mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-17 19:36:28 +07:00
2874c5fd28
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
829 lines
21 KiB
C
829 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* PowerPC64 SLB support.
|
|
*
|
|
* Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
|
|
* Based on earlier code written by:
|
|
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
|
|
* Copyright (c) 2001 Dave Engebretsen
|
|
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*/
|
|
|
|
#include <asm/asm-prototypes.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/ppc-opcode.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/smp.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/mm_types.h>
|
|
|
|
#include <asm/udbg.h>
|
|
#include <asm/code-patching.h>
|
|
|
|
enum slb_index {
|
|
LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
|
|
KSTACK_INDEX = 1, /* Kernel stack map */
|
|
};
|
|
|
|
static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
|
|
|
|
#define slb_esid_mask(ssize) \
|
|
(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
|
|
|
|
static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
|
|
enum slb_index index)
|
|
{
|
|
return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
|
|
}
|
|
|
|
static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
|
|
unsigned long flags)
|
|
{
|
|
return (vsid << slb_vsid_shift(ssize)) | flags |
|
|
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
|
|
}
|
|
|
|
static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
|
|
unsigned long flags)
|
|
{
|
|
return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
|
|
}
|
|
|
|
static void assert_slb_presence(bool present, unsigned long ea)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VM
|
|
unsigned long tmp;
|
|
|
|
WARN_ON_ONCE(mfmsr() & MSR_EE);
|
|
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_206))
|
|
return;
|
|
|
|
/*
|
|
* slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
|
|
* ignores all other bits from 0-27, so just clear them all.
|
|
*/
|
|
ea &= ~((1UL << 28) - 1);
|
|
asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
|
|
|
|
WARN_ON(present == (tmp == 0));
|
|
#endif
|
|
}
|
|
|
|
static inline void slb_shadow_update(unsigned long ea, int ssize,
|
|
unsigned long flags,
|
|
enum slb_index index)
|
|
{
|
|
struct slb_shadow *p = get_slb_shadow();
|
|
|
|
/*
|
|
* Clear the ESID first so the entry is not valid while we are
|
|
* updating it. No write barriers are needed here, provided
|
|
* we only update the current CPU's SLB shadow buffer.
|
|
*/
|
|
WRITE_ONCE(p->save_area[index].esid, 0);
|
|
WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
|
|
WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
|
|
}
|
|
|
|
static inline void slb_shadow_clear(enum slb_index index)
|
|
{
|
|
WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
|
|
}
|
|
|
|
static inline void create_shadowed_slbe(unsigned long ea, int ssize,
|
|
unsigned long flags,
|
|
enum slb_index index)
|
|
{
|
|
/*
|
|
* Updating the shadow buffer before writing the SLB ensures
|
|
* we don't get a stale entry here if we get preempted by PHYP
|
|
* between these two statements.
|
|
*/
|
|
slb_shadow_update(ea, ssize, flags, index);
|
|
|
|
assert_slb_presence(false, ea);
|
|
asm volatile("slbmte %0,%1" :
|
|
: "r" (mk_vsid_data(ea, ssize, flags)),
|
|
"r" (mk_esid_data(ea, ssize, index))
|
|
: "memory" );
|
|
}
|
|
|
|
/*
|
|
* Insert bolted entries into SLB (which may not be empty, so don't clear
|
|
* slb_cache_ptr).
|
|
*/
|
|
void __slb_restore_bolted_realmode(void)
|
|
{
|
|
struct slb_shadow *p = get_slb_shadow();
|
|
enum slb_index index;
|
|
|
|
/* No isync needed because realmode. */
|
|
for (index = 0; index < SLB_NUM_BOLTED; index++) {
|
|
asm volatile("slbmte %0,%1" :
|
|
: "r" (be64_to_cpu(p->save_area[index].vsid)),
|
|
"r" (be64_to_cpu(p->save_area[index].esid)));
|
|
}
|
|
|
|
assert_slb_presence(true, local_paca->kstack);
|
|
}
|
|
|
|
/*
|
|
* Insert the bolted entries into an empty SLB.
|
|
*/
|
|
void slb_restore_bolted_realmode(void)
|
|
{
|
|
__slb_restore_bolted_realmode();
|
|
get_paca()->slb_cache_ptr = 0;
|
|
|
|
get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
|
|
get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
|
|
}
|
|
|
|
/*
|
|
* This flushes all SLB entries including 0, so it must be realmode.
