mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
2bee1b5848
Implement primitives necessary for the 4th level folding, add walks of p4d level where appropriate, replace 5leve-fixup.h with pgtable-nop4d.h and drop usage of __ARCH_USE_5LEVEL_HACK. Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Paul Burton <paulburton@kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: James Hogan <jhogan@kernel.org> Cc: linux-mips@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Cc: Mike Rapoport <rppt@kernel.org>
1270 lines
33 KiB
C
1270 lines
33 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* KVM/MIPS MMU handling in the KVM module.
|
|
*
|
|
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
|
|
* Authors: Sanjay Lal <sanjayl@kymasys.com>
|
|
*/
|
|
|
|
#include <linux/highmem.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
/*
|
|
* KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
|
|
* for which pages need to be cached.
|
|
*/
|
|
#if defined(__PAGETABLE_PMD_FOLDED)
|
|
#define KVM_MMU_CACHE_MIN_PAGES 1
|
|
#else
|
|
#define KVM_MMU_CACHE_MIN_PAGES 2
|
|
#endif
|
|
|
|
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
|
|
int min, int max)
|
|
{
|
|
void *page;
|
|
|
|
BUG_ON(max > KVM_NR_MEM_OBJS);
|
|
if (cache->nobjs >= min)
|
|
return 0;
|
|
while (cache->nobjs < max) {
|
|
page = (void *)__get_free_page(GFP_KERNEL);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
cache->objects[cache->nobjs++] = page;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
while (mc->nobjs)
|
|
free_page((unsigned long)mc->objects[--mc->nobjs]);
|
|
}
|
|
|
|
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
void *p;
|
|
|
|
BUG_ON(!mc || !mc->nobjs);
|
|
p = mc->objects[--mc->nobjs];
|
|
return p;
|
|
}
|
|
|
|
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
|
|
{
|
|
mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
|
|
}
|
|
|
|
/**
|
|
* kvm_pgd_init() - Initialise KVM GPA page directory.
|
|
* @page: Pointer to page directory (PGD) for KVM GPA.
|
|
*
|
|
* Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
|
|
* representing no mappings. This is similar to pgd_init(), however it
|
|
* initialises all the page directory pointers, not just the ones corresponding
|
|
* to the userland address space (since it is for the guest physical address
|
|
* space rather than a virtual address space).
|
|
*/
|
|
static void kvm_pgd_init(void *page)
|
|
{
|
|
unsigned long *p, *end;
|
|
unsigned long entry;
|
|
|
|
#ifdef __PAGETABLE_PMD_FOLDED
|
|
entry = (unsigned long)invalid_pte_table;
|
|
#else
|
|
entry = (unsigned long)invalid_pmd_table;
|
|
#endif
|
|
|
|
p = (unsigned long *)page;
|
|
end = p + PTRS_PER_PGD;
|
|
|
|
do {
|
|
p[0] = entry;
|
|
p[1] = entry;
|
|
p[2] = entry;
|
|
p[3] = entry;
|
|
p[4] = entry;
|
|
p += 8;
|
|
p[-3] = entry;
|
|
p[-2] = entry;
|
|
p[-1] = entry;
|
|
} while (p != end);
|
|
}
|
|
|
|
/**
|
|
* kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
|
|
*
|
|
* Allocate a blank KVM GPA page directory (PGD) for representing guest physical
|
|
* to host physical page mappings.
|
|
*
|
|
* Returns: Pointer to new KVM GPA page directory.
|
|
* NULL on allocation failure.
|
|
*/
|
|
pgd_t *kvm_pgd_alloc(void)
|
|
{
|
|
pgd_t *ret;
|
|
|
|
ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
|
|
if (ret)
|
|
kvm_pgd_init(ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_walk_pgd() - Walk page table with optional allocation.
|
|
* @pgd: Page directory pointer.
|
|
* @addr: Address to index page table using.
|
|
* @cache: MMU page cache to allocate new page tables from, or NULL.
|
|
*
|
|
* Walk the page tables pointed to by @pgd to find the PTE corresponding to the
|
|
* address @addr. If page tables don't exist for @addr, they will be created
|
|
* from the MMU cache if @cache is not NULL.
|
|
*
|
|
* Returns: Pointer to pte_t corresponding to @addr.
|
|
* NULL if a page table doesn't exist for @addr and !@cache.
|
|
* NULL if a page table allocation failed.
