW(dev_priv))
lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
lane_mask);
}
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_start_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
if (pipe_config->has_audio) {
DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
pipe_name(pipe));
intel_audio_codec_enable(encoder, pipe_config, conn_state);
}
}
static void g4x_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_enable_dp(encoder, pipe_config, conn_state);
intel_edp_backlight_on(pipe_config, conn_state);
}
static void vlv_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_edp_backlight_on(pipe_config, conn_state);
intel_psr_enable(intel_dp, pipe_config);
}
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = encoder->port;
intel_dp_prepare(encoder, pipe_config);
/* Only ilk+ has port A */
if (port == PORT_A)
ironlake_edp_pll_on(intel_dp, pipe_config);
}
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
enum pipe pipe = intel_dp->pps_pipe;
i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
return;
edp_panel_vdd_off_sync(intel_dp);
/*
* VLV seems to get confused when multiple power sequencers
* have the same port selected (even if only one has power/vdd
* enabled). The failure manifests as vlv_wait_port_ready() failing
* CHV on the other hand doesn't seem to mind having the same port
* selected in multiple power sequencers, but let's clear the
* port select always when logically disconnecting a power sequencer
* from a port.
*/
DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
pipe_name(pipe), port_name(intel_dig_port->base.port));
I915_WRITE(pp_on_reg, 0);
POSTING_READ(pp_on_reg);
intel_dp->pps_pipe = INVALID_PIPE;
}
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct intel_encoder *encoder;
lockdep_assert_held(&dev_priv->pps_mutex);
for_each_intel_encoder(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp;
enum port port;
if (encoder->type != INTEL_OUTPUT_DP &&
encoder->type != INTEL_OUTPUT_EDP)
continue;
intel_dp = enc_to_intel_dp(&encoder->base);
port = dp_to_dig_port(intel_dp)->base.port;
WARN(intel_dp->active_pipe == pipe,
"stealing pipe %c power sequencer from active (e)DP port %c\n",
pipe_name(pipe), port_name(port));
if (intel_dp->pps_pipe != pipe)
continue;
DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
pipe_name(pipe), port_name(port));
/* make sure vdd is off before we steal it */
vlv_detach_power_sequencer(intel_dp);
}
}
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
lockdep_assert_held(&dev_priv->pps_mutex);
WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
if (intel_dp->pps_pipe != INVALID_PIPE &&
intel_dp->pps_pipe != crtc->pipe) {
/*
* If another power sequencer was being used on this
* port previously make sure to turn off vdd there while
* we still have control of it.
*/
vlv_detach_power_sequencer(intel_dp);
}
/*
* We may be stealing the power
* sequencer from another port.
*/
vlv_steal_power_sequencer(dev_priv, crtc->pipe);
intel_dp->active_pipe = crtc->pipe;
if (!intel_dp_is_edp(intel_dp))
return;
/* now it's all ours */
intel_dp->pps_pipe = crtc->pipe;
DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
/* init power sequencer on this pipe and port */
intel_dp_init_panel_power_sequencer(intel_dp);
intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
}
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
vlv_phy_pre_encoder_enable(encoder, pipe_config);
intel_enable_dp(encoder, pipe_config, conn_state);
}
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_dp_prepare(encoder, pipe_config);
vlv_phy_pre_pll_enable(encoder, pipe_config);
}
static void chv_pre_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
chv_phy_pre_encoder_enable(encoder, pipe_config);
intel_enable_dp(encoder, pipe_config, conn_state);
/* Second common lane will stay alive on its own now */
chv_phy_release_cl2_override(encoder);
}
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_dp_prepare(encoder, pipe_config);
chv_phy_pre_pll_enable(encoder, pipe_config);
}
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
chv_phy_post_pll_disable(encoder, old_crtc_state);
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
bool
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
{
return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
}
/* These are source-specific values. */
uint8_t
intel_dp_voltage_max(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
enum port port = encoder->port;
if (HAS_DDI(dev_priv))
return intel_ddi_dp_voltage_max(encoder);
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
}
uint8_t
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
enum port port = encoder->port;
if (HAS_DDI(dev_priv)) {
return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_3;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
} else {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
}
}
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
unsigned long demph_reg_value, preemph_reg_value,
uniqtranscale_reg_value;
uint8_t train_set = intel_dp->train_set[0];
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
preemph_reg_value = 0x0004000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B405555;
uniqtranscale_reg_value = 0x552AB83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x5548B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
demph_reg_value = 0x2B245555;
uniqtranscale_reg_value = 0x5560B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
demph_reg_value = 0x2B405555;
uniqtranscale_reg_value = 0x5598DA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
preemph_reg_value = 0x0002000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x5552B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B404848;
uniqtranscale_reg_value = 0x5580B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
preemph_reg_value = 0x0000000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B305555;
uniqtranscale_reg_value = 0x5570B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B2B4040;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
preemph_reg_value = 0x0006000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x1B405555;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
default:
return 0;
}
vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
uniqtranscale_reg_value, 0);
return 0;
}
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
u32 deemph_reg_value, margin_reg_value;
bool uniq_trans_scale = false;
uint8_t train_set = intel_dp->train_set[0];
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 128;
margin_reg_value = 52;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 128;
margin_reg_value = 77;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
deemph_reg_value = 128;
margin_reg_value = 102;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
deemph_reg_value = 128;
margin_reg_value = 154;
uniq_trans_scale = true;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 85;
margin_reg_value = 78;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 85;
margin_reg_value = 116;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
deemph_reg_value = 85;
margin_reg_value = 154;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 64;
margin_reg_value = 104;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 64;
margin_reg_value = 154;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 43;
margin_reg_value = 154;
break;
default:
return 0;
}
break;
default:
return 0;
}
chv_set_phy_signal_level(encoder, deemph_reg_value,
margin_reg_value, uniq_trans_scale);
return 0;
}
static uint32_t
g4x_signal_levels(uint8_t train_set)
{
uint32_t signal_levels = 0;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
default:
signal_levels |= DP_VOLTAGE_0_4;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
signal_levels |= DP_VOLTAGE_0_6;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
signal_levels |= DP_VOLTAGE_0_8;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
signal_levels |= DP_VOLTAGE_1_2;
break;
}
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
default:
signal_levels |= DP_PRE_EMPHASIS_0;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
signal_levels |= DP_PRE_EMPHASIS_3_5;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
signal_levels |= DP_PRE_EMPHASIS_6;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
signal_levels |= DP_PRE_EMPHASIS_9_5;
break;
}
return signal_levels;
}
/* SNB CPU eDP voltage swing and pre-emphasis control */
static uint32_t
snb_cpu_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
}
}
/* IVB CPU eDP voltage swing and pre-emphasis control */
static uint32_t
ivb_cpu_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_400MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
return EDP_LINK_TRAIN_400MV_6DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_600MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_800MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_500MV_0DB_IVB;
}
}
void
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->base.port;
uint32_t signal_levels, mask = 0;
uint8_t train_set = intel_dp->train_set[0];
if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
signal_levels = bxt_signal_levels(intel_dp);
} else if (HAS_DDI(dev_priv)) {
signal_levels = ddi_signal_levels(intel_dp);
mask = DDI_BUF_EMP_MASK;
} else if (IS_CHERRYVIEW(dev_priv)) {
signal_levels = chv_signal_levels(intel_dp);
} else if (IS_VALLEYVIEW(dev_priv)) {
signal_levels = vlv_signal_levels(intel_dp);
} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
signal_levels = ivb_cpu_edp_signal_levels(train_set);
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
} else if (IS_GEN6(dev_priv) && port == PORT_A) {
signal_levels = snb_cpu_edp_signal_levels(train_set);
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
} else {
signal_levels = g4x_signal_levels(train_set);
mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
}
if (mask)
DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
DRM_DEBUG_KMS("Using vswing level %d\n",
train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT);
intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
POSTING_READ(intel_dp->output_reg);
}
void
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
uint8_t dp_train_pat)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
POSTING_READ(intel_dp->output_reg);
}
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->base.port;
uint32_t val;
if (!HAS_DDI(dev_priv))
return;
val = I915_READ(DP_TP_CTL(port));
val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
val |= DP_TP_CTL_LINK_TRAIN_IDLE;
I915_WRITE(DP_TP_CTL(port), val);
/*
* On PORT_A we can have only eDP in SST mode. There the only reason
* we need to set idle transmission mode is to work around a HW issue
* where we enable the pipe while not in idle link-training mode.
* In this case there is requirement to wait for a minimum number of
* idle patterns to be sent.