|
|
*/
|
|
void slb_flush_all_realmode(void)
|
|
{
|
|
asm volatile("slbmte %0,%0; slbia" : : "r" (0));
|
|
}
|
|
|
|
/*
|
|
* This flushes non-bolted entries, it can be run in virtual mode. Must
|
|
* be called with interrupts disabled.
|
|
*/
|
|
void slb_flush_and_restore_bolted(void)
|
|
{
|
|
struct slb_shadow *p = get_slb_shadow();
|
|
|
|
BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
/*
|
|
* We can't take a PMU exception in the following code, so hard
|
|
* disable interrupts.
|
|
*/
|
|
hard_irq_disable();
|
|
|
|
asm volatile("isync\n"
|
|
"slbia\n"
|
|
"slbmte %0, %1\n"
|
|
"isync\n"
|
|
:: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)),
|
|
"r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid))
|
|
: "memory");
|
|
assert_slb_presence(true, get_paca()->kstack);
|
|
|
|
get_paca()->slb_cache_ptr = 0;
|
|
|
|
get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
|
|
get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
|
|
}
|
|
|
|
void slb_save_contents(struct slb_entry *slb_ptr)
|
|
{
|
|
int i;
|
|
unsigned long e, v;
|
|
|
|
/* Save slb_cache_ptr value. */
|
|
get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
|
|
|
|
if (!slb_ptr)
|
|
return;
|
|
|
|
for (i = 0; i < mmu_slb_size; i++) {
|
|
asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i));
|
|
asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i));
|
|
slb_ptr->esid = e;
|
|
slb_ptr->vsid = v;
|
|
slb_ptr++;
|
|
}
|
|
}
|
|
|
|
void slb_dump_contents(struct slb_entry *slb_ptr)
|
|
{
|
|
int i, n;
|
|
unsigned long e, v;
|
|
unsigned long llp;
|
|
|
|
if (!slb_ptr)
|
|
return;
|
|
|
|
pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
|
|
pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr);
|
|
|
|
for (i = 0; i < mmu_slb_size; i++) {
|
|
e = slb_ptr->esid;
|
|
v = slb_ptr->vsid;
|
|
slb_ptr++;
|
|
|
|
if (!e && !v)
|
|
continue;
|
|
|
|
pr_err("%02d %016lx %016lx\n", i, e, v);
|
|
|
|
if (!(e & SLB_ESID_V)) {
|
|
pr_err("\n");
|
|
continue;
|
|
}
|
|
llp = v & SLB_VSID_LLP;
|
|
if (v & SLB_VSID_B_1T) {
|
|
pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
|
|
GET_ESID_1T(e),
|
|
(v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
|
|
} else {
|
|
pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
|
|
GET_ESID(e),
|
|
(v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
|
|
}
|
|
}
|
|
pr_err("----------------------------------\n");
|
|
|
|
/* Dump slb cache entires as well. */
|
|
pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
|
|
pr_err("Valid SLB cache entries:\n");
|
|
n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
|
|
for (i = 0; i < n; i++)
|
|
pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
|
|
pr_err("Rest of SLB cache entries:\n");
|
|
for (i = n; i < SLB_CACHE_ENTRIES; i++)
|
|
pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
|
|
}
|
|
|
|
void slb_vmalloc_update(void)
|
|
{
|
|
/*
|
|
* vmalloc is not bolted, so just have to flush non-bolted.
|
|
*/
|
|
slb_flush_and_restore_bolted();
|
|
}
|
|
|
|
static bool preload_hit(struct thread_info *ti, unsigned long esid)
|
|
{
|
|
unsigned char i;
|
|
|
|
for (i = 0; i < ti->slb_preload_nr; i++) {
|
|
unsigned char idx;
|
|
|
|
idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
|
|
if (esid == ti->slb_preload_esid[idx])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool preload_add(struct thread_info *ti, unsigned long ea)
|
|
{
|
|
unsigned char idx;
|
|
unsigned long esid;
|
|
|
|
if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
|
|
/* EAs are stored >> 28 so 256MB segments don't need clearing */
|
|
if (ea & ESID_MASK_1T)
|
|
ea &= ESID_MASK_1T;
|
|
}
|
|
|
|
esid = ea >> SID_SHIFT;
|
|
|
|
if (preload_hit(ti, esid))
|
|
return false;
|
|
|
|
idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
|
|
ti->slb_preload_esid[idx] = esid;
|
|
if (ti->slb_preload_nr == SLB_PRELOAD_NR)
|
|
ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
|
|
else
|
|
ti->slb_preload_nr++;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void preload_age(struct thread_info *ti)
|
|
{
|
|
if (!ti->slb_preload_nr)
|
|
return;
|
|
ti->slb_preload_nr--;
|
|
ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
|
|
}
|
|
|
|
void slb_setup_new_exec(void)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long exec = 0x10000000;
|
|
|
|
WARN_ON(irqs_disabled());
|
|
|
|
/*
|
|
* preload cache can only be used to determine whether a SLB
|
|
* entry exists if it does not start to overflow.