|
|
*/
|
|
static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
|
|
unsigned long addr)
|
|
{
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd += pgd_index(addr);
|
|
if (pgd_none(*pgd)) {
|
|
/* Not used on MIPS yet */
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
p4d = p4d_offset(pgd, addr);
|
|
pud = pud_offset(p4d, addr);
|
|
if (pud_none(*pud)) {
|
|
pmd_t *new_pmd;
|
|
|
|
if (!cache)
|
|
return NULL;
|
|
new_pmd = mmu_memory_cache_alloc(cache);
|
|
pmd_init((unsigned long)new_pmd,
|
|
(unsigned long)invalid_pte_table);
|
|
pud_populate(NULL, pud, new_pmd);
|
|
}
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
pte_t *new_pte;
|
|
|
|
if (!cache)
|
|
return NULL;
|
|
new_pte = mmu_memory_cache_alloc(cache);
|
|
clear_page(new_pte);
|
|
pmd_populate_kernel(NULL, pmd, new_pte);
|
|
}
|
|
return pte_offset(pmd, addr);
|
|
}
|
|
|
|
/* Caller must hold kvm->mm_lock */
|
|
static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
|
|
struct kvm_mmu_memory_cache *cache,
|
|
unsigned long addr)
|
|
{
|
|
return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
|
|
}
|
|
|
|
/*
|
|
* kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
|
|
* Flush a range of guest physical address space from the VM's GPA page tables.
|
|
*/
|
|
|
|
static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
|
|
unsigned long end_gpa)
|
|
{
|
|
int i_min = __pte_offset(start_gpa);
|
|
int i_max = __pte_offset(end_gpa);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i) {
|
|
if (!pte_present(pte[i]))
|
|
continue;
|
|
|
|
set_pte(pte + i, __pte(0));
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
|
|
unsigned long end_gpa)
|
|
{
|
|
pte_t *pte;
|
|
unsigned long end = ~0ul;
|
|
int i_min = pmd_index(start_gpa);
|
|
int i_max = pmd_index(end_gpa);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
|
|
if (!pmd_present(pmd[i]))
|
|
continue;
|
|
|
|
pte = pte_offset(pmd + i, 0);
|
|
if (i == i_max)
|
|
end = end_gpa;
|
|
|
|
if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
|
|
pmd_clear(pmd + i);
|
|
pte_free_kernel(NULL, pte);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
|
|
unsigned long end_gpa)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long end = ~0ul;
|
|
int i_min = pud_index(start_gpa);
|
|
int i_max = pud_index(end_gpa);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
|
|
if (!pud_present(pud[i]))
|
|
continue;
|
|
|
|
pmd = pmd_offset(pud + i, 0);
|
|
if (i == i_max)
|
|
end = end_gpa;
|
|
|
|
if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
|
|
pud_clear(pud + i);
|
|
pmd_free(NULL, pmd);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
|
|
unsigned long end_gpa)
|
|
{
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
unsigned long end = ~0ul;
|
|
int i_min = pgd_index(start_gpa);
|
|
int i_max = pgd_index(end_gpa);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
|
|
if (!pgd_present(pgd[i]))
|
|
continue;
|
|
|
|
p4d = p4d_offset(pgd, 0);
|
|
pud = pud_offset(p4d + i, 0);
|
|
if (i == i_max)
|
|
end = end_gpa;
|
|
|
|
if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
|
|
pgd_clear(pgd + i);
|
|
pud_free(NULL, pud);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
|
|
* @kvm: KVM pointer.
|
|
* @start_gfn: Guest frame number of first page in GPA range to flush.
|
|
* @end_gfn: Guest frame number of last page in GPA range to flush.
|
|
*
|
|
* Flushes a range of GPA mappings from the GPA page tables.
|
|
*
|
|
* The caller must hold the @kvm->mmu_lock spinlock.
|
|
*
|
|
* Returns: Whether its safe to remove the top level page directory because
|
|
* all lower levels have been removed.
