mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 20:07:13 +07:00
ab673b9874
Normally smp_store_release() or cmpxchg_release() is paired with
smp_load_acquire(). Sometimes smp_load_acquire() can be replaced with
the more lightweight READ_ONCE(). However, for this to be safe, all the
published memory must only be accessed in a way that involves the
pointer itself. This may not be the case if allocating the object also
involves initializing a static or global variable, for example.
fscrypt_info includes various sub-objects which are internal to and are
allocated by other kernel subsystems such as keyrings and crypto. So by
using READ_ONCE() for ->i_crypt_info, we're relying on internal
implementation details of these other kernel subsystems.
Remove this fragile assumption by using smp_load_acquire() instead.
(Note: I haven't seen any real-world problems here. This change is just
fixing the code to be guaranteed correct and less fragile.)
Fixes: e37a784d8b
("fscrypt: use READ_ONCE() to access ->i_crypt_info")
Link: https://lore.kernel.org/r/20200721225920.114347-5-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
781 lines
23 KiB
C
781 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Encryption policy functions for per-file encryption support.
|
|
*
|
|
* Copyright (C) 2015, Google, Inc.
|
|
* Copyright (C) 2015, Motorola Mobility.
|
|
*
|
|
* Originally written by Michael Halcrow, 2015.
|
|
* Modified by Jaegeuk Kim, 2015.
|
|
* Modified by Eric Biggers, 2019 for v2 policy support.
|
|
*/
|
|
|
|
#include <linux/random.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mount.h>
|
|
#include "fscrypt_private.h"
|
|
|
|
/**
|
|
* fscrypt_policies_equal() - check whether two encryption policies are the same
|
|
* @policy1: the first policy
|
|
* @policy2: the second policy
|
|
*
|
|
* Return: %true if equal, else %false
|
|
*/
|
|
bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
|
|
const union fscrypt_policy *policy2)
|
|
{
|
|
if (policy1->version != policy2->version)
|
|
return false;
|
|
|
|
return !memcmp(policy1, policy2, fscrypt_policy_size(policy1));
|
|
}
|
|
|
|
static bool fscrypt_valid_enc_modes(u32 contents_mode, u32 filenames_mode)
|
|
{
|
|
if (contents_mode == FSCRYPT_MODE_AES_256_XTS &&
|
|
filenames_mode == FSCRYPT_MODE_AES_256_CTS)
|
|
return true;
|
|
|
|
if (contents_mode == FSCRYPT_MODE_AES_128_CBC &&
|
|
filenames_mode == FSCRYPT_MODE_AES_128_CTS)
|
|
return true;
|
|
|
|
if (contents_mode == FSCRYPT_MODE_ADIANTUM &&
|
|
filenames_mode == FSCRYPT_MODE_ADIANTUM)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool supported_direct_key_modes(const struct inode *inode,
|
|
u32 contents_mode, u32 filenames_mode)
|
|
{
|
|
const struct fscrypt_mode *mode;
|
|
|
|
if (contents_mode != filenames_mode) {
|
|
fscrypt_warn(inode,
|
|
"Direct key flag not allowed with different contents and filenames modes");
|
|
return false;
|
|
}
|
|
mode = &fscrypt_modes[contents_mode];
|
|
|
|
if (mode->ivsize < offsetofend(union fscrypt_iv, nonce)) {
|
|
fscrypt_warn(inode, "Direct key flag not allowed with %s",
|
|
mode->friendly_name);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool supported_iv_ino_lblk_policy(const struct fscrypt_policy_v2 *policy,
|
|
const struct inode *inode,
|
|
const char *type,
|
|
int max_ino_bits, int max_lblk_bits)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
int ino_bits = 64, lblk_bits = 64;
|
|
|
|
/*
|
|
* IV_INO_LBLK_* exist only because of hardware limitations, and
|
|
* currently the only known use case for them involves AES-256-XTS.