*/
if (port == PORT_A)
return;
if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
DP_TP_STATUS_IDLE_DONE,
DP_TP_STATUS_IDLE_DONE,
1))
DRM_ERROR("Timed out waiting for DP idle patterns\n");
}
static void
intel_dp_link_down(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
enum port port = encoder->port;
uint32_t DP = intel_dp->DP;
if (WARN_ON(HAS_DDI(dev_priv)))
return;
if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
return;
DRM_DEBUG_KMS("\n");
if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
(HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
DP &= ~DP_LINK_TRAIN_MASK_CPT;
DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
} else {
DP &= ~DP_LINK_TRAIN_MASK;
DP |= DP_LINK_TRAIN_PAT_IDLE;
}
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
/*
* HW workaround for IBX, we need to move the port
* to transcoder A after disabling it to allow the
* matching HDMI port to be enabled on transcoder A.
*/
if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
/*
* We get CPU/PCH FIFO underruns on the other pipe when
* doing the workaround. Sweep them under the rug.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
/* always enable with pattern 1 (as per spec) */
DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
DP_LINK_TRAIN_PAT_1;
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
DP &= ~DP_PORT_EN;
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
}
msleep(intel_dp->panel_power_down_delay);
intel_dp->DP = DP;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
pps_lock(intel_dp);
intel_dp->active_pipe = INVALID_PIPE;
pps_unlock(intel_dp);
}
}
bool
intel_dp_read_dpcd(struct intel_dp *intel_dp)
{
if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
sizeof(intel_dp->dpcd)) < 0)
return false; /* aux transfer failed */
DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv =
to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
/* this function is meant to be called only once */
WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
if (!intel_dp_read_dpcd(intel_dp))
return false;
drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
drm_dp_is_branch(intel_dp->dpcd));
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
/*
* Read the eDP display control registers.
*
* Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
* DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
* set, but require eDP 1.4+ detection (e.g. for supported link rates
* method). The display control registers should read zero if they're
* not supported anyway.
*/
if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
sizeof(intel_dp->edp_dpcd))
DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
intel_dp->edp_dpcd);
/*
* This has to be called after intel_dp->edp_dpcd is filled, PSR checks
* for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
*/
intel_psr_init_dpcd(intel_dp);
/* Read the eDP 1.4+ supported link rates. */
if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
int i;
drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
sink_rates, sizeof(sink_rates));
for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
int val = le16_to_cpu(sink_rates[i]);
if (val == 0)
break;
/* Value read multiplied by 200kHz gives the per-lane
* link rate in kHz. The source rates are, however,
* stored in terms of LS_Clk kHz. The full conversion
* back to symbols is
* (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
*/
intel_dp->sink_rates[i] = (val * 200) / 10;
}
intel_dp->num_sink_rates = i;
}
/*
* Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
* default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
*/
if (intel_dp->num_sink_rates)
intel_dp->use_rate_select = true;
else
intel_dp_set_sink_rates(intel_dp);
intel_dp_set_common_rates(intel_dp);
return true;
}
static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
u8 sink_count;
if (!intel_dp_read_dpcd(intel_dp))
return false;
/* Don't clobber cached eDP rates. */
if (!intel_dp_is_edp(intel_dp)) {
intel_dp_set_sink_rates(intel_dp);
intel_dp_set_common_rates(intel_dp);
}
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
return false;
/*
* Sink count can change between short pulse hpd hence
* a member variable in intel_dp will track any changes
* between short pulse interrupts.
*/
intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
/*
* SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
* a dongle is present but no display. Unless we require to know
* if a dongle is present or not, we don't need to update
* downstream port information. So, an early return here saves
* time from performing other operations which are not required.
*/
if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
return false;
if (!drm_dp_is_branch(intel_dp->dpcd))
return true; /* native DP sink */
if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
return true; /* no per-port downstream info */
if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
intel_dp->downstream_ports,
DP_MAX_DOWNSTREAM_PORTS) < 0)
return false; /* downstream port status fetch failed */
return true;
}
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
u8 mstm_cap;
if (!i915_modparams.enable_dp_mst)
return false;
if (!intel_dp->can_mst)
return false;
if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
return false;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
return false;
return mstm_cap & DP_MST_CAP;
}
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
if (!i915_modparams.enable_dp_mst)
return;
if (!intel_dp->can_mst)
return;
intel_dp->is_mst = intel_dp_can_mst(intel_dp);
if (intel_dp->is_mst)
DRM_DEBUG_KMS("Sink is MST capable\n");
else
DRM_DEBUG_KMS("Sink is not MST capable\n");
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
intel_dp->is_mst);
}
static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state, bool disable_wa)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
u8 buf;
int ret = 0;
int count = 0;
int attempts = 10;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
ret = -EIO;
goto out;
}
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
buf & ~DP_TEST_SINK_START) < 0) {
DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
ret = -EIO;
goto out;
}
do {
intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_TEST_SINK_MISC, &buf) < 0) {
ret = -EIO;
goto out;
}
count = buf & DP_TEST_COUNT_MASK;
} while (--attempts && count);
if (attempts == 0) {
DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
ret = -ETIMEDOUT;
}
out:
if (disable_wa)
hsw_enable_ips(crtc_state);
return ret;
}
static int intel_dp_sink_crc_start(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
u8 buf;
int ret;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
return -EIO;
if (!(buf & DP_TEST_CRC_SUPPORTED))
return -ENOTTY;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
return -EIO;
if (buf & DP_TEST_SINK_START) {
ret = intel_dp_sink_crc_stop(intel_dp, crtc_state, false);
if (ret)
return ret;
}
hsw_disable_ips(crtc_state);
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
buf | DP_TEST_SINK_START) < 0) {
hsw_enable_ips(crtc_state);
return -EIO;
}
intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
return 0;
}
int intel_dp_sink_crc(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, u8 *crc)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
u8 buf;
int count, ret;
int attempts = 6;
ret = intel_dp_sink_crc_start(intel_dp, crtc_state);
if (ret)
return ret;
do {
intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_TEST_SINK_MISC, &buf) < 0) {
ret = -EIO;
goto stop;
}
count = buf & DP_TEST_COUNT_MASK;
} while (--attempts && count == 0);
if (attempts == 0) {
DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
ret = -ETIMEDOUT;
goto stop;
}
if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
ret = -EIO;
goto stop;
}
stop:
intel_dp_sink_crc_stop(intel_dp, crtc_state, true);
return ret;
}
static bool
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
sink_irq_vector) == 1;
}
static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
sink_irq_vector, DP_DPRX_ESI_LEN) ==
DP_DPRX_ESI_LEN;
}
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
int status = 0;
int test_link_rate;
uint8_t test_lane_count, test_link_bw;
/* (DP CTS 1.2)
* 4.3.1.11
*/
/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
&test_lane_count);
if (status <= 0) {
DRM_DEBUG_KMS("Lane count read failed\n");
return DP_TEST_NAK;
}
test_lane_count &= DP_MAX_LANE_COUNT_MASK;
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
&test_link_bw);
if (status <= 0) {
DRM_DEBUG_KMS("Link Rate read failed\n");
return DP_TEST_NAK;
}
test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
/* Validate the requested link rate and lane count */
if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
test_lane_count))
return DP_TEST_NAK;
intel_dp->compliance.test_lane_count = test_lane_count;
intel_dp->compliance.test_link_rate = test_link_rate;
return DP_TEST_ACK;
}
static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
uint8_t test_pattern;
uint8_t test_misc;
__be16 h_width, v_height;
int status = 0;
/* Read the TEST_PATTERN (DP CTS 3.1.5) */
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
&test_pattern);
if (status <= 0) {
DRM_DEBUG_KMS("Test pattern read failed\n");
return DP_TEST_NAK;
}
if (test_pattern != DP_COLOR_RAMP)
return DP_TEST_NAK;
status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
&h_width, 2);
if (status <= 0) {
DRM_DEBUG_KMS("H Width read failed\n");
return DP_TEST_NAK;
}
status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
&v_height, 2);
if (status <= 0) {
DRM_DEBUG_KMS("V Height read failed\n");
return DP_TEST_NAK;
}
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
&test_misc);
if (status <= 0) {
DRM_DEBUG_KMS("TEST MISC read failed\n");
return DP_TEST_NAK;
}
if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
return DP_TEST_NAK;
if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
return DP_TEST_NAK;
switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
case DP_TEST_BIT_DEPTH_6:
intel_dp->compliance.test_data.bpc = 6;
break;
case DP_TEST_BIT_DEPTH_8:
intel_dp->compliance.test_data.bpc = 8;
break;
default:
return DP_TEST_NAK;
}
intel_dp->compliance.test_data.video_pattern = test_pattern;
intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
/* Set test active flag here so userspace doesn't interrupt things */
intel_dp->compliance.test_active = 1;
return DP_TEST_ACK;
}
static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
{
uint8_t test_result = DP_TEST_ACK;
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct drm_connector *connector = &intel_connector->base;
if (intel_connector->detect_edid == NULL ||
connector->edid_corrupt ||
intel_dp->aux.i2c_defer_count > 6) {
/* Check EDID read for NACKs, DEFERs and corruption
* (DP CTS 1.2 Core r1.1)
* 4.2.2.4 : Failed EDID read, I2C_NAK
* 4.2.2.5 : Failed EDID read, I2C_DEFER
* 4.2.2.6 : EDID corruption detected
* Use failsafe mode for all cases
*/
if (intel_dp->aux.i2c_nack_count > 0 ||
intel_dp->aux.i2c_defer_count > 0)
DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
intel_dp->aux.i2c_nack_count,
intel_dp->aux.i2c_defer_count);
intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
} else {
struct edid *block = intel_connector->detect_edid;
/* We have to write the checksum
* of the last block read
*/
block += intel_connector->detect_edid->extensions;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
block->checksum) <= 0)
DRM_DEBUG_KMS("Failed to write EDID checksum\n");
test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
}
/* Set test active flag here so userspace doesn't interrupt things */
intel_dp->compliance.test_active = 1;
return test_result;
}
static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
{
uint8_t test_result = DP_TEST_NAK;
return test_result;
}
static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
uint8_t response = DP_TEST_NAK;
uint8_t request = 0;
int status;
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
if (status <= 0) {
DRM_DEBUG_KMS("Could not read test request from sink\n");
goto update_status;
}
switch (request) {
case DP_TEST_LINK_TRAINING:
DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
response = intel_dp_autotest_link_training(intel_dp);
break;
case DP_TEST_LINK_VIDEO_PATTERN:
DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
response = intel_dp_autotest_video_pattern(intel_dp);
break;
case DP_TEST_LINK_EDID_READ:
DRM_DEBUG_KMS("EDID test requested\n");
response = intel_dp_autotest_edid(intel_dp);
break;
case DP_TEST_LINK_PHY_TEST_PATTERN:
DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
response = intel_dp_autotest_phy_pattern(intel_dp);
break;
default:
DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
break;
}
if (response & DP_TEST_ACK)
intel_dp->compliance.test_type = request;
update_status:
status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
if (status <= 0)
DRM_DEBUG_KMS("Could not write test response to sink\n");
}
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
bool bret;
if (intel_dp->is_mst) {
u8 esi[DP_DPRX_ESI_LEN] = { 0 };
int ret = 0;
int retry;
bool handled;
bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
if (bret == true) {
/* check link status - esi[10] = 0x200c */
if (intel_dp->active_mst_links &&
!drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
intel_dp_start_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
}
DRM_DEBUG_KMS("got esi %3ph\n", esi);
ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
if (handled) {
for (retry = 0; retry < 3; retry++) {
int wret;
wret = drm_dp_dpcd_write(&intel_dp->aux,
DP_SINK_COUNT_ESI+1,
&esi[1], 3);
if (wret == 3) {
break;
}
}
bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
if (bret == true) {
DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
goto go_again;
}
} else
ret = 0;
return ret;
} else {
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
/* send a hotplug event */
drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
}
}
return -EINVAL;
}
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
u8 link_status[DP_LINK_STATUS_SIZE];
if (!intel_dp->link_trained)
return false;
if (!intel_dp_get_link_status(intel_dp, link_status))
return false;
/*
* Validate the cached values of intel_dp->link_rate and
* intel_dp->lane_count before attempting to retrain.
*/
if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
intel_dp->lane_count))
return false;
/* Retrain if Channel EQ or CR not ok */
return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}
/*
* If display is now connected check links status,
* there has been known issues of link loss triggering
* long pulse.
*
* Some sinks (eg. ASUS PB287Q) seem to perform some
* weird HPD ping pong during modesets. So we can apparently
* end up with HPD going low during a modeset, and then
* going back up soon after. And once that happens we must
* retrain the link to get a picture. That's in case no
* userspace component reacted to intermittent HPD dip.
*/
int intel_dp_retrain_link(struct intel_encoder *encoder,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_connector *connector = intel_dp->attached_connector;
struct drm_connector_state *conn_state;
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int ret;
/* FIXME handle the MST connectors as well */
if (!connector || connector->base.status != connector_status_connected)
return 0;
ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
ctx);
if (ret)
return ret;
conn_state = connector->base.state;
crtc = to_intel_crtc(conn_state->crtc);
if (!crtc)
return 0;
ret = drm_modeset_lock(&crtc->base.mutex, ctx);
if (ret)
return ret;
crtc_state = to_intel_crtc_state(crtc->base.state);
WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
if (!crtc_state->base.active)
return 0;
if (conn_state->commit &&
!try_wait_for_completion(&conn_state->commit->hw_done))
return 0;
if (!intel_dp_needs_link_retrain(intel_dp))
return 0;
/* Suppress underruns caused by re-training */
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
if (crtc->config->has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv,
intel_crtc_pch_transcoder(crtc), false);
intel_dp_start_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
/* Keep underrun reporting disabled until things are stable */
intel_wait_for_vblank(dev_priv, crtc->pipe);
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
if (crtc->config->has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv,
intel_crtc_pch_transcoder(crtc), true);
return 0;
}
/*
* If display is now connected check links status,
* there has been known issues of link loss triggering
* long pulse.
*
* Some sinks (eg. ASUS PB287Q) seem to perform some
* weird HPD ping pong during modesets. So we can apparently
* end up with HPD going low during a modeset, and then
* going back up soon after. And once that happens we must
* retrain the link to get a picture. That's in case no
* userspace component reacted to intermittent HPD dip.
*/
static bool intel_dp_hotplug(struct intel_encoder *encoder,
struct intel_connector *connector)
{
struct drm_modeset_acquire_ctx ctx;
bool changed;
int ret;
changed = intel_encoder_hotplug(encoder, connector);
drm_modeset_acquire_init(&ctx, 0);
for (;;) {
ret = intel_dp_retrain_link(encoder, &ctx);
if (ret == -EDEADLK) {
drm_modeset_backoff(&ctx);
continue;
}
break;
}
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
return changed;
}
/*
* According to DP spec
* 5.1.2:
* 1. Read DPCD
* 2. Configure link according to Receiver Capabilities
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
* 4. Check link status on receipt of hot-plug interrupt
*
* intel_dp_short_pulse - handles short pulse interrupts
* when full detection is not required.
* Returns %true if short pulse is handled and full detection
* is NOT required and %false otherwise.
*/
static bool
intel_dp_short_pulse(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
u8 sink_irq_vector = 0;
u8 old_sink_count = intel_dp->sink_count;
bool ret;
/*
* Clearing compliance test variables to allow capturing
* of values for next automated test request.
*/
memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
/*
* Now read the DPCD to see if it's actually running
* If the current value of sink count doesn't match with
* the value that was stored earlier or dpcd read failed
* we need to do full detection
*/
ret = intel_dp_get_dpcd(intel_dp);
if ((old_sink_count != intel_dp->sink_count) || !ret) {
/* No need to proceed if we are going to do full detect */
return false;
}
/* Try to read the source of the interrupt */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
sink_irq_vector != 0) {
/* Clear interrupt source */
drm_dp_dpcd_writeb(&intel_dp->aux,
DP_DEVICE_SERVICE_IRQ_VECTOR,
sink_irq_vector);
if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
intel_dp_handle_test_request(intel_dp);
if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
}
/* defer to the hotplug work for link retraining if needed */
if (intel_dp_needs_link_retrain(intel_dp))
return false;
if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
/* Send a Hotplug Uevent to userspace to start modeset */
drm_kms_helper_hotplug_event(&dev_priv->drm);
}
return true;
}
/* XXX this is probably wrong for multiple downstream ports */
static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
{
struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
uint8_t *dpcd = intel_dp->dpcd;
uint8_t type;
if (lspcon->active)
lspcon_resume(lspcon);
if (!intel_dp_get_dpcd(intel_dp))
return connector_status_disconnected;
if (intel_dp_is_edp(intel_dp))
return connector_status_connected;
/* if there's no downstream port, we're done */
if (!drm_dp_is_branch(dpcd))
return connector_status_connected;
/* If we're HPD-aware, SINK_COUNT changes dynamically */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
return intel_dp->sink_count ?
