linux_dsm_epyc7002/kernel/seccomp.c
Alexei Starovoitov bd4cf0ed33 net: filter: rework/optimize internal BPF interpreter's instruction set
This patch replaces/reworks the kernel-internal BPF interpreter with
an optimized BPF instruction set format that is modelled closer to
mimic native instruction sets and is designed to be JITed with one to
one mapping. Thus, the new interpreter is noticeably faster than the
current implementation of sk_run_filter(); mainly for two reasons:

1. Fall-through jumps:

  BPF jump instructions are forced to go either 'true' or 'false'
  branch which causes branch-miss penalty. The new BPF jump
  instructions have only one branch and fall-through otherwise,
  which fits the CPU branch predictor logic better. `perf stat`
  shows drastic difference for branch-misses between the old and
  new code.

2. Jump-threaded implementation of interpreter vs switch
   statement:

  Instead of single table-jump at the top of 'switch' statement,
  gcc will now generate multiple table-jump instructions, which
  helps CPU branch predictor logic.

Note that the verification of filters is still being done through
sk_chk_filter() in classical BPF format, so filters from user- or
kernel space are verified in the same way as we do now, and same
restrictions/constraints hold as well.

We reuse current BPF JIT compilers in a way that this upgrade would
even be fine as is, but nevertheless allows for a successive upgrade
of BPF JIT compilers to the new format.

The internal instruction set migration is being done after the
probing for JIT compilation, so in case JIT compilers are able to
create a native opcode image, we're going to use that, and in all
other cases we're doing a follow-up migration of the BPF program's
instruction set, so that it can be transparently run in the new
interpreter.

In short, the *internal* format extends BPF in the following way (more
details can be taken from the appended documentation):

  - Number of registers increase from 2 to 10
  - Register width increases from 32-bit to 64-bit
  - Conditional jt/jf targets replaced with jt/fall-through
  - Adds signed > and >= insns
  - 16 4-byte stack slots for register spill-fill replaced
    with up to 512 bytes of multi-use stack space
  - Introduction of bpf_call insn and register passing convention
    for zero overhead calls from/to other kernel functions
  - Adds arithmetic right shift and endianness conversion insns
  - Adds atomic_add insn
  - Old tax/txa insns are replaced with 'mov dst,src' insn

Performance of two BPF filters generated by libpcap resp. bpf_asm
was measured on x86_64, i386 and arm32 (other libpcap programs
have similar performance differences):

fprog #1 is taken from Documentation/networking/filter.txt:
tcpdump -i eth0 port 22 -dd

fprog #2 is taken from 'man tcpdump':
tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) -
   ((tcp[12]&0xf0)>>2)) != 0)' -dd

Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the
same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call,
smaller is better:

--x86_64--
         fprog #1  fprog #1   fprog #2  fprog #2
         cache-hit cache-miss cache-hit cache-miss
old BPF      90       101        192       202
new BPF      31        71         47        97
old BPF jit  12        34         17        44
new BPF jit TBD

--i386--
         fprog #1  fprog #1   fprog #2  fprog #2
         cache-hit cache-miss cache-hit cache-miss
old BPF     107       136        227       252
new BPF      40       119         69       172

--arm32--
         fprog #1  fprog #1   fprog #2  fprog #2
         cache-hit cache-miss cache-hit cache-miss
old BPF     202       300        475       540
new BPF     180       270        330       470
old BPF jit  26       182         37       202
new BPF jit TBD

Thus, without changing any userland BPF filters, applications on
top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf
classifier, netfilter's xt_bpf, team driver's load-balancing mode,
and many more will have better interpreter filtering performance.

While we are replacing the internal BPF interpreter, we also need
to convert seccomp BPF in the same step to make use of the new
internal structure since it makes use of lower-level API details
without being further decoupled through higher-level calls like
sk_unattached_filter_{create,destroy}(), for example.