|
|
* That's also all we test currently. For these reasons, for now only
|
|
* allow AES-256-XTS here. This can be relaxed later if a use case for
|
|
* IV_INO_LBLK_* with other encryption modes arises.
|
|
*/
|
|
if (policy->contents_encryption_mode != FSCRYPT_MODE_AES_256_XTS) {
|
|
fscrypt_warn(inode,
|
|
"Can't use %s policy with contents mode other than AES-256-XTS",
|
|
type);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* It's unsafe to include inode numbers in the IVs if the filesystem can
|
|
* potentially renumber inodes, e.g. via filesystem shrinking.
|
|
*/
|
|
if (!sb->s_cop->has_stable_inodes ||
|
|
!sb->s_cop->has_stable_inodes(sb)) {
|
|
fscrypt_warn(inode,
|
|
"Can't use %s policy on filesystem '%s' because it doesn't have stable inode numbers",
|
|
type, sb->s_id);
|
|
return false;
|
|
}
|
|
if (sb->s_cop->get_ino_and_lblk_bits)
|
|
sb->s_cop->get_ino_and_lblk_bits(sb, &ino_bits, &lblk_bits);
|
|
if (ino_bits > max_ino_bits) {
|
|
fscrypt_warn(inode,
|
|
"Can't use %s policy on filesystem '%s' because its inode numbers are too long",
|
|
type, sb->s_id);
|
|
return false;
|
|
}
|
|
if (lblk_bits > max_lblk_bits) {
|
|
fscrypt_warn(inode,
|
|
"Can't use %s policy on filesystem '%s' because its block numbers are too long",
|
|
type, sb->s_id);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool fscrypt_supported_v1_policy(const struct fscrypt_policy_v1 *policy,
|
|
const struct inode *inode)
|
|
{
|
|
if (!fscrypt_valid_enc_modes(policy->contents_encryption_mode,
|
|
policy->filenames_encryption_mode)) {
|
|
fscrypt_warn(inode,
|
|
"Unsupported encryption modes (contents %d, filenames %d)",
|
|
policy->contents_encryption_mode,
|
|
policy->filenames_encryption_mode);
|
|
return false;
|
|
}
|
|
|
|
if (policy->flags & ~(FSCRYPT_POLICY_FLAGS_PAD_MASK |
|
|
FSCRYPT_POLICY_FLAG_DIRECT_KEY)) {
|
|
fscrypt_warn(inode, "Unsupported encryption flags (0x%02x)",
|
|
policy->flags);
|
|
return false;
|
|
}
|
|
|
|
if ((policy->flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) &&
|
|
!supported_direct_key_modes(inode, policy->contents_encryption_mode,
|
|
policy->filenames_encryption_mode))
|
|
return false;
|
|
|
|
if (IS_CASEFOLDED(inode)) {
|
|
/* With v1, there's no way to derive dirhash keys. */
|
|
fscrypt_warn(inode,
|
|
"v1 policies can't be used on casefolded directories");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool fscrypt_supported_v2_policy(const struct fscrypt_policy_v2 *policy,
|
|
const struct inode *inode)
|
|
{
|
|
int count = 0;
|
|
|
|
if (!fscrypt_valid_enc_modes(policy->contents_encryption_mode,
|
|
policy->filenames_encryption_mode)) {
|
|
fscrypt_warn(inode,
|
|
"Unsupported encryption modes (contents %d, filenames %d)",
|
|
policy->contents_encryption_mode,
|
|
policy->filenames_encryption_mode);
|
|
return false;
|
|
}
|
|
|
|
if (policy->flags & ~FSCRYPT_POLICY_FLAGS_VALID) {
|
|
fscrypt_warn(inode, "Unsupported encryption flags (0x%02x)",
|
|
policy->flags);
|
|
return false;
|
|
}
|
|
|
|
count += !!(policy->flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY);
|
|
count += !!(policy->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64);
|
|
count += !!(policy->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32);
|
|
if (count > 1) {
|
|
fscrypt_warn(inode, "Mutually exclusive encryption flags (0x%02x)",
|
|
policy->flags);
|
|
return false;
|
|
}
|
|
|
|
if ((policy->flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) &&
|
|
!supported_direct_key_modes(inode, policy->contents_encryption_mode,
|
|
policy->filenames_encryption_mode))