connector_status_connected : connector_status_disconnected;
}
if (intel_dp_can_mst(intel_dp))
return connector_status_connected;
/* If no HPD, poke DDC gently */
if (drm_probe_ddc(&intel_dp->aux.ddc))
return connector_status_connected;
/* Well we tried, say unknown for unreliable port types */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
if (type == DP_DS_PORT_TYPE_VGA ||
type == DP_DS_PORT_TYPE_NON_EDID)
return connector_status_unknown;
} else {
type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
DP_DWN_STRM_PORT_TYPE_MASK;
if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
type == DP_DWN_STRM_PORT_TYPE_OTHER)
return connector_status_unknown;
}
/* Anything else is out of spec, warn and ignore */
DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
return connector_status_disconnected;
}
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
enum drm_connector_status status;
status = intel_panel_detect(dev_priv);
if (status == connector_status_unknown)
status = connector_status_connected;
return status;
}
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_B:
bit = SDE_PORTB_HOTPLUG;
break;
case HPD_PORT_C:
bit = SDE_PORTC_HOTPLUG;
break;
case HPD_PORT_D:
bit = SDE_PORTD_HOTPLUG;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return I915_READ(SDEISR) & bit;
}
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_B:
bit = SDE_PORTB_HOTPLUG_CPT;
break;
case HPD_PORT_C:
bit = SDE_PORTC_HOTPLUG_CPT;
break;
case HPD_PORT_D:
bit = SDE_PORTD_HOTPLUG_CPT;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return I915_READ(SDEISR) & bit;
}
static bool spt_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_A:
bit = SDE_PORTA_HOTPLUG_SPT;
break;
case HPD_PORT_E:
bit = SDE_PORTE_HOTPLUG_SPT;
break;
default:
return cpt_digital_port_connected(encoder);
}
return I915_READ(SDEISR) & bit;
}
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_B:
bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
break;
case HPD_PORT_C:
bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
break;
case HPD_PORT_D:
bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return I915_READ(PORT_HOTPLUG_STAT) & bit;
}
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_B:
bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
break;
case HPD_PORT_C:
bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
break;
case HPD_PORT_D:
bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return I915_READ(PORT_HOTPLUG_STAT) & bit;
}
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (encoder->hpd_pin == HPD_PORT_A)
return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
else
return ibx_digital_port_connected(encoder);
}
static bool snb_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (encoder->hpd_pin == HPD_PORT_A)
return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
else
return cpt_digital_port_connected(encoder);
}
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (encoder->hpd_pin == HPD_PORT_A)
return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
else
return cpt_digital_port_connected(encoder);
}
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (encoder->hpd_pin == HPD_PORT_A)
return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
else
return cpt_digital_port_connected(encoder);
}
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_A:
bit = BXT_DE_PORT_HP_DDIA;
break;
case HPD_PORT_B:
bit = BXT_DE_PORT_HP_DDIB;
break;
case HPD_PORT_C:
bit = BXT_DE_PORT_HP_DDIC;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return I915_READ(GEN8_DE_PORT_ISR) & bit;
}
/*
* intel_digital_port_connected - is the specified port connected?
* @encoder: intel_encoder
*
* Return %true if port is connected, %false otherwise.
*/
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (HAS_GMCH_DISPLAY(dev_priv)) {
if (IS_GM45(dev_priv))
return gm45_digital_port_connected(encoder);
else
return g4x_digital_port_connected(encoder);
}
if (IS_GEN5(dev_priv))
return ilk_digital_port_connected(encoder);
else if (IS_GEN6(dev_priv))
return snb_digital_port_connected(encoder);
else if (IS_GEN7(dev_priv))
return ivb_digital_port_connected(encoder);
else if (IS_GEN8(dev_priv))
return bdw_digital_port_connected(encoder);
else if (IS_GEN9_LP(dev_priv))
return bxt_digital_port_connected(encoder);
else
return spt_digital_port_connected(encoder);
}
static struct edid *
intel_dp_get_edid(struct intel_dp *intel_dp)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
/* use cached edid if we have one */
if (intel_connector->edid) {
/* invalid edid */
if (IS_ERR(intel_connector->edid))
return NULL;
return drm_edid_duplicate(intel_connector->edid);
} else
return drm_get_edid(&intel_connector->base,
&intel_dp->aux.ddc);
}
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct edid *edid;
intel_dp_unset_edid(intel_dp);
edid = intel_dp_get_edid(intel_dp);
intel_connector->detect_edid = edid;
intel_dp->has_audio = drm_detect_monitor_audio(edid);
}
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
kfree(intel_connector->detect_edid);
intel_connector->detect_edid = NULL;
intel_dp->has_audio = false;
}
static int
intel_dp_long_pulse(struct intel_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
enum drm_connector_status status;
u8 sink_irq_vector = 0;
WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
/* Can't disconnect eDP, but you can close the lid... */
if (intel_dp_is_edp(intel_dp))
status = edp_detect(intel_dp);
else if (intel_digital_port_connected(&dp_to_dig_port(intel_dp)->base))
status = intel_dp_detect_dpcd(intel_dp);
else
status = connector_status_disconnected;
if (status == connector_status_disconnected) {
memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
if (intel_dp->is_mst) {
DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
intel_dp->is_mst,
intel_dp->mst_mgr.mst_state);
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
intel_dp->is_mst);
}
goto out;
}
if (intel_dp->reset_link_params) {
/* Initial max link lane count */
intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
/* Initial max link rate */
intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
intel_dp->reset_link_params = false;
}
intel_dp_print_rates(intel_dp);
drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
drm_dp_is_branch(intel_dp->dpcd));
intel_dp_configure_mst(intel_dp);
if (intel_dp->is_mst) {
/*
* If we are in MST mode then this connector
* won't appear connected or have anything
* with EDID on it
*/
status = connector_status_disconnected;
goto out;
}
/*
* Clearing NACK and defer counts to get their exact values
* while reading EDID which are required by Compliance tests
* 4.2.2.4 and 4.2.2.5
*/
intel_dp->aux.i2c_nack_count = 0;
intel_dp->aux.i2c_defer_count = 0;
intel_dp_set_edid(intel_dp);
if (intel_dp_is_edp(intel_dp) || connector->detect_edid)
status = connector_status_connected;
intel_dp->detect_done = true;
/* Try to read the source of the interrupt */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
sink_irq_vector != 0) {
/* Clear interrupt source */
drm_dp_dpcd_writeb(&intel_dp->aux,
DP_DEVICE_SERVICE_IRQ_VECTOR,
sink_irq_vector);
if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
intel_dp_handle_test_request(intel_dp);
if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
}
out:
if (status != connector_status_connected && !intel_dp->is_mst)
intel_dp_unset_edid(intel_dp);
intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
return status;
}
static int
intel_dp_detect(struct drm_connector *connector,
struct drm_modeset_acquire_ctx *ctx,
bool force)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
int status = connector->status;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
/* If full detect is not performed yet, do a full detect */
if (!intel_dp->detect_done) {
struct drm_crtc *crtc;
int ret;
crtc = connector->state->crtc;
if (crtc) {
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
return ret;
}
status = intel_dp_long_pulse(intel_dp->attached_connector);
}
intel_dp->detect_done = false;
return status;
}
static void
intel_dp_force(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
intel_dp_unset_edid(intel_dp);
if (connector->status != connector_status_connected)
return;
intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
intel_dp_set_edid(intel_dp);
intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
}
static int intel_dp_get_modes(struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
struct edid *edid;
edid = intel_connector->detect_edid;
if (edid) {
int ret = intel_connector_update_modes(connector, edid);
if (ret)
return ret;
}
/* if eDP has no EDID, fall back to fixed mode */
if (intel_dp_is_edp(intel_attached_dp(connector)) &&
intel_connector->panel.fixed_mode) {
struct drm_display_mode *mode;
mode = drm_mode_duplicate(connector->dev,
intel_connector->panel.fixed_mode);
if (mode) {
drm_mode_probed_add(connector, mode);
return 1;
}
}
return 0;
}
static int
intel_dp_connector_register(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
int ret;
ret = intel_connector_register(connector);
if (ret)
return ret;
i915_debugfs_connector_add(connector);
DRM_DEBUG_KMS("registering %s bus for %s\n",
intel_dp->aux.name, connector->kdev->kobj.name);
intel_dp->aux.dev = connector->kdev;
return drm_dp_aux_register(&intel_dp->aux);
}
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
intel_connector_unregister(connector);
}
static void
intel_dp_connector_destroy(struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
kfree(intel_connector->detect_edid);
if (!IS_ERR_OR_NULL(intel_connector->edid))
kfree(intel_connector->edid);
/*
* Can't call intel_dp_is_edp() since the encoder may have been
* destroyed already.