Just as for normal socket filtering, also seccomp BPF experiences
a time-to-verdict speedup:

05-sim-long_jumps.c of libseccomp was used as micro-benchmark:

  seccomp_rule_add_exact(ctx,...
  seccomp_rule_add_exact(ctx,...

  rc = seccomp_load(ctx);

  for (i = 0; i < 10000000; i++)
     syscall(199, 100);

'short filter' has 2 rules
'large filter' has 200 rules

'short filter' performance is slightly better on x86_64/i386/arm32
'large filter' is much faster on x86_64 and i386 and shows no
               difference on arm32

--x86_64-- short filter
old BPF: 2.7 sec
 39.12%  bench  libc-2.15.so       [.] syscall
  8.10%  bench  [kernel.kallsyms]  [k] sk_run_filter
  6.31%  bench  [kernel.kallsyms]  [k] system_call
  5.59%  bench  [kernel.kallsyms]  [k] trace_hardirqs_on_caller
  4.37%  bench  [kernel.kallsyms]  [k] trace_hardirqs_off_caller
  3.70%  bench  [kernel.kallsyms]  [k] __secure_computing
  3.67%  bench  [kernel.kallsyms]  [k] lock_is_held
  3.03%  bench  [kernel.kallsyms]  [k] seccomp_bpf_load
new BPF: 2.58 sec
 42.05%  bench  libc-2.15.so       [.] syscall
  6.91%  bench  [kernel.kallsyms]  [k] system_call
  6.25%  bench  [kernel.kallsyms]  [k] trace_hardirqs_on_caller
  6.07%  bench  [kernel.kallsyms]  [k] __secure_computing
  5.08%  bench  [kernel.kallsyms]  [k] sk_run_filter_int_seccomp

--arm32-- short filter
old BPF: 4.0 sec
 39.92%  bench  [kernel.kallsyms]  [k] vector_swi
 16.60%  bench  [kernel.kallsyms]  [k] sk_run_filter
 14.66%  bench  libc-2.17.so       [.] syscall
  5.42%  bench  [kernel.kallsyms]  [k] seccomp_bpf_load
  5.10%  bench  [kernel.kallsyms]  [k] __secure_computing
new BPF: 3.7 sec
 35.93%  bench  [kernel.kallsyms]  [k] vector_swi
 21.89%  bench  libc-2.17.so       [.] syscall
 13.45%  bench  [kernel.kallsyms]  [k] sk_run_filter_int_seccomp
  6.25%  bench  [kernel.kallsyms]  [k] __secure_computing
  3.96%  bench  [kernel.kallsyms]  [k] syscall_trace_exit

--x86_64-- large filter
old BPF: 8.6 seconds
    73.38%    bench  [kernel.kallsyms]  [k] sk_run_filter
    10.70%    bench  libc-2.15.so       [.] syscall
     5.09%    bench  [kernel.kallsyms]  [k] seccomp_bpf_load
     1.97%    bench  [kernel.kallsyms]  [k] system_call
new BPF: 5.7 seconds
    66.20%    bench  [kernel.kallsyms]  [k] sk_run_filter_int_seccomp
    16.75%    bench  libc-2.15.so       [.] syscall
     3.31%    bench  [kernel.kallsyms]  [k] system_call
     2.88%    bench  [kernel.kallsyms]  [k] __secure_computing

--i386-- large filter
old BPF: 5.4 sec
new BPF: 3.8 sec

--arm32-- large filter
old BPF: 13.5 sec
 73.88%  bench  [kernel.kallsyms]  [k] sk_run_filter
 10.29%  bench  [kernel.kallsyms]  [k] vector_swi
  6.46%  bench  libc-2.17.so       [.] syscall
  2.94%  bench  [kernel.kallsyms]  [k] seccomp_bpf_load
  1.19%  bench  [kernel.kallsyms]  [k] __secure_computing
  0.87%  bench  [kernel.kallsyms]  [k] sys_getuid
new BPF: 13.5 sec
 76.08%  bench  [kernel.kallsyms]  [k] sk_run_filter_int_seccomp
 10.98%  bench  [kernel.kallsyms]  [k] vector_swi
  5.87%  bench  libc-2.17.so       [.] syscall
  1.77%  bench  [kernel.kallsyms]  [k] __secure_computing
  0.93%  bench  [kernel.kallsyms]  [k] sys_getuid

BPF filters generated by seccomp are very branchy, so the new
internal BPF performance is better than the old one. Performance
gains will be even higher when BPF JIT is committed for the
new structure, which is planned in future work (as successive
JIT migrations).