|
|
*/
|
|
if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
|
|
return;
|
|
|
|
hard_irq_disable();
|
|
|
|
/*
|
|
* We have no good place to clear the slb preload cache on exec,
|
|
* flush_thread is about the earliest arch hook but that happens
|
|
* after we switch to the mm and have aleady preloaded the SLBEs.
|
|
*
|
|
* For the most part that's probably okay to use entries from the
|
|
* previous exec, they will age out if unused. It may turn out to
|
|
* be an advantage to clear the cache before switching to it,
|
|
* however.
|
|
*/
|
|
|
|
/*
|
|
* preload some userspace segments into the SLB.
|
|
* Almost all 32 and 64bit PowerPC executables are linked at
|
|
* 0x10000000 so it makes sense to preload this segment.
|
|
*/
|
|
if (!is_kernel_addr(exec)) {
|
|
if (preload_add(ti, exec))
|
|
slb_allocate_user(mm, exec);
|
|
}
|
|
|
|
/* Libraries and mmaps. */
|
|
if (!is_kernel_addr(mm->mmap_base)) {
|
|
if (preload_add(ti, mm->mmap_base))
|
|
slb_allocate_user(mm, mm->mmap_base);
|
|
}
|
|
|
|
/* see switch_slb */
|
|
asm volatile("isync" : : : "memory");
|
|
|
|
local_irq_enable();
|
|
}
|
|
|
|
void preload_new_slb_context(unsigned long start, unsigned long sp)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long heap = mm->start_brk;
|
|
|
|
WARN_ON(irqs_disabled());
|
|
|
|
/* see above */
|
|
if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
|
|
return;
|
|
|
|
hard_irq_disable();
|
|
|
|
/* Userspace entry address. */
|
|
if (!is_kernel_addr(start)) {
|
|
if (preload_add(ti, start))
|
|
slb_allocate_user(mm, start);
|
|
}
|
|
|
|
/* Top of stack, grows down. */
|
|
if (!is_kernel_addr(sp)) {
|
|
if (preload_add(ti, sp))
|
|
slb_allocate_user(mm, sp);
|
|
}
|
|
|
|
/* Bottom of heap, grows up. */
|
|
if (heap && !is_kernel_addr(heap)) {
|
|
if (preload_add(ti, heap))
|
|
slb_allocate_user(mm, heap);
|
|
}
|
|
|
|
/* see switch_slb */
|
|
asm volatile("isync" : : : "memory");
|
|
|
|
local_irq_enable();
|
|
}
|
|
|
|
|
|
/* Flush all user entries from the segment table of the current processor. */
|
|
void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
struct thread_info *ti = task_thread_info(tsk);
|
|
unsigned char i;
|
|
|
|
/*
|
|
* We need interrupts hard-disabled here, not just soft-disabled,
|
|
* so that a PMU interrupt can't occur, which might try to access
|
|
* user memory (to get a stack trace) and possible cause an SLB miss
|
|
* which would update the slb_cache/slb_cache_ptr fields in the PACA.
|
|
*/
|
|
hard_irq_disable();
|
|
asm volatile("isync" : : : "memory");
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
/*
|
|
* SLBIA IH=3 invalidates all Class=1 SLBEs and their
|
|
* associated lookaside structures, which matches what
|
|
* switch_slb wants. So ARCH_300 does not use the slb
|
|
* cache.
|
|
*/
|
|
asm volatile(PPC_SLBIA(3));
|
|
} else {
|
|
unsigned long offset = get_paca()->slb_cache_ptr;
|
|
|
|
if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
|
|
offset <= SLB_CACHE_ENTRIES) {
|
|
unsigned long slbie_data = 0;
|
|
|
|
for (i = 0; i < offset; i++) {
|
|
unsigned long ea;
|
|
|
|
ea = (unsigned long)
|
|
get_paca()->slb_cache[i] << SID_SHIFT;
|
|
/*
|
|
* Could assert_slb_presence(true) here, but
|
|
* hypervisor or machine check could have come
|
|
* in and removed the entry at this point.
