mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 07:09:15 +07:00
2874c5fd28
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1432 lines
33 KiB
C
1432 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* SMP support for ppc.
|
|
*
|
|
* Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
|
|
* deal of code from the sparc and intel versions.
|
|
*
|
|
* Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
|
|
*
|
|
* PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
|
|
* Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/sched/topology.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/err.h>
|
|
#include <linux/device.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/processor.h>
|
|
#include <linux/random.h>
|
|
#include <linux/stackprotector.h>
|
|
|
|
#include <asm/ptrace.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/dbell.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/time.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/mpic.h>
|
|
#include <asm/vdso_datapage.h>
|
|
#ifdef CONFIG_PPC64
|
|
#include <asm/paca.h>
|
|
#endif
|
|
#include <asm/vdso.h>
|
|
#include <asm/debug.h>
|
|
#include <asm/kexec.h>
|
|
#include <asm/asm-prototypes.h>
|
|
#include <asm/cpu_has_feature.h>
|
|
#include <asm/ftrace.h>
|
|
|
|
#ifdef DEBUG
|
|
#include <asm/udbg.h>
|
|
#define DBG(fmt...) udbg_printf(fmt)
|
|
#else
|
|
#define DBG(fmt...)
|
|
#endif
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/* State of each CPU during hotplug phases */
|
|
static DEFINE_PER_CPU(int, cpu_state) = { 0 };
|
|
#endif
|
|
|
|
struct task_struct *secondary_current;
|
|
bool has_big_cores;
|
|
|
|
DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
|
|
DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
|
|
DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
|
|
DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
|
|
|
|
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
|
|
EXPORT_SYMBOL_GPL(has_big_cores);
|
|
|
|
#define MAX_THREAD_LIST_SIZE 8
|
|
#define THREAD_GROUP_SHARE_L1 1
|
|
struct thread_groups {
|
|
unsigned int property;
|
|
unsigned int nr_groups;
|
|
unsigned int threads_per_group;
|
|
unsigned int thread_list[MAX_THREAD_LIST_SIZE];
|
|
};
|
|
|
|
/*
|
|
* On big-cores system, cpu_l1_cache_map for each CPU corresponds to
|
|
* the set its siblings that share the L1-cache.
|
|
*/
|
|
DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
|
|
|
|
/* SMP operations for this machine */
|
|
struct smp_ops_t *smp_ops;
|
|
|
|
/* Can't be static due to PowerMac hackery */
|
|
volatile unsigned int cpu_callin_map[NR_CPUS];
|
|
|
|
int smt_enabled_at_boot = 1;
|
|
|
|
/*
|
|
* Returns 1 if the specified cpu should be brought up during boot.
|
|
* Used to inhibit booting threads if they've been disabled or
|
|
* limited on the command line
|
|
*/
|
|
int smp_generic_cpu_bootable(unsigned int nr)
|
|
{
|
|
/* Special case - we inhibit secondary thread startup
|
|
* during boot if the user requests it.
|
|
*/
|
|
if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
|
|
if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
|
|
return 0;
|
|
if (smt_enabled_at_boot
|
|
&& cpu_thread_in_core(nr) >= smt_enabled_at_boot)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PPC64
|
|
int smp_generic_kick_cpu(int nr)
|
|
{
|
|
if (nr < 0 || nr >= nr_cpu_ids)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The processor is currently spinning, waiting for the
|
|
* cpu_start field to become non-zero After we set cpu_start,
|
|
* the processor will continue on to secondary_start
|
|
*/
|
|
if (!paca_ptrs[nr]->cpu_start) {
|
|
paca_ptrs[nr]->cpu_start = 1;
|
|
smp_mb();
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* Ok it's not there, so it might be soft-unplugged, let's
|
|
* try to bring it back
|
|
*/
|
|
generic_set_cpu_up(nr);
|
|
smp_wmb();
|
|
smp_send_reschedule(nr);
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
static irqreturn_t call_function_action(int irq, void *data)
|
|
{
|
|
generic_smp_call_function_interrupt();
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t reschedule_action(int irq, void *data)
|
|
{
|
|
scheduler_ipi();
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
|
|
{
|
|
timer_broadcast_interrupt();
|
|
return IRQ_HANDLED;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_NMI_IPI
|
|
static irqreturn_t nmi_ipi_action(int irq, void *data)
|
|
{
|
|
smp_handle_nmi_ipi(get_irq_regs());
|
|
return IRQ_HANDLED;
|
|
}
|
|
#endif
|
|
|
|
static irq_handler_t smp_ipi_action[] = {
|
|
[PPC_MSG_CALL_FUNCTION] = call_function_action,
|
|
[PPC_MSG_RESCHEDULE] = reschedule_action,
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
|
|
#endif
|
|
#ifdef CONFIG_NMI_IPI
|
|
[PPC_MSG_NMI_IPI] = nmi_ipi_action,
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* The NMI IPI is a fallback and not truly non-maskable. It is simpler
|
|
* than going through the call function infrastructure, and strongly
|
|
* serialized, so it is more appropriate for debugging.