|
|
return false;
|
|
|
|
if ((policy->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) &&
|
|
!supported_iv_ino_lblk_policy(policy, inode, "IV_INO_LBLK_64",
|
|
32, 32))
|
|
return false;
|
|
|
|
if ((policy->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) &&
|
|
/* This uses hashed inode numbers, so ino_bits doesn't matter. */
|
|
!supported_iv_ino_lblk_policy(policy, inode, "IV_INO_LBLK_32",
|
|
INT_MAX, 32))
|
|
return false;
|
|
|
|
if (memchr_inv(policy->__reserved, 0, sizeof(policy->__reserved))) {
|
|
fscrypt_warn(inode, "Reserved bits set in encryption policy");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* fscrypt_supported_policy() - check whether an encryption policy is supported
|
|
* @policy_u: the encryption policy
|
|
* @inode: the inode on which the policy will be used
|
|
*
|
|
* Given an encryption policy, check whether all its encryption modes and other
|
|
* settings are supported by this kernel on the given inode. (But we don't
|
|
* currently don't check for crypto API support here, so attempting to use an
|
|
* algorithm not configured into the crypto API will still fail later.)
|
|
*
|
|
* Return: %true if supported, else %false
|
|
*/
|
|
bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
|
|
const struct inode *inode)
|
|
{
|
|
switch (policy_u->version) {
|
|
case FSCRYPT_POLICY_V1:
|
|
return fscrypt_supported_v1_policy(&policy_u->v1, inode);
|
|
case FSCRYPT_POLICY_V2:
|
|
return fscrypt_supported_v2_policy(&policy_u->v2, inode);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* fscrypt_new_context_from_policy() - create a new fscrypt_context from
|
|
* an fscrypt_policy
|
|
* @ctx_u: output context
|
|
* @policy_u: input policy
|
|
*
|
|
* Create an fscrypt_context for an inode that is being assigned the given
|
|
* encryption policy. A new nonce is randomly generated.
|
|
*
|
|
* Return: the size of the new context in bytes.
|
|
*/
|
|
static int fscrypt_new_context_from_policy(union fscrypt_context *ctx_u,
|
|
const union fscrypt_policy *policy_u)
|
|
{
|
|
memset(ctx_u, 0, sizeof(*ctx_u));
|
|
|
|
switch (policy_u->version) {
|
|
case FSCRYPT_POLICY_V1: {
|
|
const struct fscrypt_policy_v1 *policy = &policy_u->v1;
|
|
struct fscrypt_context_v1 *ctx = &ctx_u->v1;
|
|
|
|
ctx->version = FSCRYPT_CONTEXT_V1;
|
|
ctx->contents_encryption_mode =
|
|
policy->contents_encryption_mode;
|
|
ctx->filenames_encryption_mode =
|
|
policy->filenames_encryption_mode;
|
|
ctx->flags = policy->flags;
|
|
memcpy(ctx->master_key_descriptor,
|
|
policy->master_key_descriptor,
|
|
sizeof(ctx->master_key_descriptor));
|
|
get_random_bytes(ctx->nonce, sizeof(ctx->nonce));
|
|
return sizeof(*ctx);
|
|
}
|
|
case FSCRYPT_POLICY_V2: {
|
|
const struct fscrypt_policy_v2 *policy = &policy_u->v2;
|
|
struct fscrypt_context_v2 *ctx = &ctx_u->v2;
|
|
|
|
ctx->version = FSCRYPT_CONTEXT_V2;
|
|
ctx->contents_encryption_mode =
|
|
policy->contents_encryption_mode;
|
|
ctx->filenames_encryption_mode =
|
|
policy->filenames_encryption_mode;
|
|
ctx->flags = policy->flags;
|
|
memcpy(ctx->master_key_identifier,
|
|
policy->master_key_identifier,
|
|
sizeof(ctx->master_key_identifier));
|
|
get_random_bytes(ctx->nonce, sizeof(ctx->nonce));
|
|
return sizeof(*ctx);
|
|
}
|
|
}
|
|
BUG();
|
|
}
|
|
|
|
/**
|
|
* fscrypt_policy_from_context() - convert an fscrypt_context to
|
|
* an fscrypt_policy
|
|
* @policy_u: output policy
|
|
* @ctx_u: input context
|
|
* @ctx_size: size of input context in bytes
|
|
*
|
|
* Given an fscrypt_context, build the corresponding fscrypt_policy.