|
|
*/
|
|
|
|
slbie_data = ea;
|
|
slbie_data |= user_segment_size(slbie_data)
|
|
<< SLBIE_SSIZE_SHIFT;
|
|
slbie_data |= SLBIE_C; /* user slbs have C=1 */
|
|
asm volatile("slbie %0" : : "r" (slbie_data));
|
|
}
|
|
|
|
/* Workaround POWER5 < DD2.1 issue */
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
|
|
asm volatile("slbie %0" : : "r" (slbie_data));
|
|
|
|
} else {
|
|
struct slb_shadow *p = get_slb_shadow();
|
|
unsigned long ksp_esid_data =
|
|
be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
|
|
unsigned long ksp_vsid_data =
|
|
be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
|
|
|
|
asm volatile(PPC_SLBIA(1) "\n"
|
|
"slbmte %0,%1\n"
|
|
"isync"
|
|
:: "r"(ksp_vsid_data),
|
|
"r"(ksp_esid_data));
|
|
|
|
get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
|
|
}
|
|
|
|
get_paca()->slb_cache_ptr = 0;
|
|
}
|
|
get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
|
|
|
|
copy_mm_to_paca(mm);
|
|
|
|
/*
|
|
* We gradually age out SLBs after a number of context switches to
|
|
* reduce reload overhead of unused entries (like we do with FP/VEC
|
|
* reload). Each time we wrap 256 switches, take an entry out of the
|
|
* SLB preload cache.
|
|
*/
|
|
tsk->thread.load_slb++;
|
|
if (!tsk->thread.load_slb) {
|
|
unsigned long pc = KSTK_EIP(tsk);
|
|
|
|
preload_age(ti);
|
|
preload_add(ti, pc);
|
|
}
|
|
|
|
for (i = 0; i < ti->slb_preload_nr; i++) {
|
|
unsigned char idx;
|
|
unsigned long ea;
|
|
|
|
idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
|
|
ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
|
|
|
|
slb_allocate_user(mm, ea);
|
|
}
|
|
|
|
/*
|
|
* Synchronize slbmte preloads with possible subsequent user memory
|
|
* address accesses by the kernel (user mode won't happen until
|
|
* rfid, which is safe).
|
|
*/
|
|
asm volatile("isync" : : : "memory");
|
|
}
|
|
|
|
void slb_set_size(u16 size)
|
|
{
|
|
mmu_slb_size = size;
|
|
}
|
|
|
|
void slb_initialize(void)
|
|
{
|
|
unsigned long linear_llp, vmalloc_llp, io_llp;
|
|
unsigned long lflags;
|
|
static int slb_encoding_inited;
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
unsigned long vmemmap_llp;
|
|
#endif
|
|
|
|
/* Prepare our SLB miss handler based on our page size */
|
|
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
|
io_llp = mmu_psize_defs[mmu_io_psize].sllp;
|
|
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
|
|
get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
|
|
#endif
|
|
if (!slb_encoding_inited) {
|
|
slb_encoding_inited = 1;
|
|
pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
|
|
pr_devel("SLB: io LLP = %04lx\n", io_llp);
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
|
|
#endif
|
|
}
|
|
|
|
get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
|
|
get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
|
|
get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
|
|
|
|
lflags = SLB_VSID_KERNEL | linear_llp;
|
|
|
|
/* Invalidate the entire SLB (even entry 0) & all the ERATS */
|
|
asm volatile("isync":::"memory");
|
|
asm volatile("slbmte %0,%0"::"r" (0) : "memory");
|
|
asm volatile("isync; slbia; isync":::"memory");
|
|
create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
|
|
|
|
/*
|
|
* For the boot cpu, we're running on the stack in init_thread_union,
|
|
* which is in the first segment of the linear mapping, and also
|
|
* get_paca()->kstack hasn't been initialized yet.
|
|
* For secondary cpus, we need to bolt the kernel stack entry now.
|
|
*/
|
|
slb_shadow_clear(KSTACK_INDEX);
|
|
if (raw_smp_processor_id() != boot_cpuid &&
|
|
(get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
|
|
create_shadowed_slbe(get_paca()->kstack,
|
|
mmu_kernel_ssize, lflags, KSTACK_INDEX);
|
|
|
|
asm volatile("isync":::"memory");
|
|
}
|
|
|
|
static void slb_cache_update(unsigned long esid_data)
|
|
{
|
|
int slb_cache_index;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
return; /* ISAv3.0B and later does not use slb_cache */
|
|
|
|
/*
|
|
* Now update slb cache entries
|
|
*/
|
|
slb_cache_index = local_paca->slb_cache_ptr;
|
|
if (slb_cache_index < SLB_CACHE_ENTRIES) {
|
|
/*
|
|
* We have space in slb cache for optimized switch_slb().