BPF has also been stress-tested with trinity's BPF fuzzer.

Joint work with Daniel Borkmann.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Hagen Paul Pfeifer <hagen@jauu.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Paul Moore <pmoore@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: linux-kernel@vger.kernel.org
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-31 00:45:09 -04:00

511 lines
14 KiB
C

/*
* linux/kernel/seccomp.c
*
* Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com>
*
* Copyright (C) 2012 Google, Inc.
* Will Drewry <wad@chromium.org>
*
* This defines a simple but solid secure-computing facility.
*
* Mode 1 uses a fixed list of allowed system calls.
* Mode 2 allows user-defined system call filters in the form
* of Berkeley Packet Filters/Linux Socket Filters.
*/
#include <linux/atomic.h>
#include <linux/audit.h>
#include <linux/compat.h>
#include <linux/sched.h>
#include <linux/seccomp.h>
/* #define SECCOMP_DEBUG 1 */
#ifdef CONFIG_SECCOMP_FILTER
#include <asm/syscall.h>
#include <linux/filter.h>
#include <linux/ptrace.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/tracehook.h>
#include <linux/uaccess.h>
/**
* struct seccomp_filter - container for seccomp BPF programs
*
* @usage: reference count to manage the object lifetime.
* get/put helpers should be used when accessing an instance
* outside of a lifetime-guarded section. In general, this
* is only needed for handling filters shared across tasks.
* @prev: points to a previously installed, or inherited, filter
* @len: the number of instructions in the program
* @insns: the BPF program instructions to evaluate
*
* seccomp_filter objects are organized in a tree linked via the @prev
* pointer. For any task, it appears to be a singly-linked list starting
* with current->seccomp.filter, the most recently attached or inherited filter.
* However, multiple filters may share a @prev node, by way of fork(), which
* results in a unidirectional tree existing in memory. This is similar to
* how namespaces work.
*
* seccomp_filter objects should never be modified after being attached
* to a task_struct (other than @usage).
*/
struct seccomp_filter {
atomic_t usage;
struct seccomp_filter *prev;
unsigned short len; /* Instruction count */
struct sock_filter_int insnsi[];
};
/* Limit any path through the tree to 256KB worth of instructions. */
#define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
/*
* Endianness is explicitly ignored and left for BPF program authors to manage
* as per the specific architecture.
*/
static void populate_seccomp_data(struct seccomp_data *sd)
{
struct task_struct *task = current;
struct pt_regs *regs = task_pt_regs(task);
sd->nr = syscall_get_nr(task, regs);
sd->arch = syscall_get_arch(task, regs);
/* Unroll syscall_get_args to help gcc on arm. */
syscall_get_arguments(task, regs, 0, 1, (unsigned long *) &sd->args[0]);
syscall_get_arguments(task, regs, 1, 1, (unsigned long *) &sd->args[1]);
syscall_get_arguments(task, regs, 2, 1, (unsigned long *) &sd->args[2]);
syscall_get_arguments(task, regs, 3, 1, (unsigned long *) &sd->args[3]);
syscall_get_arguments(task, regs, 4, 1, (unsigned long *) &sd->args[4]);
syscall_get_arguments(task, regs, 5, 1, (unsigned long *) &sd->args[5]);
sd->instruction_pointer = KSTK_EIP(task);
}
/**
* seccomp_check_filter - verify seccomp filter code
* @filter: filter to verify