|
|
*/
|
|
const char *smp_ipi_name[] = {
|
|
[PPC_MSG_CALL_FUNCTION] = "ipi call function",
|
|
[PPC_MSG_RESCHEDULE] = "ipi reschedule",
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
|
|
#endif
|
|
#ifdef CONFIG_NMI_IPI
|
|
[PPC_MSG_NMI_IPI] = "nmi ipi",
|
|
#endif
|
|
};
|
|
|
|
/* optional function to request ipi, for controllers with >= 4 ipis */
|
|
int smp_request_message_ipi(int virq, int msg)
|
|
{
|
|
int err;
|
|
|
|
if (msg < 0 || msg > PPC_MSG_NMI_IPI)
|
|
return -EINVAL;
|
|
#ifndef CONFIG_NMI_IPI
|
|
if (msg == PPC_MSG_NMI_IPI)
|
|
return 1;
|
|
#endif
|
|
|
|
err = request_irq(virq, smp_ipi_action[msg],
|
|
IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
|
|
smp_ipi_name[msg], NULL);
|
|
WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
|
|
virq, smp_ipi_name[msg], err);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_SMP_MUXED_IPI
|
|
struct cpu_messages {
|
|
long messages; /* current messages */
|
|
};
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
|
|
|
|
void smp_muxed_ipi_set_message(int cpu, int msg)
|
|
{
|
|
struct cpu_messages *info = &per_cpu(ipi_message, cpu);
|
|
char *message = (char *)&info->messages;
|
|
|
|
/*
|
|
* Order previous accesses before accesses in the IPI handler.
|
|
*/
|
|
smp_mb();
|
|
message[msg] = 1;
|
|
}
|
|
|
|
void smp_muxed_ipi_message_pass(int cpu, int msg)
|
|
{
|
|
smp_muxed_ipi_set_message(cpu, msg);
|
|
|
|
/*
|
|
* cause_ipi functions are required to include a full barrier
|
|
* before doing whatever causes the IPI.
|
|
*/
|
|
smp_ops->cause_ipi(cpu);
|
|
}
|
|
|
|
#ifdef __BIG_ENDIAN__
|
|
#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
|
|
#else
|
|
#define IPI_MESSAGE(A) (1uL << (8 * (A)))
|
|
#endif
|
|
|
|
irqreturn_t smp_ipi_demux(void)
|
|
{
|
|
mb(); /* order any irq clear */
|
|
|
|
return smp_ipi_demux_relaxed();
|
|
}
|
|
|
|
/* sync-free variant. Callers should ensure synchronization */
|
|
irqreturn_t smp_ipi_demux_relaxed(void)
|
|
{
|
|
struct cpu_messages *info;
|
|
unsigned long all;
|
|
|
|
info = this_cpu_ptr(&ipi_message);
|
|
do {
|
|
all = xchg(&info->messages, 0);
|
|
#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
|
|
/*
|
|
* Must check for PPC_MSG_RM_HOST_ACTION messages
|
|
* before PPC_MSG_CALL_FUNCTION messages because when
|
|
* a VM is destroyed, we call kick_all_cpus_sync()
|
|
* to ensure that any pending PPC_MSG_RM_HOST_ACTION
|
|
* messages have completed before we free any VCPUs.
|
|
*/
|
|
if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
|
|
kvmppc_xics_ipi_action();
|
|
#endif
|
|
if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
|
|
generic_smp_call_function_interrupt();
|
|
if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
|
|
scheduler_ipi();
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
|
|
timer_broadcast_interrupt();
|
|
#endif
|
|
#ifdef CONFIG_NMI_IPI
|
|
if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
|
|
nmi_ipi_action(0, NULL);
|
|
#endif
|
|
} while (info->messages);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
#endif /* CONFIG_PPC_SMP_MUXED_IPI */
|
|
|
|
static inline void do_message_pass(int cpu, int msg)
|
|
{
|
|
if (smp_ops->message_pass)
|
|
smp_ops->message_pass(cpu, msg);
|
|
#ifdef CONFIG_PPC_SMP_MUXED_IPI
|
|
else
|
|
smp_muxed_ipi_message_pass(cpu, msg);
|
|
#endif
|
|
}
|
|
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
if (likely(smp_ops))
|
|
do_message_pass(cpu, PPC_MSG_RESCHEDULE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(smp_send_reschedule);
|
|
|
|
void arch_send_call_function_single_ipi(int cpu)
|
|
{
|
|
do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
|
|
}
|
|
|
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_cpu(cpu, mask)
|
|
do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
|
|
}
|
|
|
|
#ifdef CONFIG_NMI_IPI
|
|
|
|
/*
|
|
* "NMI IPI" system.
|
|
*
|
|
* NMI IPIs may not be recoverable, so should not be used as ongoing part of
|
|
* a running system. They can be used for crash, debug, halt/reboot, etc.
|
|
*
|
|
* The IPI call waits with interrupts disabled until all targets enter the
|
|
* NMI handler, then returns. Subsequent IPIs can be issued before targets
|
|
* have returned from their handlers, so there is no guarantee about
|
|
* concurrency or re-entrancy.
|
|
*
|
|
* A new NMI can be issued before all targets exit the handler.
|
|
*
|
|
* The IPI call may time out without all targets entering the NMI handler.