|
|
* Top 36 bits from esid_data as per ISA
|
|
*/
|
|
local_paca->slb_cache[slb_cache_index++] = esid_data >> 28;
|
|
local_paca->slb_cache_ptr++;
|
|
} else {
|
|
/*
|
|
* Our cache is full and the current cache content strictly
|
|
* doesn't indicate the active SLB conents. Bump the ptr
|
|
* so that switch_slb() will ignore the cache.
|
|
*/
|
|
local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
|
|
}
|
|
}
|
|
|
|
static enum slb_index alloc_slb_index(bool kernel)
|
|
{
|
|
enum slb_index index;
|
|
|
|
/*
|
|
* The allocation bitmaps can become out of synch with the SLB
|
|
* when the _switch code does slbie when bolting a new stack
|
|
* segment and it must not be anywhere else in the SLB. This leaves
|
|
* a kernel allocated entry that is unused in the SLB. With very
|
|
* large systems or small segment sizes, the bitmaps could slowly
|
|
* fill with these entries. They will eventually be cleared out
|
|
* by the round robin allocator in that case, so it's probably not
|
|
* worth accounting for.
|
|
*/
|
|
|
|
/*
|
|
* SLBs beyond 32 entries are allocated with stab_rr only
|
|
* POWER7/8/9 have 32 SLB entries, this could be expanded if a
|
|
* future CPU has more.
|
|
*/
|
|
if (local_paca->slb_used_bitmap != U32_MAX) {
|
|
index = ffz(local_paca->slb_used_bitmap);
|
|
local_paca->slb_used_bitmap |= 1U << index;
|
|
if (kernel)
|
|
local_paca->slb_kern_bitmap |= 1U << index;
|
|
} else {
|
|
/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
|
|
index = local_paca->stab_rr;
|
|
if (index < (mmu_slb_size - 1))
|
|
index++;
|
|
else
|
|
index = SLB_NUM_BOLTED;
|
|
local_paca->stab_rr = index;
|
|
if (index < 32) {
|
|
if (kernel)
|
|
local_paca->slb_kern_bitmap |= 1U << index;
|
|
else
|
|
local_paca->slb_kern_bitmap &= ~(1U << index);
|
|
}
|
|
}
|
|
BUG_ON(index < SLB_NUM_BOLTED);
|
|
|
|
return index;
|
|
}
|
|
|
|
static long slb_insert_entry(unsigned long ea, unsigned long context,
|
|
unsigned long flags, int ssize, bool kernel)
|
|
{
|
|
unsigned long vsid;
|
|
unsigned long vsid_data, esid_data;
|
|
enum slb_index index;
|
|
|
|
vsid = get_vsid(context, ea, ssize);
|
|
if (!vsid)
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* There must not be a kernel SLB fault in alloc_slb_index or before
|
|
* slbmte here or the allocation bitmaps could get out of whack with
|
|
* the SLB.
|
|
*
|
|
* User SLB faults or preloads take this path which might get inlined
|
|
* into the caller, so add compiler barriers here to ensure unsafe
|
|
* memory accesses do not come between.
|
|
*/
|
|
barrier();
|
|
|
|
index = alloc_slb_index(kernel);
|
|
|
|
vsid_data = __mk_vsid_data(vsid, ssize, flags);
|
|
esid_data = mk_esid_data(ea, ssize, index);
|
|
|
|
/*
|
|
* No need for an isync before or after this slbmte. The exception
|
|
* we enter with and the rfid we exit with are context synchronizing.
|
|
* User preloads should add isync afterwards in case the kernel
|
|
* accesses user memory before it returns to userspace with rfid.