*/
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
intel_panel_fini(&intel_connector->panel);
drm_connector_cleanup(connector);
kfree(connector);
}
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &intel_dig_port->dp;
intel_dp_mst_encoder_cleanup(intel_dig_port);
if (intel_dp_is_edp(intel_dp)) {
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
/*
* vdd might still be enabled do to the delayed vdd off.
* Make sure vdd is actually turned off here.
*/
pps_lock(intel_dp);
edp_panel_vdd_off_sync(intel_dp);
pps_unlock(intel_dp);
if (intel_dp->edp_notifier.notifier_call) {
unregister_reboot_notifier(&intel_dp->edp_notifier);
intel_dp->edp_notifier.notifier_call = NULL;
}
}
intel_dp_aux_fini(intel_dp);
drm_encoder_cleanup(encoder);
kfree(intel_dig_port);
}
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
if (!intel_dp_is_edp(intel_dp))
return;
/*
* vdd might still be enabled do to the delayed vdd off.
* Make sure vdd is actually turned off here.
*/
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
pps_lock(intel_dp);
edp_panel_vdd_off_sync(intel_dp);
pps_unlock(intel_dp);
}
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
u8 *an)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
static const struct drm_dp_aux_msg msg = {
.request = DP_AUX_NATIVE_WRITE,
.address = DP_AUX_HDCP_AKSV,
.size = DRM_HDCP_KSV_LEN,
};
uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
ssize_t dpcd_ret;
int ret;
/* Output An first, that's easy */
dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
an, DRM_HDCP_AN_LEN);
if (dpcd_ret != DRM_HDCP_AN_LEN) {
DRM_ERROR("Failed to write An over DP/AUX (%zd)\n", dpcd_ret);
return dpcd_ret >= 0 ? -EIO : dpcd_ret;
}
/*
* Since Aksv is Oh-So-Secret, we can't access it in software. So in
* order to get it on the wire, we need to create the AUX header as if
* we were writing the data, and then tickle the hardware to output the
* data once the header is sent out.
*/
intel_dp_aux_header(txbuf, &msg);
ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
rxbuf, sizeof(rxbuf),
DP_AUX_CH_CTL_AUX_AKSV_SELECT);
if (ret < 0) {
DRM_ERROR("Write Aksv over DP/AUX failed (%d)\n", ret);
return ret;
} else if (ret == 0) {
DRM_ERROR("Aksv write over DP/AUX was empty\n");
return -EIO;
}
reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO;
}
static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
u8 *bksv)
{
ssize_t ret;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
DRM_HDCP_KSV_LEN);
if (ret != DRM_HDCP_KSV_LEN) {
DRM_ERROR("Read Bksv from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
u8 *bstatus)
{
ssize_t ret;
/*
* For some reason the HDMI and DP HDCP specs call this register
* definition by different names. In the HDMI spec, it's called BSTATUS,
* but in DP it's called BINFO.
*/
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
bstatus, DRM_HDCP_BSTATUS_LEN);
if (ret != DRM_HDCP_BSTATUS_LEN) {
DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
u8 *bcaps)
{
ssize_t ret;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
bcaps, 1);
if (ret != 1) {
DRM_ERROR("Read bcaps from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
bool *repeater_present)
{
ssize_t ret;
u8 bcaps;
ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
if (ret)
return ret;
*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
return 0;
}
static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
u8 *ri_prime)
{
ssize_t ret;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
ri_prime, DRM_HDCP_RI_LEN);
if (ret != DRM_HDCP_RI_LEN) {
DRM_ERROR("Read Ri' from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
bool *ksv_ready)
{
ssize_t ret;
u8 bstatus;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
&bstatus, 1);
if (ret != 1) {
DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
*ksv_ready = bstatus & DP_BSTATUS_READY;
return 0;
}
static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
int num_downstream, u8 *ksv_fifo)
{
ssize_t ret;
int i;
/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
for (i = 0; i < num_downstream; i += 3) {
size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
DP_AUX_HDCP_KSV_FIFO,
ksv_fifo + i * DRM_HDCP_KSV_LEN,
len);
if (ret != len) {
DRM_ERROR("Read ksv[%d] from DP/AUX failed (%zd)\n", i,
ret);
return ret >= 0 ? -EIO : ret;
}
}
return 0;
}
static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
int i, u32 *part)
{
ssize_t ret;
if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
return -EINVAL;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
DP_AUX_HDCP_V_PRIME(i), part,
DRM_HDCP_V_PRIME_PART_LEN);
if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
DRM_ERROR("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
bool enable)
{
/* Not used for single stream DisplayPort setups */
return 0;
}
static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
ssize_t ret;
u8 bstatus;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
&bstatus, 1);
if (ret != 1) {
DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
return false;
}
return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
bool *hdcp_capable)
{
ssize_t ret;
u8 bcaps;
ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
if (ret)
return ret;
*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
return 0;
}
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
.write_an_aksv = intel_dp_hdcp_write_an_aksv,
.read_bksv = intel_dp_hdcp_read_bksv,
.read_bstatus = intel_dp_hdcp_read_bstatus,
.repeater_present = intel_dp_hdcp_repeater_present,
.read_ri_prime = intel_dp_hdcp_read_ri_prime,
.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
.toggle_signalling = intel_dp_hdcp_toggle_signalling,
.check_link = intel_dp_hdcp_check_link,
.hdcp_capable = intel_dp_hdcp_capable,
};
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
lockdep_assert_held(&dev_priv->pps_mutex);
if (!edp_have_panel_vdd(intel_dp))
return;
/*
* The VDD bit needs a power domain reference, so if the bit is
* already enabled when we boot or resume, grab this reference and
* schedule a vdd off, so we don't hold on to the reference
* indefinitely.
*/
DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
edp_panel_vdd_schedule_off(intel_dp);
}
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
enum pipe pipe;
if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
encoder->port, &pipe))
return pipe;
return INVALID_PIPE;
}
void intel_dp_encoder_reset(struct drm_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
if (!HAS_DDI(dev_priv))
intel_dp->DP = I915_READ(intel_dp->output_reg);
if (lspcon->active)
lspcon_resume(lspcon);
intel_dp->reset_link_params = true;
pps_lock(intel_dp);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
intel_dp->active_pipe = vlv_active_pipe(intel_dp);
if (intel_dp_is_edp(intel_dp)) {
/* Reinit the power sequencer, in case BIOS did something with it. */
intel_dp_pps_init(intel_dp);
intel_edp_panel_vdd_sanitize(intel_dp);
}
pps_unlock(intel_dp);
}
static const struct drm_connector_funcs intel_dp_connector_funcs = {
.force = intel_dp_force,
.fill_modes = drm_helper_probe_single_connector_modes,
.atomic_get_property = intel_digital_connector_atomic_get_property,
.atomic_set_property = intel_digital_connector_atomic_set_property,
.late_register = intel_dp_connector_register,
.early_unregister = intel_dp_connector_unregister,
.destroy = intel_dp_connector_destroy,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = intel_digital_connector_duplicate_state,
};
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
.detect_ctx = intel_dp_detect,
.get_modes = intel_dp_get_modes,
.mode_valid = intel_dp_mode_valid,
.atomic_check = intel_digital_connector_atomic_check,
};
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
.reset = intel_dp_encoder_reset,
.destroy = intel_dp_encoder_destroy,
};
enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
enum irqreturn ret = IRQ_NONE;
if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
/*
* vdd off can generate a long pulse on eDP which
* would require vdd on to handle it, and thus we
* would end up in an endless cycle of
* "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
*/
DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
port_name(intel_dig_port->base.port));
return IRQ_HANDLED;
}
DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
port_name(intel_dig_port->base.port),
long_hpd ? "long" : "short");
if (long_hpd) {
intel_dp->reset_link_params = true;
intel_dp->detect_done = false;
return IRQ_NONE;
}
intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
if (intel_dp->is_mst) {
if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
/*
* If we were in MST mode, and device is not
* there, get out of MST mode
*/
DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
intel_dp->is_mst);
intel_dp->detect_done = false;
goto put_power;
}
}
if (!intel_dp->is_mst) {
bool handled;
handled = intel_dp_short_pulse(intel_dp);
/* Short pulse can signify loss of hdcp authentication */
intel_hdcp_check_link(intel_dp->attached_connector);
if (!handled) {
intel_dp->detect_done = false;
goto put_power;
}
}
ret = IRQ_HANDLED;
put_power:
intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
return ret;
}
/* check the VBT to see whether the eDP is on another port */
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
{
/*
* eDP not supported on g4x. so bail out early just
* for a bit extra safety in case the VBT is bonkers.