* @flen: length of filter
*
* Takes a previously checked filter (by sk_chk_filter) and
* redirects all filter code that loads struct sk_buff data
* and related data through seccomp_bpf_load. It also
* enforces length and alignment checking of those loads.
*
* Returns 0 if the rule set is legal or -EINVAL if not.
*/
static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
{
int pc;
for (pc = 0; pc < flen; pc++) {
struct sock_filter *ftest = &filter[pc];
u16 code = ftest->code;
u32 k = ftest->k;
switch (code) {
case BPF_S_LD_W_ABS:
ftest->code = BPF_LDX | BPF_W | BPF_ABS;
/* 32-bit aligned and not out of bounds. */
if (k >= sizeof(struct seccomp_data) || k & 3)
return -EINVAL;
continue;
case BPF_S_LD_W_LEN:
ftest->code = BPF_LD | BPF_IMM;
ftest->k = sizeof(struct seccomp_data);
continue;
case BPF_S_LDX_W_LEN:
ftest->code = BPF_LDX | BPF_IMM;
ftest->k = sizeof(struct seccomp_data);
continue;
/* Explicitly include allowed calls. */
case BPF_S_RET_K:
case BPF_S_RET_A:
case BPF_S_ALU_ADD_K:
case BPF_S_ALU_ADD_X:
case BPF_S_ALU_SUB_K:
case BPF_S_ALU_SUB_X:
case BPF_S_ALU_MUL_K:
case BPF_S_ALU_MUL_X:
case BPF_S_ALU_DIV_X:
case BPF_S_ALU_AND_K:
case BPF_S_ALU_AND_X:
case BPF_S_ALU_OR_K:
case BPF_S_ALU_OR_X:
case BPF_S_ALU_XOR_K:
case BPF_S_ALU_XOR_X:
case BPF_S_ALU_LSH_K:
case BPF_S_ALU_LSH_X:
case BPF_S_ALU_RSH_K:
case BPF_S_ALU_RSH_X:
case BPF_S_ALU_NEG:
case BPF_S_LD_IMM:
case BPF_S_LDX_IMM:
case BPF_S_MISC_TAX:
case BPF_S_MISC_TXA:
case BPF_S_ALU_DIV_K:
case BPF_S_LD_MEM:
case BPF_S_LDX_MEM:
case BPF_S_ST:
case BPF_S_STX:
case BPF_S_JMP_JA:
case BPF_S_JMP_JEQ_K:
case BPF_S_JMP_JEQ_X:
case BPF_S_JMP_JGE_K:
case BPF_S_JMP_JGE_X:
case BPF_S_JMP_JGT_K:
case BPF_S_JMP_JGT_X:
case BPF_S_JMP_JSET_K:
case BPF_S_JMP_JSET_X:
sk_decode_filter(ftest, ftest);
continue;
default:
return -EINVAL;
}
}
return 0;
}
/**
* seccomp_run_filters - evaluates all seccomp filters against @syscall
* @syscall: number of the current system call
*
* Returns valid seccomp BPF response codes.
*/
static u32 seccomp_run_filters(int syscall)
{
struct seccomp_filter *f;
struct seccomp_data sd;
u32 ret = SECCOMP_RET_ALLOW;
/* Ensure unexpected behavior doesn't result in failing open. */
if (WARN_ON(current->seccomp.filter == NULL))
return SECCOMP_RET_KILL;
populate_seccomp_data(&sd);
/*
* All filters in the list are evaluated and the lowest BPF return
* value always takes priority (ignoring the DATA).
*/
for (f = current->seccomp.filter; f; f = f->prev) {
u32 cur_ret = sk_run_filter_int_seccomp(&sd, f->insnsi);
if ((cur_ret & SECCOMP_RET_ACTION) < (ret & SECCOMP_RET_ACTION))
ret = cur_ret;
}
return ret;
}
/**
* seccomp_attach_filter: Attaches a seccomp filter to current.
* @fprog: BPF program to install
*
* Returns 0 on success or an errno on failure.
*/
static long seccomp_attach_filter(struct sock_fprog *fprog)
{
struct seccomp_filter *filter;
unsigned long fp_size = fprog->len * sizeof(struct sock_filter);
unsigned long total_insns = fprog->len;
struct sock_filter *fp;
int new_len;
long ret;
if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
return -EINVAL;
for (filter = current->seccomp.filter; filter; filter = filter->prev)
total_insns += filter->len + 4; /* include a 4 instr penalty */
if (total_insns > MAX_INSNS_PER_PATH)
return -ENOMEM;
/*
* Installing a seccomp filter requires that the task have
* CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