|
|
* In that case, there is some logic to recover (and ignore subsequent
|
|
* NMI interrupts that may eventually be raised), but the platform interrupt
|
|
* handler may not be able to distinguish this from other exception causes,
|
|
* which may cause a crash.
|
|
*/
|
|
|
|
static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
|
|
static struct cpumask nmi_ipi_pending_mask;
|
|
static bool nmi_ipi_busy = false;
|
|
static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
|
|
|
|
static void nmi_ipi_lock_start(unsigned long *flags)
|
|
{
|
|
raw_local_irq_save(*flags);
|
|
hard_irq_disable();
|
|
while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
|
|
raw_local_irq_restore(*flags);
|
|
spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
|
|
raw_local_irq_save(*flags);
|
|
hard_irq_disable();
|
|
}
|
|
}
|
|
|
|
static void nmi_ipi_lock(void)
|
|
{
|
|
while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
|
|
spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
|
|
}
|
|
|
|
static void nmi_ipi_unlock(void)
|
|
{
|
|
smp_mb();
|
|
WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
|
|
atomic_set(&__nmi_ipi_lock, 0);
|
|
}
|
|
|
|
static void nmi_ipi_unlock_end(unsigned long *flags)
|
|
{
|
|
nmi_ipi_unlock();
|
|
raw_local_irq_restore(*flags);
|
|
}
|
|
|
|
/*
|
|
* Platform NMI handler calls this to ack
|
|
*/
|
|
int smp_handle_nmi_ipi(struct pt_regs *regs)
|
|
{
|
|
void (*fn)(struct pt_regs *) = NULL;
|
|
unsigned long flags;
|
|
int me = raw_smp_processor_id();
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Unexpected NMIs are possible here because the interrupt may not
|
|
* be able to distinguish NMI IPIs from other types of NMIs, or
|
|
* because the caller may have timed out.
|
|
*/
|
|
nmi_ipi_lock_start(&flags);
|
|
if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
|
|
cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
|
|
fn = READ_ONCE(nmi_ipi_function);
|
|
WARN_ON_ONCE(!fn);
|
|
ret = 1;
|
|
}
|
|
nmi_ipi_unlock_end(&flags);
|
|
|
|
if (fn)
|
|
fn(regs);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void do_smp_send_nmi_ipi(int cpu, bool safe)
|
|
{
|
|
if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
|
|
return;
|
|
|
|
if (cpu >= 0) {
|
|
do_message_pass(cpu, PPC_MSG_NMI_IPI);
|
|
} else {
|
|
int c;
|
|
|
|
for_each_online_cpu(c) {
|
|
if (c == raw_smp_processor_id())
|
|
continue;
|
|
do_message_pass(c, PPC_MSG_NMI_IPI);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
|
|
* - fn is the target callback function.
|
|
* - delay_us > 0 is the delay before giving up waiting for targets to
|
|
* begin executing the handler, == 0 specifies indefinite delay.
|
|
*/
|
|
static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
|
|
u64 delay_us, bool safe)
|
|
{
|
|
unsigned long flags;
|
|
int me = raw_smp_processor_id();
|
|
int ret = 1;
|
|
|
|
BUG_ON(cpu == me);
|
|
BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
|
|
|
|
if (unlikely(!smp_ops))
|
|
return 0;
|
|
|
|
nmi_ipi_lock_start(&flags);
|
|
while (nmi_ipi_busy) {
|
|
nmi_ipi_unlock_end(&flags);
|
|
spin_until_cond(!nmi_ipi_busy);
|
|
nmi_ipi_lock_start(&flags);
|
|
}
|
|
nmi_ipi_busy = true;
|
|
nmi_ipi_function = fn;
|
|
|
|
WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
|
|
|
|
if (cpu < 0) {
|
|
/* ALL_OTHERS */
|
|
cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
|
|
cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
|
|
} else {
|
|
cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
|
|
}
|
|
|
|
nmi_ipi_unlock();
|
|
|
|
/* Interrupts remain hard disabled */
|
|
|
|
do_smp_send_nmi_ipi(cpu, safe);
|
|
|
|
nmi_ipi_lock();
|
|
/* nmi_ipi_busy is set here, so unlock/lock is okay */
|
|
while (!cpumask_empty(&nmi_ipi_pending_mask)) {
|
|
nmi_ipi_unlock();
|
|
udelay(1);
|
|
nmi_ipi_lock();
|
|
if (delay_us) {
|
|
delay_us--;
|
|
if (!delay_us)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!cpumask_empty(&nmi_ipi_pending_mask)) {
|
|
/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
|
|
ret = 0;
|
|
cpumask_clear(&nmi_ipi_pending_mask);
|
|
}
|
|
|
|
nmi_ipi_function = NULL;
|
|
nmi_ipi_busy = false;
|
|
|
|
nmi_ipi_unlock_end(&flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
|
|
{
|
|
return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
|
|
}
|
|
|
|
int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
|
|
{
|
|
return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
|
|
}
|
|
#endif /* CONFIG_NMI_IPI */
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
void tick_broadcast(const struct cpumask *mask)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_cpu(cpu, mask)
|
|
do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUGGER
|
|
void debugger_ipi_callback(struct pt_regs *regs)
|
|
{
|
|
debugger_ipi(regs);
|
|
}
|
|
|
|
void smp_send_debugger_break(void)
|
|
{
|
|
smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
|
|
{
|
|
int cpu;
|
|
|
|
smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
|
|
if (kdump_in_progress() && crash_wake_offline) {
|
|
for_each_present_cpu(cpu) {
|
|
if (cpu_online(cpu))
|
|
continue;
|
|
/*
|
|
* crash_ipi_callback will wait for
|
|
* all cpus, including offline CPUs.