|
|
*/
|
|
bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
|
|
{
|
|
return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
|
|
start_gfn << PAGE_SHIFT,
|
|
end_gfn << PAGE_SHIFT);
|
|
}
|
|
|
|
#define BUILD_PTE_RANGE_OP(name, op) \
|
|
static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \
|
|
unsigned long end) \
|
|
{ \
|
|
int ret = 0; \
|
|
int i_min = __pte_offset(start); \
|
|
int i_max = __pte_offset(end); \
|
|
int i; \
|
|
pte_t old, new; \
|
|
\
|
|
for (i = i_min; i <= i_max; ++i) { \
|
|
if (!pte_present(pte[i])) \
|
|
continue; \
|
|
\
|
|
old = pte[i]; \
|
|
new = op(old); \
|
|
if (pte_val(new) == pte_val(old)) \
|
|
continue; \
|
|
set_pte(pte + i, new); \
|
|
ret = 1; \
|
|
} \
|
|
return ret; \
|
|
} \
|
|
\
|
|
/* returns true if anything was done */ \
|
|
static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \
|
|
unsigned long end) \
|
|
{ \
|
|
int ret = 0; \
|
|
pte_t *pte; \
|
|
unsigned long cur_end = ~0ul; \
|
|
int i_min = pmd_index(start); \
|
|
int i_max = pmd_index(end); \
|
|
int i; \
|
|
\
|
|
for (i = i_min; i <= i_max; ++i, start = 0) { \
|
|
if (!pmd_present(pmd[i])) \
|
|
continue; \
|
|
\
|
|
pte = pte_offset(pmd + i, 0); \
|
|
if (i == i_max) \
|
|
cur_end = end; \
|
|
\
|
|
ret |= kvm_mips_##name##_pte(pte, start, cur_end); \
|
|
} \
|
|
return ret; \
|
|
} \
|
|
\
|
|
static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \
|
|
unsigned long end) \
|
|
{ \
|
|
int ret = 0; \
|
|
pmd_t *pmd; \
|
|
unsigned long cur_end = ~0ul; \
|
|
int i_min = pud_index(start); \
|
|
int i_max = pud_index(end); \
|
|
int i; \
|
|
\
|
|
for (i = i_min; i <= i_max; ++i, start = 0) { \
|
|
if (!pud_present(pud[i])) \
|
|
continue; \
|
|
\
|
|
pmd = pmd_offset(pud + i, 0); \
|
|
if (i == i_max) \
|
|
cur_end = end; \
|
|
\
|
|
ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \
|
|
} \
|
|
return ret; \
|
|
} \
|
|
\
|
|
static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \
|
|
unsigned long end) \
|
|
{ \
|
|
int ret = 0; \
|
|
p4d_t *p4d; \
|
|
pud_t *pud; \
|
|
unsigned long cur_end = ~0ul; \
|
|
int i_min = pgd_index(start); \
|
|
int i_max = pgd_index(end); \
|
|
int i; \
|
|
\
|
|
for (i = i_min; i <= i_max; ++i, start = 0) { \
|
|
if (!pgd_present(pgd[i])) \
|
|
continue; \
|
|
\
|
|
p4d = p4d_offset(pgd, 0); \
|
|
pud = pud_offset(p4d + i, 0); \
|
|
if (i == i_max) \
|
|
cur_end = end; \
|
|
\
|
|
ret |= kvm_mips_##name##_pud(pud, start, cur_end); \
|
|
} \
|
|
return ret; \
|
|
}
|
|
|
|
/*
|
|
* kvm_mips_mkclean_gpa_pt.
|
|
* Mark a range of guest physical address space clean (writes fault) in the VM's
|
|
* GPA page table to allow dirty page tracking.
|
|
*/
|
|
|
|
BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
|
|
|
|
/**
|
|
* kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
|
|
* @kvm: KVM pointer.
|
|
* @start_gfn: Guest frame number of first page in GPA range to flush.
|
|
* @end_gfn: Guest frame number of last page in GPA range to flush.
|
|
*
|
|
* Make a range of GPA mappings clean so that guest writes will fault and
|
|
* trigger dirty page logging.
|
|
*
|
|
* The caller must hold the @kvm->mmu_lock spinlock.
|
|
*
|
|
* Returns: Whether any GPA mappings were modified, which would require
|
|
* derived mappings (GVA page tables & TLB enties) to be
|
|
* invalidated.
|
|
*/
|
|
int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
|
|
{
|
|
return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
|
|
start_gfn << PAGE_SHIFT,
|
|
end_gfn << PAGE_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
|
|
* @kvm: The KVM pointer
|
|
* @slot: The memory slot associated with mask
|
|
* @gfn_offset: The gfn offset in memory slot
|
|
* @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
|
|
* slot to be write protected
|
|
*
|
|
* Walks bits set in mask write protects the associated pte's. Caller must
|
|
* acquire @kvm->mmu_lock.
|
|
*/
|
|
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn_offset, unsigned long mask)
|
|
{
|
|
gfn_t base_gfn = slot->base_gfn + gfn_offset;
|
|
gfn_t start = base_gfn + __ffs(mask);
|
|
gfn_t end = base_gfn + __fls(mask);
|
|
|
|
kvm_mips_mkclean_gpa_pt(kvm, start, end);
|
|
}
|
|
|
|
/*
|
|
* kvm_mips_mkold_gpa_pt.
|
|
* Mark a range of guest physical address space old (all accesses fault) in the
|
|
* VM's GPA page table to allow detection of commonly used pages.