*/
if (INTEL_GEN(dev_priv) < 5)
return false;
if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
return true;
return intel_bios_is_port_edp(dev_priv, port);
}
static void
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
enum port port = dp_to_dig_port(intel_dp)->base.port;
if (!IS_G4X(dev_priv) && port != PORT_A)
intel_attach_force_audio_property(connector);
intel_attach_broadcast_rgb_property(connector);
if (intel_dp_is_edp(intel_dp)) {
u32 allowed_scalers;
allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
if (!HAS_GMCH_DISPLAY(dev_priv))
allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
}
}
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
intel_dp->panel_power_off_time = ktime_get_boottime();
intel_dp->last_power_on = jiffies;
intel_dp->last_backlight_off = jiffies;
}
static void
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
struct pps_registers regs;
intel_pps_get_registers(intel_dp, &regs);
/* Workaround: Need to write PP_CONTROL with the unlock key as
* the very first thing. */
pp_ctl = ironlake_get_pp_control(intel_dp);
pp_on = I915_READ(regs.pp_on);
pp_off = I915_READ(regs.pp_off);
if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
!HAS_PCH_ICP(dev_priv)) {
I915_WRITE(regs.pp_ctrl, pp_ctl);
pp_div = I915_READ(regs.pp_div);
}
/* Pull timing values out of registers */
seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
PANEL_POWER_UP_DELAY_SHIFT;
seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
PANEL_LIGHT_ON_DELAY_SHIFT;
seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
PANEL_LIGHT_OFF_DELAY_SHIFT;
seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
PANEL_POWER_DOWN_DELAY_SHIFT;
if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
HAS_PCH_ICP(dev_priv)) {
seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
} else {
seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
}
}
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
state_name,
seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}
static void
intel_pps_verify_state(struct intel_dp *intel_dp)
{
struct edp_power_seq hw;
struct edp_power_seq *sw = &intel_dp->pps_delays;
intel_pps_readout_hw_state(intel_dp, &hw);
if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
DRM_ERROR("PPS state mismatch\n");
intel_pps_dump_state("sw", sw);
intel_pps_dump_state("hw", &hw);
}
}
static void
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
struct edp_power_seq cur, vbt, spec,
*final = &intel_dp->pps_delays;
lockdep_assert_held(&dev_priv->pps_mutex);
/* already initialized? */
if (final->t11_t12 != 0)
return;
intel_pps_readout_hw_state(intel_dp, &cur);
intel_pps_dump_state("cur", &cur);
vbt = dev_priv->vbt.edp.pps;
/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
* of 500ms appears to be too short. Ocassionally the panel
* just fails to power back on. Increasing the delay to 800ms
* seems sufficient to avoid this problem.
*/
if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
vbt.t11_t12);
}
/* T11_T12 delay is special and actually in units of 100ms, but zero
* based in the hw (so we need to add 100 ms). But the sw vbt
* table multiplies it with 1000 to make it in units of 100usec,
* too. */
vbt.t11_t12 += 100 * 10;
/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
* our hw here, which are all in 100usec. */
spec.t1_t3 = 210 * 10;
spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
spec.t10 = 500 * 10;
/* This one is special and actually in units of 100ms, but zero
* based in the hw (so we need to add 100 ms). But the sw vbt
* table multiplies it with 1000 to make it in units of 100usec,
* too. */
spec.t11_t12 = (510 + 100) * 10;
intel_pps_dump_state("vbt", &vbt);
/* Use the max of the register settings and vbt. If both are
* unset, fall back to the spec limits. */
#define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
spec.field : \
max(cur.field, vbt.field))
assign_final(t1_t3);
assign_final(t8);
assign_final(t9);
assign_final(t10);
assign_final(t11_t12);
#undef assign_final
#define get_delay(field) (DIV_ROUND_UP(final->field, 10))
intel_dp->panel_power_up_delay = get_delay(t1_t3);
intel_dp->backlight_on_delay = get_delay(t8);
intel_dp->backlight_off_delay = get_delay(t9);
intel_dp->panel_power_down_delay = get_delay(t10);
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
intel_dp->panel_power_cycle_delay);
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
/*
* We override the HW backlight delays to 1 because we do manual waits
* on them. For T8, even BSpec recommends doing it. For T9, if we
* don't do this, we'll end up waiting for the backlight off delay
* twice: once when we do the manual sleep, and once when we disable
* the panel and wait for the PP_STATUS bit to become zero.
*/
final->t8 = 1;
final->t9 = 1;
/*
* HW has only a 100msec granularity for t11_t12 so round it up
* accordingly.
*/
final->t11_t12 = roundup(final->t11_t12, 100 * 10);
}
static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
bool force_disable_vdd)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
u32 pp_on, pp_off, pp_div, port_sel = 0;
int div = dev_priv->rawclk_freq / 1000;
struct pps_registers regs;
enum port port = dp_to_dig_port(intel_dp)->base.port;
const struct edp_power_seq *seq = &intel_dp->pps_delays;
lockdep_assert_held(&dev_priv->pps_mutex);
intel_pps_get_registers(intel_dp, &regs);
/*
* On some VLV machines the BIOS can leave the VDD
* enabled even on power sequencers which aren't
* hooked up to any port. This would mess up the
* power domain tracking the first time we pick
* one of these power sequencers for use since
* edp_panel_vdd_on() would notice that the VDD was
* already on and therefore wouldn't grab the power
* domain reference. Disable VDD first to avoid this.
* This also avoids spuriously turning the VDD on as
* soon as the new power sequencer gets initialized.
*/
if (force_disable_vdd) {
u32 pp = ironlake_get_pp_control(intel_dp);
WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
if (pp & EDP_FORCE_VDD)
DRM_DEBUG_KMS("VDD already on, disabling first\n");
pp &= ~EDP_FORCE_VDD;
I915_WRITE(regs.pp_ctrl, pp);
}
pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
(seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
/* Compute the divisor for the pp clock, simply match the Bspec
* formula. */
if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
HAS_PCH_ICP(dev_priv)) {
pp_div = I915_READ(regs.pp_ctrl);
pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
<< BXT_POWER_CYCLE_DELAY_SHIFT);
} else {
pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
<< PANEL_POWER_CYCLE_DELAY_SHIFT);
}
/* Haswell doesn't have any port selection bits for the panel
* power sequencer any more. */
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
port_sel = PANEL_PORT_SELECT_VLV(port);
} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
switch (port) {
case PORT_A:
port_sel = PANEL_PORT_SELECT_DPA;
break;
case PORT_C:
port_sel = PANEL_PORT_SELECT_DPC;
break;
case PORT_D:
port_sel = PANEL_PORT_SELECT_DPD;
break;
default:
MISSING_CASE(port);
break;
}
}
pp_on |= port_sel;
I915_WRITE(regs.pp_on, pp_on);
I915_WRITE(regs.pp_off, pp_off);
if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
HAS_PCH_ICP(dev_priv))
I915_WRITE(regs.pp_ctrl, pp_div);
else
I915_WRITE(regs.pp_div, pp_div);
DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
I915_READ(regs.pp_on),
I915_READ(regs.pp_off),
(IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
HAS_PCH_ICP(dev_priv)) ?
(I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
I915_READ(regs.pp_div));
}
static void intel_dp_pps_init(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
vlv_initial_power_sequencer_setup(intel_dp);
} else {
intel_dp_init_panel_power_sequencer(intel_dp);
intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
}
}
/**
* intel_dp_set_drrs_state - program registers for RR switch to take effect
* @dev_priv: i915 device
* @crtc_state: a pointer to the active intel_crtc_state
* @refresh_rate: RR to be programmed
*
* This function gets called when refresh rate (RR) has to be changed from
* one frequency to another. Switches can be between high and low RR
* supported by the panel or to any other RR based on media playback (in
* this case, RR value needs to be passed from user space).
*
* The caller of this function needs to take a lock on dev_priv->drrs.