|
|
* We don't care about nmi_ipi_function.
|
|
* Offline cpus will jump straight into
|
|
* crash_ipi_callback, we can skip the
|
|
* entire NMI dance and waiting for
|
|
* cpus to clear pending mask, etc.
|
|
*/
|
|
do_smp_send_nmi_ipi(cpu, false);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_NMI_IPI
|
|
static void nmi_stop_this_cpu(struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* IRQs are already hard disabled by the smp_handle_nmi_ipi.
|
|
*/
|
|
spin_begin();
|
|
while (1)
|
|
spin_cpu_relax();
|
|
}
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
|
|
}
|
|
|
|
#else /* CONFIG_NMI_IPI */
|
|
|
|
static void stop_this_cpu(void *dummy)
|
|
{
|
|
hard_irq_disable();
|
|
spin_begin();
|
|
while (1)
|
|
spin_cpu_relax();
|
|
}
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
static bool stopped = false;
|
|
|
|
/*
|
|
* Prevent waiting on csd lock from a previous smp_send_stop.
|
|
* This is racy, but in general callers try to do the right
|
|
* thing and only fire off one smp_send_stop (e.g., see
|
|
* kernel/panic.c)
|
|
*/
|
|
if (stopped)
|
|
return;
|
|
|
|
stopped = true;
|
|
|
|
smp_call_function(stop_this_cpu, NULL, 0);
|
|
}
|
|
#endif /* CONFIG_NMI_IPI */
|
|
|
|
struct task_struct *current_set[NR_CPUS];
|
|
|
|
static void smp_store_cpu_info(int id)
|
|
{
|
|
per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
per_cpu(next_tlbcam_idx, id)
|
|
= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Relationships between CPUs are maintained in a set of per-cpu cpumasks so
|
|
* rather than just passing around the cpumask we pass around a function that
|
|
* returns the that cpumask for the given CPU.
|
|
*/
|
|
static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
|
|
{
|
|
cpumask_set_cpu(i, get_cpumask(j));
|
|
cpumask_set_cpu(j, get_cpumask(i));
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void set_cpus_unrelated(int i, int j,
|
|
struct cpumask *(*get_cpumask)(int))
|
|
{
|
|
cpumask_clear_cpu(i, get_cpumask(j));
|
|
cpumask_clear_cpu(j, get_cpumask(i));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* parse_thread_groups: Parses the "ibm,thread-groups" device tree
|
|
* property for the CPU device node @dn and stores
|
|
* the parsed output in the thread_groups
|
|
* structure @tg if the ibm,thread-groups[0]
|
|
* matches @property.
|
|
*
|
|
* @dn: The device node of the CPU device.
|
|
* @tg: Pointer to a thread group structure into which the parsed
|
|
* output of "ibm,thread-groups" is stored.
|
|
* @property: The property of the thread-group that the caller is
|
|
* interested in.
|
|
*
|
|
* ibm,thread-groups[0..N-1] array defines which group of threads in
|
|
* the CPU-device node can be grouped together based on the property.
|
|
*
|
|
* ibm,thread-groups[0] tells us the property based on which the
|
|
* threads are being grouped together. If this value is 1, it implies
|
|
* that the threads in the same group share L1, translation cache.
|
|
*
|
|
* ibm,thread-groups[1] tells us how many such thread groups exist.
|
|
*
|
|
* ibm,thread-groups[2] tells us the number of threads in each such
|
|
* group.
|
|
*
|
|
* ibm,thread-groups[3..N-1] is the list of threads identified by
|
|
* "ibm,ppc-interrupt-server#s" arranged as per their membership in
|
|
* the grouping.
|
|
*
|
|
* Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
|
|
* implies that there are 2 groups of 4 threads each, where each group
|
|
* of threads share L1, translation cache.
|
|
*
|
|
* The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
|
|
* and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
|
|
* 11, 12} structure
|
|
*
|
|
* Returns 0 on success, -EINVAL if the property does not exist,
|
|
* -ENODATA if property does not have a value, and -EOVERFLOW if the
|
|
* property data isn't large enough.
|
|
*/
|
|
static int parse_thread_groups(struct device_node *dn,
|
|
struct thread_groups *tg,
|
|
unsigned int property)
|
|
{
|
|
int i;
|
|
u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
|
|
u32 *thread_list;
|
|
size_t total_threads;
|
|
int ret;
|
|
|
|
ret = of_property_read_u32_array(dn, "ibm,thread-groups",
|
|
thread_group_array, 3);
|
|
if (ret)
|
|
return ret;
|
|
|
|
tg->property = thread_group_array[0];
|
|
tg->nr_groups = thread_group_array[1];
|
|
tg->threads_per_group = thread_group_array[2];
|
|
if (tg->property != property ||
|
|
tg->nr_groups < 1 ||
|
|
tg->threads_per_group < 1)
|
|
return -ENODATA;
|
|
|
|
total_threads = tg->nr_groups * tg->threads_per_group;
|
|
|
|
ret = of_property_read_u32_array(dn, "ibm,thread-groups",
|
|
thread_group_array,
|
|
3 + total_threads);
|
|
if (ret)
|
|
return ret;
|
|
|
|
thread_list = &thread_group_array[3];
|
|
|
|
for (i = 0 ; i < total_threads; i++)
|
|
tg->thread_list[i] = thread_list[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* get_cpu_thread_group_start : Searches the thread group in tg->thread_list
|
|
* that @cpu belongs to.