|
|
*/
|
|
|
|
BUILD_PTE_RANGE_OP(mkold, pte_mkold)
|
|
|
|
static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
|
|
gfn_t end_gfn)
|
|
{
|
|
return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
|
|
start_gfn << PAGE_SHIFT,
|
|
end_gfn << PAGE_SHIFT);
|
|
}
|
|
|
|
static int handle_hva_to_gpa(struct kvm *kvm,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
int (*handler)(struct kvm *kvm, gfn_t gfn,
|
|
gpa_t gfn_end,
|
|
struct kvm_memory_slot *memslot,
|
|
void *data),
|
|
void *data)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int ret = 0;
|
|
|
|
slots = kvm_memslots(kvm);
|
|
|
|
/* we only care about the pages that the guest sees */
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
unsigned long hva_start, hva_end;
|
|
gfn_t gfn, gfn_end;
|
|
|
|
hva_start = max(start, memslot->userspace_addr);
|
|
hva_end = min(end, memslot->userspace_addr +
|
|
(memslot->npages << PAGE_SHIFT));
|
|
if (hva_start >= hva_end)
|
|
continue;
|
|
|
|
/*
|
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
|
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
|
|
*/
|
|
gfn = hva_to_gfn_memslot(hva_start, memslot);
|
|
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
|
|
|
|
ret |= handler(kvm, gfn, gfn_end, memslot, data);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
|
|
struct kvm_memory_slot *memslot, void *data)
|
|
{
|
|
kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
|
|
return 1;
|
|
}
|
|
|
|
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
|
|
{
|
|
handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
|
|
|
|
kvm_mips_callbacks->flush_shadow_all(kvm);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
|
|
struct kvm_memory_slot *memslot, void *data)
|
|
{
|
|
gpa_t gpa = gfn << PAGE_SHIFT;
|
|
pte_t hva_pte = *(pte_t *)data;
|
|
pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
|
|
pte_t old_pte;
|
|
|
|
if (!gpa_pte)
|
|
return 0;
|
|
|
|
/* Mapping may need adjusting depending on memslot flags */
|
|
old_pte = *gpa_pte;
|
|
if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
|
|
hva_pte = pte_mkclean(hva_pte);
|
|
else if (memslot->flags & KVM_MEM_READONLY)
|
|
hva_pte = pte_wrprotect(hva_pte);
|
|
|
|
set_pte(gpa_pte, hva_pte);
|
|
|
|
/* Replacing an absent or old page doesn't need flushes */
|
|
if (!pte_present(old_pte) || !pte_young(old_pte))
|
|
return 0;
|
|
|
|
/* Pages swapped, aged, moved, or cleaned require flushes */
|
|
return !pte_present(hva_pte) ||
|
|
!pte_young(hva_pte) ||
|
|
pte_pfn(old_pte) != pte_pfn(hva_pte) ||
|
|
(pte_dirty(old_pte) && !pte_dirty(hva_pte));
|
|
}
|
|
|
|
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
|
|
{
|
|
unsigned long end = hva + PAGE_SIZE;
|
|
int ret;
|
|
|
|
ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
|
|
if (ret)
|
|
kvm_mips_callbacks->flush_shadow_all(kvm);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
|
|
struct kvm_memory_slot *memslot, void *data)
|
|
{
|
|
return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
|
|
}
|
|
|
|
static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
|
|
struct kvm_memory_slot *memslot, void *data)
|
|
{
|
|
gpa_t gpa = gfn << PAGE_SHIFT;
|
|
pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
|
|
|
|
if (!gpa_pte)
|
|
return 0;
|
|
return pte_young(*gpa_pte);
|
|
}
|
|
|
|
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
|
|
{
|
|
return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
|
|
}
|
|
|
|
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
|
|
}
|
|
|
|
/**
|
|
* _kvm_mips_map_page_fast() - Fast path GPA fault handler.
|
|
* @vcpu: VCPU pointer.
|
|
* @gpa: Guest physical address of fault.
|
|
* @write_fault: Whether the fault was due to a write.
|
|
* @out_entry: New PTE for @gpa (written on success unless NULL).
|
|
* @out_buddy: New PTE for @gpa's buddy (written on success unless
|
|
* NULL).
|
|
*
|
|
* Perform fast path GPA fault handling, doing all that can be done without
|
|
* calling into KVM. This handles marking old pages young (for idle page
|
|
* tracking), and dirtying of clean pages (for dirty page logging).
|
|
*
|
|
* Returns: 0 on success, in which case we can update derived mappings and
|
|
* resume guest execution.
|
|
* -EFAULT on failure due to absent GPA mapping or write to
|
|
* read-only page, in which case KVM must be consulted.