*/
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
const struct intel_crtc_state *crtc_state,
int refresh_rate)
{
struct intel_encoder *encoder;
struct intel_digital_port *dig_port = NULL;
struct intel_dp *intel_dp = dev_priv->drrs.dp;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
if (refresh_rate <= 0) {
DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
return;
}
if (intel_dp == NULL) {
DRM_DEBUG_KMS("DRRS not supported.\n");
return;
}
dig_port = dp_to_dig_port(intel_dp);
encoder = &dig_port->base;
if (!intel_crtc) {
DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
return;
}
if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
return;
}
if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
refresh_rate)
index = DRRS_LOW_RR;
if (index == dev_priv->drrs.refresh_rate_type) {
DRM_DEBUG_KMS(
"DRRS requested for previously set RR...ignoring\n");
return;
}
if (!crtc_state->base.active) {
DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
return;
}
if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
switch (index) {
case DRRS_HIGH_RR:
intel_dp_set_m_n(intel_crtc, M1_N1);
break;
case DRRS_LOW_RR:
intel_dp_set_m_n(intel_crtc, M2_N2);
break;
case DRRS_MAX_RR:
default:
DRM_ERROR("Unsupported refreshrate type\n");
}
} else if (INTEL_GEN(dev_priv) > 6) {
i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
u32 val;
val = I915_READ(reg);
if (index > DRRS_HIGH_RR) {
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
else
val |= PIPECONF_EDP_RR_MODE_SWITCH;
} else {
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
else
val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
}
I915_WRITE(reg, val);
}
dev_priv->drrs.refresh_rate_type = index;
DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}
/**
* intel_edp_drrs_enable - init drrs struct if supported
* @intel_dp: DP struct
* @crtc_state: A pointer to the active crtc state.
*
* Initializes frontbuffer_bits and drrs.dp
*/
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
if (!crtc_state->has_drrs) {
DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
return;
}
if (dev_priv->psr.enabled) {
DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
return;
}
mutex_lock(&dev_priv->drrs.mutex);
if (WARN_ON(dev_priv->drrs.dp)) {
DRM_ERROR("DRRS already enabled\n");
goto unlock;
}
dev_priv->drrs.busy_frontbuffer_bits = 0;
dev_priv->drrs.dp = intel_dp;
unlock:
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* intel_edp_drrs_disable - Disable DRRS
* @intel_dp: DP struct
* @old_crtc_state: Pointer to old crtc_state.
*
*/
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
if (!old_crtc_state->has_drrs)
return;
mutex_lock(&dev_priv->drrs.mutex);
if (!dev_priv->drrs.dp) {
mutex_unlock(&dev_priv->drrs.mutex);
return;
}
if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
intel_dp_set_drrs_state(dev_priv, old_crtc_state,
intel_dp->attached_connector->panel.fixed_mode->vrefresh);
dev_priv->drrs.dp = NULL;
mutex_unlock(&dev_priv->drrs.mutex);
cancel_delayed_work_sync(&dev_priv->drrs.work);
}
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), drrs.work.work);
struct intel_dp *intel_dp;
mutex_lock(&dev_priv->drrs.mutex);
intel_dp = dev_priv->drrs.dp;
if (!intel_dp)
goto unlock;
/*
* The delayed work can race with an invalidate hence we need to
* recheck.
*/
if (dev_priv->drrs.busy_frontbuffer_bits)
goto unlock;
if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
intel_dp->attached_connector->panel.downclock_mode->vrefresh);
}
unlock:
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* intel_edp_drrs_invalidate - Disable Idleness DRRS
* @dev_priv: i915 device
* @frontbuffer_bits: frontbuffer plane tracking bits
*
* This function gets called everytime rendering on the given planes start.
* Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
*
* Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
*/
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits)
{
struct drm_crtc *crtc;
enum pipe pipe;
if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
return;
cancel_delayed_work(&dev_priv->drrs.work);
mutex_lock(&dev_priv->drrs.mutex);
if (!dev_priv->drrs.dp) {
mutex_unlock(&dev_priv->drrs.mutex);
return;
}
crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
/* invalidate means busy screen hence upclock */
if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* intel_edp_drrs_flush - Restart Idleness DRRS
* @dev_priv: i915 device
* @frontbuffer_bits: frontbuffer plane tracking bits
*
* This function gets called every time rendering on the given planes has
* completed or flip on a crtc is completed. So DRRS should be upclocked
* (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
* if no other planes are dirty.
*
* Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
*/
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits)
{
struct drm_crtc *crtc;
enum pipe pipe;
if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
return;
cancel_delayed_work(&dev_priv->drrs.work);
mutex_lock(&dev_priv->drrs.mutex);
if (!dev_priv->drrs.dp) {
mutex_unlock(&dev_priv->drrs.mutex);
return;
}
crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
/* flush means busy screen hence upclock */
if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
/*
* flush also means no more activity hence schedule downclock, if all
* other fbs are quiescent too
*/
if (!dev_priv->drrs.busy_frontbuffer_bits)
schedule_delayed_work(&dev_priv->drrs.work,
msecs_to_jiffies(1000));
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* DOC: Display Refresh Rate Switching (DRRS)
*
* Display Refresh Rate Switching (DRRS) is a power conservation feature
* which enables swtching between low and high refresh rates,
* dynamically, based on the usage scenario. This feature is applicable
* for internal panels.
*
* Indication that the panel supports DRRS is given by the panel EDID, which
* would list multiple refresh rates for one resolution.
*
* DRRS is of 2 types - static and seamless.
* Static DRRS involves changing refresh rate (RR) by doing a full modeset
* (may appear as a blink on screen) and is used in dock-undock scenario.
* Seamless DRRS involves changing RR without any visual effect to the user
* and can be used during normal system usage. This is done by programming
* certain registers.
*
* Support for static/seamless DRRS may be indicated in the VBT based on
* inputs from the panel spec.
*
* DRRS saves power by switching to low RR based on usage scenarios.
*
* The implementation is based on frontbuffer tracking implementation. When
* there is a disturbance on the screen triggered by user activity or a periodic
* system activity, DRRS is disabled (RR is changed to high RR). When there is
* no movement on screen, after a timeout of 1 second, a switch to low RR is
* made.
*
* For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
* and intel_edp_drrs_flush() are called.
*
* DRRS can be further extended to support other internal panels and also
* the scenario of video playback wherein RR is set based on the rate
* requested by userspace.
*/
/**
* intel_dp_drrs_init - Init basic DRRS work and mutex.
* @connector: eDP connector
* @fixed_mode: preferred mode of panel
*
* This function is called only once at driver load to initialize basic
* DRRS stuff.
*
* Returns:
* Downclock mode if panel supports it, else return NULL.
* DRRS support is determined by the presence of downclock mode (apart
* from VBT setting).
*/
static struct drm_display_mode *
intel_dp_drrs_init(struct intel_connector *connector,
struct drm_display_mode *fixed_mode)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct drm_display_mode *downclock_mode = NULL;
INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
mutex_init(&dev_priv->drrs.mutex);
if (INTEL_GEN(dev_priv) <= 6) {
DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
return NULL;
}
if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
return NULL;
}
downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
&connector->base);
if (!downclock_mode) {
DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
return NULL;
}
dev_priv->drrs.type = dev_priv->vbt.drrs_type;
dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
return downclock_mode;
}
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
struct intel_connector *intel_connector)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_connector *connector = &intel_connector->base;
struct drm_display_mode *fixed_mode = NULL;
struct drm_display_mode *downclock_mode = NULL;
bool has_dpcd;
struct drm_display_mode *scan;
struct edid *edid;
enum pipe pipe = INVALID_PIPE;
if (!intel_dp_is_edp(intel_dp))
return true;
/*
* On IBX/CPT we may get here with LVDS already registered. Since the
* driver uses the only internal power sequencer available for both
* eDP and LVDS bail out early in this case to prevent interfering
* with an already powered-on LVDS power sequencer.