|
|
*
|
|
* @cpu : The logical CPU whose thread group is being searched.
|
|
* @tg : The thread-group structure of the CPU node which @cpu belongs
|
|
* to.
|
|
*
|
|
* Returns the index to tg->thread_list that points to the the start
|
|
* of the thread_group that @cpu belongs to.
|
|
*
|
|
* Returns -1 if cpu doesn't belong to any of the groups pointed to by
|
|
* tg->thread_list.
|
|
*/
|
|
static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
|
|
{
|
|
int hw_cpu_id = get_hard_smp_processor_id(cpu);
|
|
int i, j;
|
|
|
|
for (i = 0; i < tg->nr_groups; i++) {
|
|
int group_start = i * tg->threads_per_group;
|
|
|
|
for (j = 0; j < tg->threads_per_group; j++) {
|
|
int idx = group_start + j;
|
|
|
|
if (tg->thread_list[idx] == hw_cpu_id)
|
|
return group_start;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int init_cpu_l1_cache_map(int cpu)
|
|
|
|
{
|
|
struct device_node *dn = of_get_cpu_node(cpu, NULL);
|
|
struct thread_groups tg = {.property = 0,
|
|
.nr_groups = 0,
|
|
.threads_per_group = 0};
|
|
int first_thread = cpu_first_thread_sibling(cpu);
|
|
int i, cpu_group_start = -1, err = 0;
|
|
|
|
if (!dn)
|
|
return -ENODATA;
|
|
|
|
err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
|
|
if (err)
|
|
goto out;
|
|
|
|
zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
|
|
GFP_KERNEL,
|
|
cpu_to_node(cpu));
|
|
|
|
cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
|
|
|
|
if (unlikely(cpu_group_start == -1)) {
|
|
WARN_ON_ONCE(1);
|
|
err = -ENODATA;
|
|
goto out;
|
|
}
|
|
|
|
for (i = first_thread; i < first_thread + threads_per_core; i++) {
|
|
int i_group_start = get_cpu_thread_group_start(i, &tg);
|
|
|
|
if (unlikely(i_group_start == -1)) {
|
|
WARN_ON_ONCE(1);
|
|
err = -ENODATA;
|
|
goto out;
|
|
}
|
|
|
|
if (i_group_start == cpu_group_start)
|
|
cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
|
|
}
|
|
|
|
out:
|
|
of_node_put(dn);
|
|
return err;
|
|
}
|
|
|
|
static int init_big_cores(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int err = init_cpu_l1_cache_map(cpu);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
|
|
GFP_KERNEL,
|
|
cpu_to_node(cpu));
|
|
}
|
|
|
|
has_big_cores = true;
|
|
return 0;
|
|
}
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
DBG("smp_prepare_cpus\n");
|
|
|
|
/*
|
|
* setup_cpu may need to be called on the boot cpu. We havent
|
|
* spun any cpus up but lets be paranoid.
|
|
*/
|
|
BUG_ON(boot_cpuid != smp_processor_id());
|
|
|
|
/* Fixup boot cpu */
|
|
smp_store_cpu_info(boot_cpuid);
|
|
cpu_callin_map[boot_cpuid] = 1;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
/*
|
|
* numa_node_id() works after this.
|
|
*/
|
|
if (cpu_present(cpu)) {
|
|
set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
|
|
set_cpu_numa_mem(cpu,
|
|
local_memory_node(numa_cpu_lookup_table[cpu]));
|
|
}
|
|
}
|
|
|
|
/* Init the cpumasks so the boot CPU is related to itself */
|
|
cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
|
|
cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
|
|
cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
|
|
|
|
init_big_cores();
|
|
if (has_big_cores) {
|
|
cpumask_set_cpu(boot_cpuid,
|
|
cpu_smallcore_mask(boot_cpuid));
|
|
}
|
|
|
|
if (smp_ops && smp_ops->probe)
|
|
smp_ops->probe();
|
|
}
|
|
|
|
void smp_prepare_boot_cpu(void)
|
|
{
|
|
BUG_ON(smp_processor_id() != boot_cpuid);
|
|
#ifdef CONFIG_PPC64
|
|
paca_ptrs[boot_cpuid]->__current = current;
|
|
#endif
|
|
set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
|
|
current_set[boot_cpuid] = current;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
int generic_cpu_disable(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
if (cpu == boot_cpuid)
|
|
return -EBUSY;
|
|
|
|
set_cpu_online(cpu, false);
|
|
#ifdef CONFIG_PPC64
|
|
vdso_data->processorCount--;
|
|
#endif
|
|
/* Update affinity of all IRQs previously aimed at this CPU */
|
|
irq_migrate_all_off_this_cpu();
|
|
|
|
/*
|
|
* Depending on the details of the interrupt controller, it's possible
|
|
* that one of the interrupts we just migrated away from this CPU is
|
|
* actually already pending on this CPU. If we leave it in that state
|
|
* the interrupt will never be EOI'ed, and will never fire again. So
|
|
* temporarily enable interrupts here, to allow any pending interrupt to
|
|
* be received (and EOI'ed), before we take this CPU offline.