|
|
*
|
|
* Return: 0 on success, or -EINVAL if the fscrypt_context has an unrecognized
|
|
* version number or size.
|
|
*
|
|
* This does *not* validate the settings within the policy itself, e.g. the
|
|
* modes, flags, and reserved bits. Use fscrypt_supported_policy() for that.
|
|
*/
|
|
int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
|
|
const union fscrypt_context *ctx_u,
|
|
int ctx_size)
|
|
{
|
|
memset(policy_u, 0, sizeof(*policy_u));
|
|
|
|
if (!fscrypt_context_is_valid(ctx_u, ctx_size))
|
|
return -EINVAL;
|
|
|
|
switch (ctx_u->version) {
|
|
case FSCRYPT_CONTEXT_V1: {
|
|
const struct fscrypt_context_v1 *ctx = &ctx_u->v1;
|
|
struct fscrypt_policy_v1 *policy = &policy_u->v1;
|
|
|
|
policy->version = FSCRYPT_POLICY_V1;
|
|
policy->contents_encryption_mode =
|
|
ctx->contents_encryption_mode;
|
|
policy->filenames_encryption_mode =
|
|
ctx->filenames_encryption_mode;
|
|
policy->flags = ctx->flags;
|
|
memcpy(policy->master_key_descriptor,
|
|
ctx->master_key_descriptor,
|
|
sizeof(policy->master_key_descriptor));
|
|
return 0;
|
|
}
|
|
case FSCRYPT_CONTEXT_V2: {
|
|
const struct fscrypt_context_v2 *ctx = &ctx_u->v2;
|
|
struct fscrypt_policy_v2 *policy = &policy_u->v2;
|
|
|
|
policy->version = FSCRYPT_POLICY_V2;
|
|
policy->contents_encryption_mode =
|
|
ctx->contents_encryption_mode;
|
|
policy->filenames_encryption_mode =
|
|
ctx->filenames_encryption_mode;
|
|
policy->flags = ctx->flags;
|
|
memcpy(policy->__reserved, ctx->__reserved,
|
|
sizeof(policy->__reserved));
|
|
memcpy(policy->master_key_identifier,
|
|
ctx->master_key_identifier,
|
|
sizeof(policy->master_key_identifier));
|
|
return 0;
|
|
}
|
|
}
|
|
/* unreachable */
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Retrieve an inode's encryption policy */
|
|
static int fscrypt_get_policy(struct inode *inode, union fscrypt_policy *policy)
|
|
{
|
|
const struct fscrypt_info *ci;
|
|
union fscrypt_context ctx;
|
|
int ret;
|
|
|
|
ci = fscrypt_get_info(inode);
|
|
if (ci) {
|
|
/* key available, use the cached policy */
|
|
*policy = ci->ci_policy;
|
|
return 0;
|
|
}
|
|
|
|
if (!IS_ENCRYPTED(inode))
|
|
return -ENODATA;
|
|
|
|
ret = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
|
|
if (ret < 0)
|
|
return (ret == -ERANGE) ? -EINVAL : ret;
|
|
|
|
return fscrypt_policy_from_context(policy, &ctx, ret);
|
|
}
|
|
|
|
static int set_encryption_policy(struct inode *inode,
|
|
const union fscrypt_policy *policy)
|
|
{
|
|
union fscrypt_context ctx;
|
|
int ctxsize;
|
|
int err;
|
|
|
|
if (!fscrypt_supported_policy(policy, inode))
|
|
return -EINVAL;
|
|
|
|
switch (policy->version) {
|
|
case FSCRYPT_POLICY_V1:
|
|
/*
|
|
* The original encryption policy version provided no way of
|
|
* verifying that the correct master key was supplied, which was
|
|
* insecure in scenarios where multiple users have access to the
|
|
* same encrypted files (even just read-only access). The new
|
|
* encryption policy version fixes this and also implies use of
|
|
* an improved key derivation function and allows non-root users
|
|
* to securely remove keys. So as long as compatibility with
|
|
* old kernels isn't required, it is recommended to use the new
|
|
* policy version for all new encrypted directories.