|
|
*/
|
|
static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
|
|
bool write_fault,
|
|
pte_t *out_entry, pte_t *out_buddy)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
pte_t *ptep;
|
|
kvm_pfn_t pfn = 0; /* silence bogus GCC warning */
|
|
bool pfn_valid = false;
|
|
int ret = 0;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
/* Fast path - just check GPA page table for an existing entry */
|
|
ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
|
|
if (!ptep || !pte_present(*ptep)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
/* Track access to pages marked old */
|
|
if (!pte_young(*ptep)) {
|
|
set_pte(ptep, pte_mkyoung(*ptep));
|
|
pfn = pte_pfn(*ptep);
|
|
pfn_valid = true;
|
|
/* call kvm_set_pfn_accessed() after unlock */
|
|
}
|
|
if (write_fault && !pte_dirty(*ptep)) {
|
|
if (!pte_write(*ptep)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
/* Track dirtying of writeable pages */
|
|
set_pte(ptep, pte_mkdirty(*ptep));
|
|
pfn = pte_pfn(*ptep);
|
|
mark_page_dirty(kvm, gfn);
|
|
kvm_set_pfn_dirty(pfn);
|
|
}
|
|
|
|
if (out_entry)
|
|
*out_entry = *ptep;
|
|
if (out_buddy)
|
|
*out_buddy = *ptep_buddy(ptep);
|
|
|
|
out:
|
|
spin_unlock(&kvm->mmu_lock);
|
|
if (pfn_valid)
|
|
kvm_set_pfn_accessed(pfn);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_map_page() - Map a guest physical page.
|
|
* @vcpu: VCPU pointer.
|
|
* @gpa: Guest physical address of fault.
|
|
* @write_fault: Whether the fault was due to a write.
|
|
* @out_entry: New PTE for @gpa (written on success unless NULL).
|
|
* @out_buddy: New PTE for @gpa's buddy (written on success unless
|
|
* NULL).
|
|
*
|
|
* Handle GPA faults by creating a new GPA mapping (or updating an existing
|
|
* one).
|
|
*
|
|
* This takes care of marking pages young or dirty (idle/dirty page tracking),
|
|
* asking KVM for the corresponding PFN, and creating a mapping in the GPA page
|
|
* tables. Derived mappings (GVA page tables and TLBs) must be handled by the
|
|
* caller.
|
|
*
|
|
* Returns: 0 on success, in which case the caller may use the @out_entry
|
|
* and @out_buddy PTEs to update derived mappings and resume guest
|
|
* execution.
|
|
* -EFAULT if there is no memory region at @gpa or a write was
|
|
* attempted to a read-only memory region. This is usually handled
|
|
* as an MMIO access.
|
|
*/
|
|
static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
|
|
bool write_fault,
|
|
pte_t *out_entry, pte_t *out_buddy)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int srcu_idx, err;
|
|
kvm_pfn_t pfn;
|
|
pte_t *ptep, entry, old_pte;
|
|
bool writeable;
|
|
unsigned long prot_bits;
|
|
unsigned long mmu_seq;
|
|
|
|
/* Try the fast path to handle old / clean pages */
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
|
|
out_buddy);
|
|
if (!err)
|
|
goto out;
|
|
|
|
/* We need a minimum of cached pages ready for page table creation */
|
|
err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
|
|
KVM_NR_MEM_OBJS);
|
|
if (err)
|
|
goto out;
|
|
|
|
retry:
|
|
/*
|
|
* Used to check for invalidations in progress, of the pfn that is
|
|
* returned by pfn_to_pfn_prot below.
|
|
*/
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
/*
|
|
* Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
|
|
* gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
|
|
* risk the page we get a reference to getting unmapped before we have a
|
|
* chance to grab the mmu_lock without mmu_notifier_retry() noticing.
|
|
*
|
|
* This smp_rmb() pairs with the effective smp_wmb() of the combination
|
|
* of the pte_unmap_unlock() after the PTE is zapped, and the
|
|
* spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
|
|
* mmu_notifier_seq is incremented.
|
|
*/
|
|
smp_rmb();
|
|
|
|
/* Slow path - ask KVM core whether we can access this GPA */
|
|
pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
|
|
if (is_error_noslot_pfn(pfn)) {
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
/* Check if an invalidation has taken place since we got pfn */
|
|
if (mmu_notifier_retry(kvm, mmu_seq)) {
|
|
/*
|
|
* This can happen when mappings are changed asynchronously, but
|
|
* also synchronously if a COW is triggered by
|
|
* gfn_to_pfn_prot().