* This avoids scenarios where unprivileged tasks can affect the
* behavior of privileged children.
*/
if (!current->no_new_privs &&
security_capable_noaudit(current_cred(), current_user_ns(),
CAP_SYS_ADMIN) != 0)
return -EACCES;
fp = kzalloc(fp_size, GFP_KERNEL|__GFP_NOWARN);
if (!fp)
return -ENOMEM;
/* Copy the instructions from fprog. */
ret = -EFAULT;
if (copy_from_user(fp, fprog->filter, fp_size))
goto free_prog;
/* Check and rewrite the fprog via the skb checker */
ret = sk_chk_filter(fp, fprog->len);
if (ret)
goto free_prog;
/* Check and rewrite the fprog for seccomp use */
ret = seccomp_check_filter(fp, fprog->len);
if (ret)
goto free_prog;
/* Convert 'sock_filter' insns to 'sock_filter_int' insns */
ret = sk_convert_filter(fp, fprog->len, NULL, &new_len);
if (ret)
goto free_prog;
/* Allocate a new seccomp_filter */
filter = kzalloc(sizeof(struct seccomp_filter) +
sizeof(struct sock_filter_int) * new_len,
GFP_KERNEL|__GFP_NOWARN);
if (!filter)
goto free_prog;
ret = sk_convert_filter(fp, fprog->len, filter->insnsi, &new_len);
if (ret)
goto free_filter;
atomic_set(&filter->usage, 1);
filter->len = new_len;
/*
* If there is an existing filter, make it the prev and don't drop its
* task reference.
*/
filter->prev = current->seccomp.filter;
current->seccomp.filter = filter;
return 0;
free_filter:
kfree(filter);
free_prog:
kfree(fp);
return ret;
}
/**
* seccomp_attach_user_filter - attaches a user-supplied sock_fprog
* @user_filter: pointer to the user data containing a sock_fprog.
*
* Returns 0 on success and non-zero otherwise.
*/
long seccomp_attach_user_filter(char __user *user_filter)
{
struct sock_fprog fprog;
long ret = -EFAULT;
#ifdef CONFIG_COMPAT
if (is_compat_task()) {
struct compat_sock_fprog fprog32;
if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
goto out;
fprog.len = fprog32.len;
fprog.filter = compat_ptr(fprog32.filter);
} else /* falls through to the if below. */
#endif
if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
goto out;
ret = seccomp_attach_filter(&fprog);
out:
return ret;
}
/* get_seccomp_filter - increments the reference count of the filter on @tsk */
void get_seccomp_filter(struct task_struct *tsk)
{
struct seccomp_filter *orig = tsk->seccomp.filter;
if (!orig)
return;
/* Reference count is bounded by the number of total processes. */
atomic_inc(&orig->usage);
}
/* put_seccomp_filter - decrements the ref count of tsk->seccomp.filter */
void put_seccomp_filter(struct task_struct *tsk)
{
struct seccomp_filter *orig = tsk->seccomp.filter;
/* Clean up single-reference branches iteratively. */
while (orig && atomic_dec_and_test(&orig->usage)) {
struct seccomp_filter *freeme = orig;
orig = orig->prev;
kfree(freeme);
}
}
/**
* seccomp_send_sigsys - signals the task to allow in-process syscall emulation
* @syscall: syscall number to send to userland
* @reason: filter-supplied reason code to send to userland (via si_errno)
*
* Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
*/
static void seccomp_send_sigsys(int syscall, int reason)
{
struct siginfo info;
memset(&info, 0, sizeof(info));
info.si_signo = SIGSYS;
info.si_code = SYS_SECCOMP;
info.si_call_addr = (void __user *)KSTK_EIP(current);
info.si_errno = reason;
info.si_arch = syscall_get_arch(current, task_pt_regs(current));
info.si_syscall = syscall;
force_sig_info(SIGSYS, &info, current);
}
#endif /* CONFIG_SECCOMP_FILTER */
/*
* Secure computing mode 1 allows only read/write/exit/sigreturn.