|
|
*/
|
|
local_irq_enable();
|
|
mdelay(1);
|
|
local_irq_disable();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void generic_cpu_die(unsigned int cpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
smp_rmb();
|
|
if (is_cpu_dead(cpu))
|
|
return;
|
|
msleep(100);
|
|
}
|
|
printk(KERN_ERR "CPU%d didn't die...\n", cpu);
|
|
}
|
|
|
|
void generic_set_cpu_dead(unsigned int cpu)
|
|
{
|
|
per_cpu(cpu_state, cpu) = CPU_DEAD;
|
|
}
|
|
|
|
/*
|
|
* The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
|
|
* the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
|
|
* which makes the delay in generic_cpu_die() not happen.
|
|
*/
|
|
void generic_set_cpu_up(unsigned int cpu)
|
|
{
|
|
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
|
|
}
|
|
|
|
int generic_check_cpu_restart(unsigned int cpu)
|
|
{
|
|
return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
|
|
}
|
|
|
|
int is_cpu_dead(unsigned int cpu)
|
|
{
|
|
return per_cpu(cpu_state, cpu) == CPU_DEAD;
|
|
}
|
|
|
|
static bool secondaries_inhibited(void)
|
|
{
|
|
return kvm_hv_mode_active();
|
|
}
|
|
|
|
#else /* HOTPLUG_CPU */
|
|
|
|
#define secondaries_inhibited() 0
|
|
|
|
#endif
|
|
|
|
static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
paca_ptrs[cpu]->__current = idle;
|
|
paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
|
|
THREAD_SIZE - STACK_FRAME_OVERHEAD;
|
|
#endif
|
|
idle->cpu = cpu;
|
|
secondary_current = current_set[cpu] = idle;
|
|
}
|
|
|
|
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
|
|
{
|
|
int rc, c;
|
|
|
|
/*
|
|
* Don't allow secondary threads to come online if inhibited
|
|
*/
|
|
if (threads_per_core > 1 && secondaries_inhibited() &&
|
|
cpu_thread_in_subcore(cpu))
|
|
return -EBUSY;
|
|
|
|
if (smp_ops == NULL ||
|
|
(smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
|
|
return -EINVAL;
|
|
|
|
cpu_idle_thread_init(cpu, tidle);
|
|
|
|
/*
|
|
* The platform might need to allocate resources prior to bringing
|
|
* up the CPU
|
|
*/
|
|
if (smp_ops->prepare_cpu) {
|
|
rc = smp_ops->prepare_cpu(cpu);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
/* Make sure callin-map entry is 0 (can be leftover a CPU
|
|
* hotplug
|
|
*/
|
|
cpu_callin_map[cpu] = 0;
|
|
|
|
/* The information for processor bringup must
|
|
* be written out to main store before we release
|
|
* the processor.
|
|
*/
|
|
smp_mb();
|
|
|
|
/* wake up cpus */
|
|
DBG("smp: kicking cpu %d\n", cpu);
|
|
rc = smp_ops->kick_cpu(cpu);
|
|
if (rc) {
|
|
pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* wait to see if the cpu made a callin (is actually up).
|
|
* use this value that I found through experimentation.
|
|
* -- Cort
|
|
*/
|
|
if (system_state < SYSTEM_RUNNING)
|
|
for (c = 50000; c && !cpu_callin_map[cpu]; c--)
|
|
udelay(100);
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
else
|
|
/*
|
|
* CPUs can take much longer to come up in the
|
|
* hotplug case. Wait five seconds.
|
|
*/
|
|
for (c = 5000; c && !cpu_callin_map[cpu]; c--)
|
|
msleep(1);
|
|
#endif
|
|
|
|
if (!cpu_callin_map[cpu]) {
|
|
printk(KERN_ERR "Processor %u is stuck.\n", cpu);
|
|
return -ENOENT;
|
|
}
|
|
|
|
DBG("Processor %u found.\n", cpu);
|
|
|
|
if (smp_ops->give_timebase)
|
|
smp_ops->give_timebase();
|
|
|
|
/* Wait until cpu puts itself in the online & active maps */
|
|
spin_until_cond(cpu_online(cpu));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return the value of the reg property corresponding to the given
|
|
* logical cpu.