|
|
*/
|
|
assert_slb_presence(false, ea);
|
|
asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
|
|
|
|
barrier();
|
|
|
|
if (!kernel)
|
|
slb_cache_update(esid_data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long slb_allocate_kernel(unsigned long ea, unsigned long id)
|
|
{
|
|
unsigned long context;
|
|
unsigned long flags;
|
|
int ssize;
|
|
|
|
if (id == LINEAR_MAP_REGION_ID) {
|
|
|
|
/* We only support upto MAX_PHYSMEM_BITS */
|
|
if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS))
|
|
return -EFAULT;
|
|
|
|
flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
} else if (id == VMEMMAP_REGION_ID) {
|
|
|
|
if (ea >= H_VMEMMAP_END)
|
|
return -EFAULT;
|
|
|
|
flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
|
|
#endif
|
|
} else if (id == VMALLOC_REGION_ID) {
|
|
|
|
if (ea >= H_VMALLOC_END)
|
|
return -EFAULT;
|
|
|
|
flags = local_paca->vmalloc_sllp;
|
|
|
|
} else if (id == IO_REGION_ID) {
|
|
|
|
if (ea >= H_KERN_IO_END)
|
|
return -EFAULT;
|
|
|
|
flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
|
|
|
|
} else {
|
|
return -EFAULT;
|
|
}
|
|
|
|
ssize = MMU_SEGSIZE_1T;
|
|
if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
ssize = MMU_SEGSIZE_256M;
|
|
|
|
context = get_kernel_context(ea);
|
|
|
|
return slb_insert_entry(ea, context, flags, ssize, true);
|
|
}
|
|
|
|
static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
|
|
{
|
|
unsigned long context;
|
|
unsigned long flags;
|
|
int bpsize;
|
|
int ssize;
|
|
|
|
/*
|
|
* consider this as bad access if we take a SLB miss
|
|
* on an address above addr limit.
|
|
*/
|
|
if (ea >= mm_ctx_slb_addr_limit(&mm->context))
|
|
return -EFAULT;
|
|
|
|
context = get_user_context(&mm->context, ea);
|
|
if (!context)
|
|
return -EFAULT;
|
|
|
|
if (unlikely(ea >= H_PGTABLE_RANGE)) {
|
|
WARN_ON(1);
|
|
return -EFAULT;
|
|
}
|
|
|
|
ssize = user_segment_size(ea);
|
|
|
|
bpsize = get_slice_psize(mm, ea);
|
|
flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
|
|
|
|
return slb_insert_entry(ea, context, flags, ssize, false);
|
|
}
|
|
|
|
long do_slb_fault(struct pt_regs *regs, unsigned long ea)
|
|
{
|
|
unsigned long id = get_region_id(ea);
|
|
|
|
/* IRQs are not reconciled here, so can't check irqs_disabled */
|
|
VM_WARN_ON(mfmsr() & MSR_EE);
|
|
|
|
if (unlikely(!(regs->msr & MSR_RI)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* SLB kernel faults must be very careful not to touch anything
|
|
* that is not bolted. E.g., PACA and global variables are okay,
|
|
* mm->context stuff is not.
|
|
*
|
|
* SLB user faults can access all of kernel memory, but must be
|
|
* careful not to touch things like IRQ state because it is not
|
|
* "reconciled" here. The difficulty is that we must use
|
|
* fast_exception_return to return from kernel SLB faults without
|
|
* looking at possible non-bolted memory. We could test user vs
|
|
* kernel faults in the interrupt handler asm and do a full fault,
|
|
* reconcile, ret_from_except for user faults which would make them
|
|
* first class kernel code. But for performance it's probably nicer
|
|
* if they go via fast_exception_return too.
|
|
*/
|
|
if (id >= LINEAR_MAP_REGION_ID) {
|
|
long err;
|
|
#ifdef CONFIG_DEBUG_VM
|
|
/* Catch recursive kernel SLB faults. */
|
|
BUG_ON(local_paca->in_kernel_slb_handler);
|
|
local_paca->in_kernel_slb_handler = 1;
|
|
#endif
|
|
err = slb_allocate_kernel(ea, id);
|
|
#ifdef CONFIG_DEBUG_VM
|
|
local_paca->in_kernel_slb_handler = 0;
|
|
#endif
|
|
return err;
|
|
} else {
|
|
struct mm_struct *mm = current->mm;
|
|
long err;
|
|
|
|
if (unlikely(!mm))
|
|
return -EFAULT;
|
|
|
|
err = slb_allocate_user(mm, ea);
|
|
if (!err)
|
|
preload_add(current_thread_info(), ea);
|
|
|
|
return err;
|
|
}
|
|
}
|
|
|
|
void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
|
|
{
|
|
if (err == -EFAULT) {
|
|
if (user_mode(regs))
|
|
_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
|
|
else
|
|
bad_page_fault(regs, ea, SIGSEGV);
|
|
} else if (err == -EINVAL) {
|
|
unrecoverable_exception(regs);
|
|
} else {
|
|
BUG();
|
|
}
|
|
}
|