*/
if (intel_get_lvds_encoder(&dev_priv->drm)) {
WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
DRM_INFO("LVDS was detected, not registering eDP\n");
return false;
}
pps_lock(intel_dp);
intel_dp_init_panel_power_timestamps(intel_dp);
intel_dp_pps_init(intel_dp);
intel_edp_panel_vdd_sanitize(intel_dp);
pps_unlock(intel_dp);
/* Cache DPCD and EDID for edp. */
has_dpcd = intel_edp_init_dpcd(intel_dp);
if (!has_dpcd) {
/* if this fails, presume the device is a ghost */
DRM_INFO("failed to retrieve link info, disabling eDP\n");
goto out_vdd_off;
}
mutex_lock(&dev->mode_config.mutex);
edid = drm_get_edid(connector, &intel_dp->aux.ddc);
if (edid) {
if (drm_add_edid_modes(connector, edid)) {
drm_mode_connector_update_edid_property(connector,
edid);
} else {
kfree(edid);
edid = ERR_PTR(-EINVAL);
}
} else {
edid = ERR_PTR(-ENOENT);
}
intel_connector->edid = edid;
/* prefer fixed mode from EDID if available */
list_for_each_entry(scan, &connector->probed_modes, head) {
if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
fixed_mode = drm_mode_duplicate(dev, scan);
downclock_mode = intel_dp_drrs_init(
intel_connector, fixed_mode);
break;
}
}
/* fallback to VBT if available for eDP */
if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
fixed_mode = drm_mode_duplicate(dev,
dev_priv->vbt.lfp_lvds_vbt_mode);
if (fixed_mode) {
fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
connector->display_info.width_mm = fixed_mode->width_mm;
connector->display_info.height_mm = fixed_mode->height_mm;
}
}
mutex_unlock(&dev->mode_config.mutex);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
intel_dp->edp_notifier.notifier_call = edp_notify_handler;
register_reboot_notifier(&intel_dp->edp_notifier);
/*
* Figure out the current pipe for the initial backlight setup.
* If the current pipe isn't valid, try the PPS pipe, and if that
* fails just assume pipe A.
*/
pipe = vlv_active_pipe(intel_dp);
if (pipe != PIPE_A && pipe != PIPE_B)
pipe = intel_dp->pps_pipe;
if (pipe != PIPE_A && pipe != PIPE_B)
pipe = PIPE_A;
DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
pipe_name(pipe));
}
intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
intel_connector->panel.backlight.power = intel_edp_backlight_power;
intel_panel_setup_backlight(connector, pipe);
return true;
out_vdd_off:
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
/*
* vdd might still be enabled do to the delayed vdd off.
* Make sure vdd is actually turned off here.
*/
pps_lock(intel_dp);
edp_panel_vdd_off_sync(intel_dp);
pps_unlock(intel_dp);
return false;
}
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
struct intel_connector *intel_connector;
struct drm_connector *connector;
intel_connector = container_of(work, typeof(*intel_connector),
modeset_retry_work);
connector = &intel_connector->base;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
connector->name);
/* Grab the locks before changing connector property*/
mutex_lock(&connector->dev->mode_config.mutex);
/* Set connector link status to BAD and send a Uevent to notify
* userspace to do a modeset.
*/
drm_mode_connector_set_link_status_property(connector,
DRM_MODE_LINK_STATUS_BAD);
mutex_unlock(&connector->dev->mode_config.mutex);
/* Send Hotplug uevent so userspace can reprobe */
drm_kms_helper_hotplug_event(connector->dev);
}
bool
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = intel_encoder->port;
int type;
/* Initialize the work for modeset in case of link train failure */
INIT_WORK(&intel_connector->modeset_retry_work,
intel_dp_modeset_retry_work_fn);
if (WARN(intel_dig_port->max_lanes < 1,
"Not enough lanes (%d) for DP on port %c\n",
intel_dig_port->max_lanes, port_name(port)))
return false;
intel_dp_set_source_rates(intel_dp);
intel_dp->reset_link_params = true;
intel_dp->pps_pipe = INVALID_PIPE;
intel_dp->active_pipe = INVALID_PIPE;
/* intel_dp vfuncs */
if (HAS_DDI(dev_priv))
intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
/* Preserve the current hw state. */
intel_dp->DP = I915_READ(intel_dp->output_reg);
intel_dp->attached_connector = intel_connector;
if (intel_dp_is_port_edp(dev_priv, port))
type = DRM_MODE_CONNECTOR_eDP;
else
type = DRM_MODE_CONNECTOR_DisplayPort;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
intel_dp->active_pipe = vlv_active_pipe(intel_dp);
/*
* For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
* for DP the encoder type can be set by the caller to
* INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
*/
if (type == DRM_MODE_CONNECTOR_eDP)
intel_encoder->type = INTEL_OUTPUT_EDP;
/* eDP only on port B and/or C on vlv/chv */
if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
intel_dp_is_edp(intel_dp) &&
port != PORT_B && port != PORT_C))
return false;
DRM_DEBUG_KMS("Adding %s connector on port %c\n",
type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
port_name(port));
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
if (!HAS_GMCH_DISPLAY(dev_priv))
connector->interlace_allowed = true;
connector->doublescan_allowed = 0;
intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
intel_dp_aux_init(intel_dp);
INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
edp_panel_vdd_work);
intel_connector_attach_encoder(intel_connector, intel_encoder);
if (HAS_DDI(dev_priv))
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
else
intel_connector->get_hw_state = intel_connector_get_hw_state;
/* init MST on ports that can support it */
if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
(port == PORT_B || port == PORT_C ||
port == PORT_D || port == PORT_F))
intel_dp_mst_encoder_init(intel_dig_port,
intel_connector->base.base.id);
if (!intel_edp_init_connector(intel_dp, intel_connector)) {
intel_dp_aux_fini(intel_dp);
intel_dp_mst_encoder_cleanup(intel_dig_port);
goto fail;
}
intel_dp_add_properties(intel_dp, connector);
if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
if (ret)
DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
}
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
return true;
fail:
drm_connector_cleanup(connector);
return false;
}
bool intel_dp_init(struct drm_i915_private *dev_priv,
i915_reg_t output_reg,
enum port port)
{
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
struct intel_connector *intel_connector;
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return false;
intel_connector = intel_connector_alloc();
if (!intel_connector)
goto err_connector_alloc;
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
&intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
"DP %c", port_name(port)))
goto err_encoder_init;
intel_encoder->hotplug = intel_dp_hotplug;
intel_encoder->compute_config = intel_dp_compute_config;
intel_encoder->get_hw_state = intel_dp_get_hw_state;
intel_encoder->get_config = intel_dp_get_config;
intel_encoder->suspend = intel_dp_encoder_suspend;
if (IS_CHERRYVIEW(dev_priv)) {
intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
intel_encoder->pre_enable = chv_pre_enable_dp;
intel_encoder->enable = vlv_enable_dp;
intel_encoder->disable = vlv_disable_dp;
intel_encoder->post_disable = chv_post_disable_dp;
intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
} else if (IS_VALLEYVIEW(dev_priv)) {
intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
intel_encoder->pre_enable = vlv_pre_enable_dp;
intel_encoder->enable = vlv_enable_dp;
intel_encoder->disable = vlv_disable_dp;
intel_encoder->post_disable = vlv_post_disable_dp;
} else {
intel_encoder->pre_enable = g4x_pre_enable_dp;
intel_encoder->enable = g4x_enable_dp;
intel_encoder->disable = g4x_disable_dp;
intel_encoder->post_disable = g4x_post_disable_dp;
}
intel_dig_port->dp.output_reg = output_reg;
intel_dig_port->max_lanes = 4;
intel_encoder->type = INTEL_OUTPUT_DP;
intel_encoder->power_domain = intel_port_to_power_domain(port);
if (IS_CHERRYVIEW(dev_priv)) {
if (port == PORT_D)
intel_encoder->crtc_mask = 1 << 2;
else
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
} else {
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
}
intel_encoder->cloneable = 0;
intel_encoder->port = port;
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
dev_priv->hotplug.irq_port[port] = intel_dig_port;
if (port != PORT_A)
intel_infoframe_init(intel_dig_port);
if (!intel_dp_init_connector(intel_dig_port, intel_connector))
goto err_init_connector;
return true;
err_init_connector:
drm_encoder_cleanup(encoder);
err_encoder_init:
kfree(intel_connector);
err_connector_alloc:
kfree(intel_dig_port);
return false;
}
void intel_dp_mst_suspend(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int i;
/* disable MST */
for (i = 0; i < I915_MAX_PORTS; i++) {
struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
if (!intel_dig_port || !intel_dig_port->dp.can_mst)
continue;
if (intel_dig_port->dp.is_mst)
drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
}
}
void intel_dp_mst_resume(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int i;
for (i = 0; i < I915_MAX_PORTS; i++) {
struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
int ret;
if (!intel_dig_port || !intel_dig_port->dp.can_mst)
continue;
ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
if (ret)
intel_dp_check_mst_status(&intel_dig_port->dp);
}
}