|
|
*/
|
|
int cpu_to_core_id(int cpu)
|
|
{
|
|
struct device_node *np;
|
|
const __be32 *reg;
|
|
int id = -1;
|
|
|
|
np = of_get_cpu_node(cpu, NULL);
|
|
if (!np)
|
|
goto out;
|
|
|
|
reg = of_get_property(np, "reg", NULL);
|
|
if (!reg)
|
|
goto out;
|
|
|
|
id = be32_to_cpup(reg);
|
|
out:
|
|
of_node_put(np);
|
|
return id;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_to_core_id);
|
|
|
|
/* Helper routines for cpu to core mapping */
|
|
int cpu_core_index_of_thread(int cpu)
|
|
{
|
|
return cpu >> threads_shift;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
|
|
|
|
int cpu_first_thread_of_core(int core)
|
|
{
|
|
return core << threads_shift;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
|
|
|
|
/* Must be called when no change can occur to cpu_present_mask,
|
|
* i.e. during cpu online or offline.
|
|
*/
|
|
static struct device_node *cpu_to_l2cache(int cpu)
|
|
{
|
|
struct device_node *np;
|
|
struct device_node *cache;
|
|
|
|
if (!cpu_present(cpu))
|
|
return NULL;
|
|
|
|
np = of_get_cpu_node(cpu, NULL);
|
|
if (np == NULL)
|
|
return NULL;
|
|
|
|
cache = of_find_next_cache_node(np);
|
|
|
|
of_node_put(np);
|
|
|
|
return cache;
|
|
}
|
|
|
|
static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
|
|
{
|
|
struct device_node *l2_cache, *np;
|
|
int i;
|
|
|
|
l2_cache = cpu_to_l2cache(cpu);
|
|
if (!l2_cache)
|
|
return false;
|
|
|
|
for_each_cpu(i, cpu_online_mask) {
|
|
/*
|
|
* when updating the marks the current CPU has not been marked
|
|
* online, but we need to update the cache masks
|
|
*/
|
|
np = cpu_to_l2cache(i);
|
|
if (!np)
|
|
continue;
|
|
|
|
if (np == l2_cache)
|
|
set_cpus_related(cpu, i, mask_fn);
|
|
|
|
of_node_put(np);
|
|
}
|
|
of_node_put(l2_cache);
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void remove_cpu_from_masks(int cpu)
|
|
{
|
|
int i;
|
|
|
|
/* NB: cpu_core_mask is a superset of the others */
|
|
for_each_cpu(i, cpu_core_mask(cpu)) {
|
|
set_cpus_unrelated(cpu, i, cpu_core_mask);
|
|
set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
|
|
set_cpus_unrelated(cpu, i, cpu_sibling_mask);
|
|
if (has_big_cores)
|
|
set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static inline void add_cpu_to_smallcore_masks(int cpu)
|
|
{
|
|
struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
|
|
int i, first_thread = cpu_first_thread_sibling(cpu);
|
|
|
|
if (!has_big_cores)
|
|
return;
|
|
|
|
cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
|
|
|
|
for (i = first_thread; i < first_thread + threads_per_core; i++) {
|
|
if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
|
|
set_cpus_related(i, cpu, cpu_smallcore_mask);
|
|
}
|
|
}
|
|
|
|
static void add_cpu_to_masks(int cpu)
|
|
{
|
|
int first_thread = cpu_first_thread_sibling(cpu);
|
|
int chipid = cpu_to_chip_id(cpu);
|
|
int i;
|
|
|
|
/*
|
|
* This CPU will not be in the online mask yet so we need to manually
|
|
* add it to it's own thread sibling mask.
|
|
*/
|
|
cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
|
|
|
|
for (i = first_thread; i < first_thread + threads_per_core; i++)
|
|
if (cpu_online(i))
|
|
set_cpus_related(i, cpu, cpu_sibling_mask);
|
|
|
|
add_cpu_to_smallcore_masks(cpu);
|
|
/*
|
|
* Copy the thread sibling mask into the cache sibling mask
|
|
* and mark any CPUs that share an L2 with this CPU.
|
|
*/
|
|
for_each_cpu(i, cpu_sibling_mask(cpu))
|
|
set_cpus_related(cpu, i, cpu_l2_cache_mask);
|
|
update_mask_by_l2(cpu, cpu_l2_cache_mask);
|
|
|
|
/*
|
|
* Copy the cache sibling mask into core sibling mask and mark
|
|
* any CPUs on the same chip as this CPU.
|
|
*/
|
|
for_each_cpu(i, cpu_l2_cache_mask(cpu))
|
|
set_cpus_related(cpu, i, cpu_core_mask);
|
|
|
|
if (chipid == -1)
|
|
return;
|
|
|
|
for_each_cpu(i, cpu_online_mask)
|
|
if (cpu_to_chip_id(i) == chipid)
|
|
set_cpus_related(cpu, i, cpu_core_mask);
|
|
}
|
|
|
|
static bool shared_caches;
|
|
|
|
/* Activate a secondary processor. */
|
|
void start_secondary(void *unused)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
|
|
|
|
mmgrab(&init_mm);
|
|
current->active_mm = &init_mm;
|
|
|
|
smp_store_cpu_info(cpu);
|
|
set_dec(tb_ticks_per_jiffy);
|
|
preempt_disable();
|
|
cpu_callin_map[cpu] = 1;
|
|
|
|
if (smp_ops->setup_cpu)
|
|
smp_ops->setup_cpu(cpu);
|
|
if (smp_ops->take_timebase)
|
|
smp_ops->take_timebase();
|
|
|
|
secondary_cpu_time_init();
|
|
|
|
#ifdef CONFIG_PPC64
|
|
if (system_state == SYSTEM_RUNNING)
|
|
vdso_data->processorCount++;
|
|
|
|
vdso_getcpu_init();
|
|
#endif
|
|
/* Update topology CPU masks */
|
|
add_cpu_to_masks(cpu);
|
|
|
|
if (has_big_cores)
|
|
sibling_mask = cpu_smallcore_mask;
|
|
/*
|
|
* Check for any shared caches. Note that this must be done on a
|
|
* per-core basis because one core in the pair might be disabled.