|
|
*/
|
|
pr_warn_once("%s (pid %d) is setting deprecated v1 encryption policy; recommend upgrading to v2.\n",
|
|
current->comm, current->pid);
|
|
break;
|
|
case FSCRYPT_POLICY_V2:
|
|
err = fscrypt_verify_key_added(inode->i_sb,
|
|
policy->v2.master_key_identifier);
|
|
if (err)
|
|
return err;
|
|
if (policy->v2.flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)
|
|
pr_warn_once("%s (pid %d) is setting an IV_INO_LBLK_32 encryption policy. This should only be used if there are certain hardware limitations.\n",
|
|
current->comm, current->pid);
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctxsize = fscrypt_new_context_from_policy(&ctx, policy);
|
|
|
|
return inode->i_sb->s_cop->set_context(inode, &ctx, ctxsize, NULL);
|
|
}
|
|
|
|
int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg)
|
|
{
|
|
union fscrypt_policy policy;
|
|
union fscrypt_policy existing_policy;
|
|
struct inode *inode = file_inode(filp);
|
|
u8 version;
|
|
int size;
|
|
int ret;
|
|
|
|
if (get_user(policy.version, (const u8 __user *)arg))
|
|
return -EFAULT;
|
|
|
|
size = fscrypt_policy_size(&policy);
|
|
if (size <= 0)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* We should just copy the remaining 'size - 1' bytes here, but a
|
|
* bizarre bug in gcc 7 and earlier (fixed by gcc r255731) causes gcc to
|
|
* think that size can be 0 here (despite the check above!) *and* that
|
|
* it's a compile-time constant. Thus it would think copy_from_user()
|
|
* is passed compile-time constant ULONG_MAX, causing the compile-time
|
|
* buffer overflow check to fail, breaking the build. This only occurred
|
|
* when building an i386 kernel with -Os and branch profiling enabled.
|
|
*
|
|
* Work around it by just copying the first byte again...