|
|
*/
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_release_pfn_clean(pfn);
|
|
goto retry;
|
|
}
|
|
|
|
/* Ensure page tables are allocated */
|
|
ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
|
|
|
|
/* Set up the PTE */
|
|
prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
|
|
if (writeable) {
|
|
prot_bits |= _PAGE_WRITE;
|
|
if (write_fault) {
|
|
prot_bits |= __WRITEABLE;
|
|
mark_page_dirty(kvm, gfn);
|
|
kvm_set_pfn_dirty(pfn);
|
|
}
|
|
}
|
|
entry = pfn_pte(pfn, __pgprot(prot_bits));
|
|
|
|
/* Write the PTE */
|
|
old_pte = *ptep;
|
|
set_pte(ptep, entry);
|
|
|
|
err = 0;
|
|
if (out_entry)
|
|
*out_entry = *ptep;
|
|
if (out_buddy)
|
|
*out_buddy = *ptep_buddy(ptep);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_release_pfn_clean(pfn);
|
|
kvm_set_pfn_accessed(pfn);
|
|
out:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return err;
|
|
}
|
|
|
|
static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
|
|
unsigned long addr)
|
|
{
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
pgd_t *pgdp;
|
|
int ret;
|
|
|
|
/* We need a minimum of cached pages ready for page table creation */
|
|
ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
|
|
KVM_NR_MEM_OBJS);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
if (KVM_GUEST_KERNEL_MODE(vcpu))
|
|
pgdp = vcpu->arch.guest_kernel_mm.pgd;
|
|
else
|
|
pgdp = vcpu->arch.guest_user_mm.pgd;
|
|
|
|
return kvm_mips_walk_pgd(pgdp, memcache, addr);
|
|
}
|
|
|
|
void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
|
|
bool user)
|
|
{
|
|
pgd_t *pgdp;
|
|
pte_t *ptep;
|
|
|
|
addr &= PAGE_MASK << 1;
|
|
|
|
pgdp = vcpu->arch.guest_kernel_mm.pgd;
|
|
ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
|
|
if (ptep) {
|
|
ptep[0] = pfn_pte(0, __pgprot(0));
|
|
ptep[1] = pfn_pte(0, __pgprot(0));
|
|
}
|
|
|
|
if (user) {
|
|
pgdp = vcpu->arch.guest_user_mm.pgd;
|
|
ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
|
|
if (ptep) {
|
|
ptep[0] = pfn_pte(0, __pgprot(0));
|
|
ptep[1] = pfn_pte(0, __pgprot(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
|
|
* Flush a range of guest physical address space from the VM's GPA page tables.
|
|
*/
|
|
|
|
static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
|
|
unsigned long end_gva)
|
|
{
|
|
int i_min = __pte_offset(start_gva);
|
|
int i_max = __pte_offset(end_gva);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
|
|
int i;
|
|
|
|
/*
|
|
* There's no freeing to do, so there's no point clearing individual
|
|
* entries unless only part of the last level page table needs flushing.
|
|
*/
|
|
if (safe_to_remove)
|
|
return true;
|
|
|
|
for (i = i_min; i <= i_max; ++i) {
|
|
if (!pte_present(pte[i]))
|
|
continue;
|
|
|
|
set_pte(pte + i, __pte(0));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
|
|
unsigned long end_gva)
|
|
{
|
|
pte_t *pte;
|
|
unsigned long end = ~0ul;
|
|
int i_min = pmd_index(start_gva);
|
|
int i_max = pmd_index(end_gva);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
|
|
if (!pmd_present(pmd[i]))
|
|
continue;
|
|
|
|
pte = pte_offset(pmd + i, 0);
|
|
if (i == i_max)
|
|
end = end_gva;
|
|
|
|
if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
|
|
pmd_clear(pmd + i);
|
|
pte_free_kernel(NULL, pte);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
|
|
unsigned long end_gva)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long end = ~0ul;
|
|
int i_min = pud_index(start_gva);
|
|
int i_max = pud_index(end_gva);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
|
|
if (!pud_present(pud[i]))
|
|
continue;
|
|
|
|
pmd = pmd_offset(pud + i, 0);
|
|
if (i == i_max)
|
|
end = end_gva;
|
|
|
|
if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
|
|
pud_clear(pud + i);
|
|
pmd_free(NULL, pmd);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
|
|
unsigned long end_gva)
|
|
{
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
unsigned long end = ~0ul;
|
|
int i_min = pgd_index(start_gva);
|
|
int i_max = pgd_index(end_gva);
|
|
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
|
|
int i;
|
|
|
|
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
|
|
if (!pgd_present(pgd[i]))
|
|
continue;
|
|
|
|
p4d = p4d_offset(pgd, 0);
|
|
pud = pud_offset(p4d + i, 0);
|
|
if (i == i_max)
|
|
end = end_gva;
|
|
|
|
if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
|
|
pgd_clear(pgd + i);
|
|
pud_free(NULL, pud);
|
|
} else {
|
|
safe_to_remove = false;
|
|
}
|
|
}
|
|
return safe_to_remove;
|
|
}
|
|
|
|
void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
|
|
{
|
|
if (flags & KMF_GPA) {
|
|
/* all of guest virtual address space could be affected */
|
|
if (flags & KMF_KERN)
|
|
/* useg, kseg0, seg2/3 */
|
|
kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
|
|
else
|
|
/* useg */
|
|
kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
|
|
} else {
|
|
/* useg */
|
|
kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
|
|
|
|
/* kseg2/3 */
|
|
if (flags & KMF_KERN)
|
|
kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
|
|
}
|
|
}
|
|
|
|
static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
|
|
{
|
|
/*
|
|
* Don't leak writeable but clean entries from GPA page tables. We don't
|
|
* want the normal Linux tlbmod handler to handle dirtying when KVM
|
|
* accesses guest memory.