|
|
*/
|
|
if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu)))
|
|
shared_caches = true;
|
|
|
|
set_numa_node(numa_cpu_lookup_table[cpu]);
|
|
set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
|
|
|
|
smp_wmb();
|
|
notify_cpu_starting(cpu);
|
|
set_cpu_online(cpu, true);
|
|
|
|
boot_init_stack_canary();
|
|
|
|
local_irq_enable();
|
|
|
|
/* We can enable ftrace for secondary cpus now */
|
|
this_cpu_enable_ftrace();
|
|
|
|
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
|
|
|
|
BUG();
|
|
}
|
|
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
/* cpumask of CPUs with asymetric SMT dependancy */
|
|
static int powerpc_smt_flags(void)
|
|
{
|
|
int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
|
|
printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
|
|
flags |= SD_ASYM_PACKING;
|
|
}
|
|
return flags;
|
|
}
|
|
#endif
|
|
|
|
static struct sched_domain_topology_level powerpc_topology[] = {
|
|
#ifdef CONFIG_SCHED_SMT
|
|
{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
|
|
#endif
|
|
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
|
|
{ NULL, },
|
|
};
|
|
|
|
/*
|
|
* P9 has a slightly odd architecture where pairs of cores share an L2 cache.
|
|
* This topology makes it *much* cheaper to migrate tasks between adjacent cores
|
|
* since the migrated task remains cache hot. We want to take advantage of this
|
|
* at the scheduler level so an extra topology level is required.
|
|
*/
|
|
static int powerpc_shared_cache_flags(void)
|
|
{
|
|
return SD_SHARE_PKG_RESOURCES;
|
|
}
|
|
|
|
/*
|
|
* We can't just pass cpu_l2_cache_mask() directly because
|
|
* returns a non-const pointer and the compiler barfs on that.
|
|
*/
|
|
static const struct cpumask *shared_cache_mask(int cpu)
|
|
{
|
|
return cpu_l2_cache_mask(cpu);
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
static const struct cpumask *smallcore_smt_mask(int cpu)
|
|
{
|
|
return cpu_smallcore_mask(cpu);
|
|
}
|
|
#endif
|
|
|
|
static struct sched_domain_topology_level power9_topology[] = {
|
|
#ifdef CONFIG_SCHED_SMT
|
|
{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
|
|
#endif
|
|
{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
|
|
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
|
|
{ NULL, },
|
|
};
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
/*
|
|
* We are running pinned to the boot CPU, see rest_init().
|
|
*/
|
|
if (smp_ops && smp_ops->setup_cpu)
|
|
smp_ops->setup_cpu(boot_cpuid);
|
|
|
|
if (smp_ops && smp_ops->bringup_done)
|
|
smp_ops->bringup_done();
|
|
|
|
/*
|
|
* On a shared LPAR, associativity needs to be requested.
|
|
* Hence, get numa topology before dumping cpu topology
|
|
*/
|
|
shared_proc_topology_init();
|
|
dump_numa_cpu_topology();
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
if (has_big_cores) {
|
|
pr_info("Using small cores at SMT level\n");
|
|
power9_topology[0].mask = smallcore_smt_mask;
|
|
powerpc_topology[0].mask = smallcore_smt_mask;
|
|
}
|
|
#endif
|
|
/*
|
|
* If any CPU detects that it's sharing a cache with another CPU then
|
|
* use the deeper topology that is aware of this sharing.
|
|
*/
|
|
if (shared_caches) {
|
|
pr_info("Using shared cache scheduler topology\n");
|
|
set_sched_topology(power9_topology);
|
|
} else {
|
|
pr_info("Using standard scheduler topology\n");
|
|
set_sched_topology(powerpc_topology);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
int __cpu_disable(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int err;
|
|
|
|
if (!smp_ops->cpu_disable)
|
|
return -ENOSYS;
|
|
|
|
this_cpu_disable_ftrace();
|
|
|
|
err = smp_ops->cpu_disable();
|
|
if (err)
|
|
return err;
|
|
|
|
/* Update sibling maps */
|
|
remove_cpu_from_masks(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
if (smp_ops->cpu_die)
|
|
smp_ops->cpu_die(cpu);
|
|
}
|
|
|
|
void cpu_die(void)
|
|
{
|
|
/*
|
|
* Disable on the down path. This will be re-enabled by
|
|
* start_secondary() via start_secondary_resume() below
|
|
*/
|
|
this_cpu_disable_ftrace();
|
|
|
|
if (ppc_md.cpu_die)
|
|
ppc_md.cpu_die();
|
|
|
|
/* If we return, we re-enter start_secondary */
|
|
start_secondary_resume();
|
|
}
|
|
|
|
#endif
|