|
|
*/
|
|
version = policy.version;
|
|
if (copy_from_user(&policy, arg, size))
|
|
return -EFAULT;
|
|
policy.version = version;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
ret = fscrypt_get_policy(inode, &existing_policy);
|
|
if (ret == -ENODATA) {
|
|
if (!S_ISDIR(inode->i_mode))
|
|
ret = -ENOTDIR;
|
|
else if (IS_DEADDIR(inode))
|
|
ret = -ENOENT;
|
|
else if (!inode->i_sb->s_cop->empty_dir(inode))
|
|
ret = -ENOTEMPTY;
|
|
else
|
|
ret = set_encryption_policy(inode, &policy);
|
|
} else if (ret == -EINVAL ||
|
|
(ret == 0 && !fscrypt_policies_equal(&policy,
|
|
&existing_policy))) {
|
|
/* The file already uses a different encryption policy. */
|
|
ret = -EEXIST;
|
|
}
|
|
|
|
inode_unlock(inode);
|
|
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_ioctl_set_policy);
|
|
|
|
/* Original ioctl version; can only get the original policy version */
|
|
int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
|
|
{
|
|
union fscrypt_policy policy;
|
|
int err;
|
|
|
|
err = fscrypt_get_policy(file_inode(filp), &policy);
|
|
if (err)
|
|
return err;
|
|
|
|
if (policy.version != FSCRYPT_POLICY_V1)
|
|
return -EINVAL;
|
|
|
|
if (copy_to_user(arg, &policy, sizeof(policy.v1)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_ioctl_get_policy);
|
|
|
|
/* Extended ioctl version; can get policies of any version */
|
|
int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *uarg)
|
|
{
|
|
struct fscrypt_get_policy_ex_arg arg;
|
|
union fscrypt_policy *policy = (union fscrypt_policy *)&arg.policy;
|
|
size_t policy_size;
|
|
int err;
|
|
|
|
/* arg is policy_size, then policy */
|
|
BUILD_BUG_ON(offsetof(typeof(arg), policy_size) != 0);
|
|
BUILD_BUG_ON(offsetofend(typeof(arg), policy_size) !=
|
|
offsetof(typeof(arg), policy));
|
|
BUILD_BUG_ON(sizeof(arg.policy) != sizeof(*policy));
|
|
|
|
err = fscrypt_get_policy(file_inode(filp), policy);
|
|
if (err)
|
|
return err;
|
|
policy_size = fscrypt_policy_size(policy);
|
|
|
|
if (copy_from_user(&arg, uarg, sizeof(arg.policy_size)))
|
|
return -EFAULT;
|
|
|
|
if (policy_size > arg.policy_size)
|
|
return -EOVERFLOW;
|
|
arg.policy_size = policy_size;
|
|
|
|
if (copy_to_user(uarg, &arg, sizeof(arg.policy_size) + policy_size))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_policy_ex);
|
|
|
|
/* FS_IOC_GET_ENCRYPTION_NONCE: retrieve file's encryption nonce for testing */
|
|
int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
union fscrypt_context ctx;
|
|
int ret;
|
|
|
|
ret = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!fscrypt_context_is_valid(&ctx, ret))
|
|
return -EINVAL;
|
|
if (copy_to_user(arg, fscrypt_context_nonce(&ctx),
|
|
FSCRYPT_FILE_NONCE_SIZE))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_nonce);
|
|
|
|
/**
|
|
* fscrypt_has_permitted_context() - is a file's encryption policy permitted
|
|
* within its directory?
|
|
*
|
|
* @parent: inode for parent directory
|
|
* @child: inode for file being looked up, opened, or linked into @parent
|
|
*
|
|
* Filesystems must call this before permitting access to an inode in a
|
|
* situation where the parent directory is encrypted (either before allowing
|
|
* ->lookup() to succeed, or for a regular file before allowing it to be opened)
|
|
* and before any operation that involves linking an inode into an encrypted
|
|
* directory, including link, rename, and cross rename. It enforces the
|
|
* constraint that within a given encrypted directory tree, all files use the
|
|
* same encryption policy. The pre-access check is needed to detect potentially
|
|
* malicious offline violations of this constraint, while the link and rename
|
|
* checks are needed to prevent online violations of this constraint.
|
|
*
|
|
* Return: 1 if permitted, 0 if forbidden.