|
|
*/
|
|
if (!pte_dirty(pte))
|
|
pte = pte_wrprotect(pte);
|
|
|
|
return pte;
|
|
}
|
|
|
|
static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
|
|
{
|
|
/* Guest EntryLo overrides host EntryLo */
|
|
if (!(entrylo & ENTRYLO_D))
|
|
pte = pte_mkclean(pte);
|
|
|
|
return kvm_mips_gpa_pte_to_gva_unmapped(pte);
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_MIPS_VZ
|
|
int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
|
|
struct kvm_vcpu *vcpu,
|
|
bool write_fault)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Invalidate this entry in the TLB */
|
|
return kvm_vz_host_tlb_inv(vcpu, badvaddr);
|
|
}
|
|
#endif
|
|
|
|
/* XXXKYMA: Must be called with interrupts disabled */
|
|
int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
|
|
struct kvm_vcpu *vcpu,
|
|
bool write_fault)
|
|
{
|
|
unsigned long gpa;
|
|
pte_t pte_gpa[2], *ptep_gva;
|
|
int idx;
|
|
|
|
if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
|
|
kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
|
|
kvm_mips_dump_host_tlbs();
|
|
return -1;
|
|
}
|
|
|
|
/* Get the GPA page table entry */
|
|
gpa = KVM_GUEST_CPHYSADDR(badvaddr);
|
|
idx = (badvaddr >> PAGE_SHIFT) & 1;
|
|
if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
|
|
&pte_gpa[!idx]) < 0)
|
|
return -1;
|
|
|
|
/* Get the GVA page table entry */
|
|
ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
|
|
if (!ptep_gva) {
|
|
kvm_err("No ptep for gva %lx\n", badvaddr);
|
|
return -1;
|
|
}
|
|
|
|
/* Copy a pair of entries from GPA page table to GVA page table */
|
|
ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
|
|
ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
|
|
|
|
/* Invalidate this entry in the TLB, guest kernel ASID only */
|
|
kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
|
|
struct kvm_mips_tlb *tlb,
|
|
unsigned long gva,
|
|
bool write_fault)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
long tlb_lo[2];
|
|
pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
|
|
unsigned int idx = TLB_LO_IDX(*tlb, gva);
|
|
bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
|
|
|
|
tlb_lo[0] = tlb->tlb_lo[0];
|
|
tlb_lo[1] = tlb->tlb_lo[1];
|
|
|
|
/*
|
|
* The commpage address must not be mapped to anything else if the guest
|
|
* TLB contains entries nearby, or commpage accesses will break.
|
|
*/
|
|
if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
|
|
tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
|
|
|
|
/* Get the GPA page table entry */
|
|
if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
|
|
write_fault, &pte_gpa[idx], NULL) < 0)
|
|
return -1;
|
|
|
|
/* And its GVA buddy's GPA page table entry if it also exists */
|
|
pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
|
|
if (tlb_lo[!idx] & ENTRYLO_V) {
|
|
spin_lock(&kvm->mmu_lock);
|
|
ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
|
|
mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
|
|
if (ptep_buddy)
|
|
pte_gpa[!idx] = *ptep_buddy;
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
/* Get the GVA page table entry pair */
|
|
ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
|
|
if (!ptep_gva) {
|
|
kvm_err("No ptep for gva %lx\n", gva);
|
|
return -1;
|
|
}
|
|
|
|
/* Copy a pair of entries from GPA page table to GVA page table */
|
|
ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
|
|
ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
|
|
|
|
/* Invalidate this entry in the TLB, current guest mode ASID only */
|
|
kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
|
|
|
|
kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
|
|
tlb->tlb_lo[0], tlb->tlb_lo[1]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pfn_t pfn;
|
|
pte_t *ptep;
|
|
|
|
ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
|
|
if (!ptep) {
|
|
kvm_err("No ptep for commpage %lx\n", badvaddr);
|
|
return -1;
|
|
}
|
|
|
|
pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
|
|
/* Also set valid and dirty, so refill handler doesn't have to */
|
|
*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
|
|
|
|
/* Invalidate this entry in the TLB, guest kernel ASID only */
|
|
kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_migrate_count() - Migrate timer.