* To be fully secure this must be combined with rlimit
* to limit the stack allocations too.
*/
static int mode1_syscalls[] = {
__NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
0, /* null terminated */
};
#ifdef CONFIG_COMPAT
static int mode1_syscalls_32[] = {
__NR_seccomp_read_32, __NR_seccomp_write_32, __NR_seccomp_exit_32, __NR_seccomp_sigreturn_32,
0, /* null terminated */
};
#endif
int __secure_computing(int this_syscall)
{
int mode = current->seccomp.mode;
int exit_sig = 0;
int *syscall;
u32 ret;
switch (mode) {
case SECCOMP_MODE_STRICT:
syscall = mode1_syscalls;
#ifdef CONFIG_COMPAT
if (is_compat_task())
syscall = mode1_syscalls_32;
#endif
do {
if (*syscall == this_syscall)
return 0;
} while (*++syscall);
exit_sig = SIGKILL;
ret = SECCOMP_RET_KILL;
break;
#ifdef CONFIG_SECCOMP_FILTER
case SECCOMP_MODE_FILTER: {
int data;
struct pt_regs *regs = task_pt_regs(current);
ret = seccomp_run_filters(this_syscall);
data = ret & SECCOMP_RET_DATA;
ret &= SECCOMP_RET_ACTION;
switch (ret) {
case SECCOMP_RET_ERRNO:
/* Set the low-order 16-bits as a errno. */
syscall_set_return_value(current, regs,
-data, 0);
goto skip;
case SECCOMP_RET_TRAP:
/* Show the handler the original registers. */
syscall_rollback(current, regs);
/* Let the filter pass back 16 bits of data. */
seccomp_send_sigsys(this_syscall, data);
goto skip;
case SECCOMP_RET_TRACE:
/* Skip these calls if there is no tracer. */
if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
syscall_set_return_value(current, regs,
-ENOSYS, 0);
goto skip;
}
/* Allow the BPF to provide the event message */
ptrace_event(PTRACE_EVENT_SECCOMP, data);
/*
* The delivery of a fatal signal during event
* notification may silently skip tracer notification.
* Terminating the task now avoids executing a system
* call that may not be intended.
*/
if (fatal_signal_pending(current))
break;
if (syscall_get_nr(current, regs) < 0)
goto skip; /* Explicit request to skip. */
return 0;
case SECCOMP_RET_ALLOW:
return 0;
case SECCOMP_RET_KILL:
default:
break;
}
exit_sig = SIGSYS;
break;
}
#endif
default:
BUG();
}
#ifdef SECCOMP_DEBUG
dump_stack();
#endif
audit_seccomp(this_syscall, exit_sig, ret);
do_exit(exit_sig);
#ifdef CONFIG_SECCOMP_FILTER
skip:
audit_seccomp(this_syscall, exit_sig, ret);
#endif
return -1;
}
long prctl_get_seccomp(void)
{
return current->seccomp.mode;
}
/**
* prctl_set_seccomp: configures current->seccomp.mode
* @seccomp_mode: requested mode to use
* @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
*
* This function may be called repeatedly with a @seccomp_mode of
* SECCOMP_MODE_FILTER to install additional filters. Every filter
* successfully installed will be evaluated (in reverse order) for each system
* call the task makes.
*
* Once current->seccomp.mode is non-zero, it may not be changed.
*
* Returns 0 on success or -EINVAL on failure.
*/
long prctl_set_seccomp(unsigned long seccomp_mode, char __user *filter)
{
long ret = -EINVAL;
if (current->seccomp.mode &&
current->seccomp.mode != seccomp_mode)
goto out;
switch (seccomp_mode) {
case SECCOMP_MODE_STRICT:
ret = 0;
#ifdef TIF_NOTSC
disable_TSC();
#endif
break;
#ifdef CONFIG_SECCOMP_FILTER
case SECCOMP_MODE_FILTER:
ret = seccomp_attach_user_filter(filter);
if (ret)
goto out;
break;
#endif
default:
goto out;
}
current->seccomp.mode = seccomp_mode;
set_thread_flag(TIF_SECCOMP);
out:
return ret;
}