|
|
*/
|
|
int fscrypt_has_permitted_context(struct inode *parent, struct inode *child)
|
|
{
|
|
union fscrypt_policy parent_policy, child_policy;
|
|
int err;
|
|
|
|
/* No restrictions on file types which are never encrypted */
|
|
if (!S_ISREG(child->i_mode) && !S_ISDIR(child->i_mode) &&
|
|
!S_ISLNK(child->i_mode))
|
|
return 1;
|
|
|
|
/* No restrictions if the parent directory is unencrypted */
|
|
if (!IS_ENCRYPTED(parent))
|
|
return 1;
|
|
|
|
/* Encrypted directories must not contain unencrypted files */
|
|
if (!IS_ENCRYPTED(child))
|
|
return 0;
|
|
|
|
/*
|
|
* Both parent and child are encrypted, so verify they use the same
|
|
* encryption policy. Compare the fscrypt_info structs if the keys are
|
|
* available, otherwise retrieve and compare the fscrypt_contexts.
|
|
*
|
|
* Note that the fscrypt_context retrieval will be required frequently
|
|
* when accessing an encrypted directory tree without the key.
|
|
* Performance-wise this is not a big deal because we already don't
|
|
* really optimize for file access without the key (to the extent that
|
|
* such access is even possible), given that any attempted access
|
|
* already causes a fscrypt_context retrieval and keyring search.
|
|
*
|
|
* In any case, if an unexpected error occurs, fall back to "forbidden".
|
|
*/
|
|
|
|
err = fscrypt_get_encryption_info(parent);
|
|
if (err)
|
|
return 0;
|
|
err = fscrypt_get_encryption_info(child);
|
|
if (err)
|
|
return 0;
|
|
|
|
err = fscrypt_get_policy(parent, &parent_policy);
|
|
if (err)
|
|
return 0;
|
|
|
|
err = fscrypt_get_policy(child, &child_policy);
|
|
if (err)
|
|
return 0;
|
|
|
|
return fscrypt_policies_equal(&parent_policy, &child_policy);
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_has_permitted_context);
|
|
|
|
/**
|
|
* fscrypt_inherit_context() - Sets a child context from its parent
|
|
* @parent: Parent inode from which the context is inherited.
|
|
* @child: Child inode that inherits the context from @parent.
|
|
* @fs_data: private data given by FS.
|
|
* @preload: preload child i_crypt_info if true
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
int fscrypt_inherit_context(struct inode *parent, struct inode *child,
|
|
void *fs_data, bool preload)
|
|
{
|
|
union fscrypt_context ctx;
|
|
int ctxsize;
|
|
struct fscrypt_info *ci;
|
|
int res;
|
|
|
|
res = fscrypt_get_encryption_info(parent);
|
|
if (res < 0)
|
|
return res;
|
|
|
|
ci = fscrypt_get_info(parent);
|
|
if (ci == NULL)
|
|
return -ENOKEY;
|
|
|
|
ctxsize = fscrypt_new_context_from_policy(&ctx, &ci->ci_policy);
|
|
|
|
BUILD_BUG_ON(sizeof(ctx) != FSCRYPT_SET_CONTEXT_MAX_SIZE);
|
|
res = parent->i_sb->s_cop->set_context(child, &ctx, ctxsize, fs_data);
|
|
if (res)
|
|
return res;
|
|
return preload ? fscrypt_get_encryption_info(child): 0;
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_inherit_context);
|
|
|
|
/**
|
|
* fscrypt_set_test_dummy_encryption() - handle '-o test_dummy_encryption'
|
|
* @sb: the filesystem on which test_dummy_encryption is being specified
|
|
* @arg: the argument to the test_dummy_encryption option.
|
|
* If no argument was specified, then @arg->from == NULL.
|
|
* @dummy_ctx: the filesystem's current dummy context (input/output, see below)
|
|
*
|
|
* Handle the test_dummy_encryption mount option by creating a dummy encryption
|
|
* context, saving it in @dummy_ctx, and adding the corresponding dummy
|
|
* encryption key to the filesystem. If the @dummy_ctx is already set, then
|
|
* instead validate that it matches @arg. Don't support changing it via
|
|
* remount, as that is difficult to do safely.
|
|
*
|
|
* The reason we use an fscrypt_context rather than an fscrypt_policy is because
|
|
* we mustn't generate a new nonce each time we access a dummy-encrypted
|
|
* directory, as that would change the way filenames are encrypted.