|
|
* @vcpu: Virtual CPU.
|
|
*
|
|
* Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
|
|
* if it was running prior to being cancelled.
|
|
*
|
|
* Must be called when the VCPU is migrated to a different CPU to ensure that
|
|
* timer expiry during guest execution interrupts the guest and causes the
|
|
* interrupt to be delivered in a timely manner.
|
|
*/
|
|
static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
|
|
hrtimer_restart(&vcpu->arch.comparecount_timer);
|
|
}
|
|
|
|
/* Restore ASID once we are scheduled back after preemption */
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
|
|
|
|
local_irq_save(flags);
|
|
|
|
vcpu->cpu = cpu;
|
|
if (vcpu->arch.last_sched_cpu != cpu) {
|
|
kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
|
|
vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
|
|
/*
|
|
* Migrate the timer interrupt to the current CPU so that it
|
|
* always interrupts the guest and synchronously triggers a
|
|
* guest timer interrupt.
|
|
*/
|
|
kvm_mips_migrate_count(vcpu);
|
|
}
|
|
|
|
/* restore guest state to registers */
|
|
kvm_mips_callbacks->vcpu_load(vcpu, cpu);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* ASID can change if another task is scheduled during preemption */
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long flags;
|
|
int cpu;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cpu = smp_processor_id();
|
|
vcpu->arch.last_sched_cpu = cpu;
|
|
vcpu->cpu = -1;
|
|
|
|
/* save guest state in registers */
|
|
kvm_mips_callbacks->vcpu_put(vcpu, cpu);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
|
|
* @vcpu: Virtual CPU.
|
|
* @gva: Guest virtual address to be accessed.
|
|
* @write: True if write attempted (must be dirtied and made writable).
|
|
*
|
|
* Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
|
|
* dirtying the page if @write so that guest instructions can be modified.
|
|
*
|
|
* Returns: KVM_MIPS_MAPPED on success.
|
|
* KVM_MIPS_GVA if bad guest virtual address.
|
|
* KVM_MIPS_GPA if bad guest physical address.
|
|
* KVM_MIPS_TLB if guest TLB not present.
|
|
* KVM_MIPS_TLBINV if guest TLB present but not valid.
|
|
* KVM_MIPS_TLBMOD if guest TLB read only.
|
|
*/
|
|
enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
|
|
unsigned long gva,
|
|
bool write)
|
|
{
|
|
struct mips_coproc *cop0 = vcpu->arch.cop0;
|
|
struct kvm_mips_tlb *tlb;
|
|
int index;
|
|
|
|
if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
|
|
if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
|
|
return KVM_MIPS_GPA;
|
|
} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
|
|
KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
|
|
/* Address should be in the guest TLB */
|
|
index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
|
|
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
|
|
if (index < 0)
|
|
return KVM_MIPS_TLB;
|
|
tlb = &vcpu->arch.guest_tlb[index];
|
|
|
|
/* Entry should be valid, and dirty for writes */
|
|
if (!TLB_IS_VALID(*tlb, gva))
|
|
return KVM_MIPS_TLBINV;
|
|
if (write && !TLB_IS_DIRTY(*tlb, gva))
|
|
return KVM_MIPS_TLBMOD;
|
|
|
|
if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
|
|
return KVM_MIPS_GPA;
|
|
} else {
|
|
return KVM_MIPS_GVA;
|
|
}
|
|
|
|
return KVM_MIPS_MAPPED;
|
|
}
|
|
|
|
int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
|
|
{
|
|
int err;
|
|
|
|
if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
|
|
"Expect BadInstr/BadInstrP registers to be used with VZ\n"))
|
|
return -EINVAL;
|
|
|
|
retry:
|
|
kvm_trap_emul_gva_lockless_begin(vcpu);
|
|
err = get_user(*out, opc);
|
|
kvm_trap_emul_gva_lockless_end(vcpu);
|
|
|
|
if (unlikely(err)) {
|
|
/*
|
|
* Try to handle the fault, maybe we just raced with a GVA
|
|
* invalidation.
|
|
*/
|
|
err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
|
|
false);
|
|
if (unlikely(err)) {
|
|
kvm_err("%s: illegal address: %p\n",
|
|
__func__, opc);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Hopefully it'll work now */
|
|
goto retry;
|
|
}
|
|
return 0;
|
|
}
|