|
|
*
|
|
* Return: 0 on success (dummy context set, or the same context is already set);
|
|
* -EEXIST if a different dummy context is already set;
|
|
* or another -errno value.
|
|
*/
|
|
int fscrypt_set_test_dummy_encryption(struct super_block *sb,
|
|
const substring_t *arg,
|
|
struct fscrypt_dummy_context *dummy_ctx)
|
|
{
|
|
const char *argstr = "v2";
|
|
const char *argstr_to_free = NULL;
|
|
struct fscrypt_key_specifier key_spec = { 0 };
|
|
int version;
|
|
union fscrypt_context *ctx = NULL;
|
|
int err;
|
|
|
|
if (arg->from) {
|
|
argstr = argstr_to_free = match_strdup(arg);
|
|
if (!argstr)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!strcmp(argstr, "v1")) {
|
|
version = FSCRYPT_CONTEXT_V1;
|
|
key_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
|
|
memset(key_spec.u.descriptor, 0x42,
|
|
FSCRYPT_KEY_DESCRIPTOR_SIZE);
|
|
} else if (!strcmp(argstr, "v2")) {
|
|
version = FSCRYPT_CONTEXT_V2;
|
|
key_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
|
|
/* key_spec.u.identifier gets filled in when adding the key */
|
|
} else {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (dummy_ctx->ctx) {
|
|
/*
|
|
* Note: if we ever make test_dummy_encryption support
|
|
* specifying other encryption settings, such as the encryption
|
|
* modes, we'll need to compare those settings here.
|
|
*/
|
|
if (dummy_ctx->ctx->version == version)
|
|
err = 0;
|
|
else
|
|
err = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = fscrypt_add_test_dummy_key(sb, &key_spec);
|
|
if (err)
|
|
goto out;
|
|
|
|
ctx->version = version;
|
|
switch (ctx->version) {
|
|
case FSCRYPT_CONTEXT_V1:
|
|
ctx->v1.contents_encryption_mode = FSCRYPT_MODE_AES_256_XTS;
|
|
ctx->v1.filenames_encryption_mode = FSCRYPT_MODE_AES_256_CTS;
|
|
memcpy(ctx->v1.master_key_descriptor, key_spec.u.descriptor,
|
|
FSCRYPT_KEY_DESCRIPTOR_SIZE);
|
|
break;
|
|
case FSCRYPT_CONTEXT_V2:
|
|
ctx->v2.contents_encryption_mode = FSCRYPT_MODE_AES_256_XTS;
|
|
ctx->v2.filenames_encryption_mode = FSCRYPT_MODE_AES_256_CTS;
|
|
memcpy(ctx->v2.master_key_identifier, key_spec.u.identifier,
|
|
FSCRYPT_KEY_IDENTIFIER_SIZE);
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
dummy_ctx->ctx = ctx;
|
|
ctx = NULL;
|
|
err = 0;
|
|
out:
|
|
kfree(ctx);
|
|
kfree(argstr_to_free);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_set_test_dummy_encryption);
|
|
|
|
/**
|
|
* fscrypt_show_test_dummy_encryption() - show '-o test_dummy_encryption'
|
|
* @seq: the seq_file to print the option to
|
|
* @sep: the separator character to use
|
|
* @sb: the filesystem whose options are being shown
|
|
*
|
|
* Show the test_dummy_encryption mount option, if it was specified.
|
|
* This is mainly used for /proc/mounts.
|
|
*/
|
|
void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
|
|
struct super_block *sb)
|
|
{
|
|
const union fscrypt_context *ctx = fscrypt_get_dummy_context(sb);
|
|
|
|
if (!ctx)
|
|
return;
|
|
seq_printf(seq, "%ctest_dummy_encryption=v%d", sep, ctx->version);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_show_test_dummy_encryption);
|