mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 20:39:23 +07:00
961e026a06
Commit a53e35db70
("reset: Ensure drivers are explicit when requesting
reset lines") started to transition the reset control request API calls
to explicitly state whether the driver needs exclusive or shared reset
control behavior. Convert all drivers requesting exclusive resets to the
explicit API call so the temporary transition helpers can be removed.
No functional changes.
Cc: Wolfram Sang <wsa@the-dreams.de>
Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Cc: Alexandre Torgue <alexandre.torgue@st.com>
Cc: linux-i2c@vger.kernel.org
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
898 lines
24 KiB
C
898 lines
24 KiB
C
/*
|
|
* Driver for STMicroelectronics STM32 I2C controller
|
|
*
|
|
* This I2C controller is described in the STM32F429/439 Soc reference manual.
|
|
* Please see below a link to the documentation:
|
|
* http://www.st.com/resource/en/reference_manual/DM00031020.pdf
|
|
*
|
|
* Copyright (C) M'boumba Cedric Madianga 2016
|
|
* Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
|
|
*
|
|
* This driver is based on i2c-st.c
|
|
*
|
|
* License terms: GNU General Public License (GPL), version 2
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/reset.h>
|
|
|
|
/* STM32F4 I2C offset registers */
|
|
#define STM32F4_I2C_CR1 0x00
|
|
#define STM32F4_I2C_CR2 0x04
|
|
#define STM32F4_I2C_DR 0x10
|
|
#define STM32F4_I2C_SR1 0x14
|
|
#define STM32F4_I2C_SR2 0x18
|
|
#define STM32F4_I2C_CCR 0x1C
|
|
#define STM32F4_I2C_TRISE 0x20
|
|
#define STM32F4_I2C_FLTR 0x24
|
|
|
|
/* STM32F4 I2C control 1*/
|
|
#define STM32F4_I2C_CR1_POS BIT(11)
|
|
#define STM32F4_I2C_CR1_ACK BIT(10)
|
|
#define STM32F4_I2C_CR1_STOP BIT(9)
|
|
#define STM32F4_I2C_CR1_START BIT(8)
|
|
#define STM32F4_I2C_CR1_PE BIT(0)
|
|
|
|
/* STM32F4 I2C control 2 */
|
|
#define STM32F4_I2C_CR2_FREQ_MASK GENMASK(5, 0)
|
|
#define STM32F4_I2C_CR2_FREQ(n) ((n) & STM32F4_I2C_CR2_FREQ_MASK)
|
|
#define STM32F4_I2C_CR2_ITBUFEN BIT(10)
|
|
#define STM32F4_I2C_CR2_ITEVTEN BIT(9)
|
|
#define STM32F4_I2C_CR2_ITERREN BIT(8)
|
|
#define STM32F4_I2C_CR2_IRQ_MASK (STM32F4_I2C_CR2_ITBUFEN | \
|
|
STM32F4_I2C_CR2_ITEVTEN | \
|
|
STM32F4_I2C_CR2_ITERREN)
|
|
|
|
/* STM32F4 I2C Status 1 */
|
|
#define STM32F4_I2C_SR1_AF BIT(10)
|
|
#define STM32F4_I2C_SR1_ARLO BIT(9)
|
|
#define STM32F4_I2C_SR1_BERR BIT(8)
|
|
#define STM32F4_I2C_SR1_TXE BIT(7)
|
|
#define STM32F4_I2C_SR1_RXNE BIT(6)
|
|
#define STM32F4_I2C_SR1_BTF BIT(2)
|
|
#define STM32F4_I2C_SR1_ADDR BIT(1)
|
|
#define STM32F4_I2C_SR1_SB BIT(0)
|
|
#define STM32F4_I2C_SR1_ITEVTEN_MASK (STM32F4_I2C_SR1_BTF | \
|
|
STM32F4_I2C_SR1_ADDR | \
|
|
STM32F4_I2C_SR1_SB)
|
|
#define STM32F4_I2C_SR1_ITBUFEN_MASK (STM32F4_I2C_SR1_TXE | \
|
|
STM32F4_I2C_SR1_RXNE)
|
|
#define STM32F4_I2C_SR1_ITERREN_MASK (STM32F4_I2C_SR1_AF | \
|
|
STM32F4_I2C_SR1_ARLO | \
|
|
STM32F4_I2C_SR1_BERR)
|
|
|
|
/* STM32F4 I2C Status 2 */
|
|
#define STM32F4_I2C_SR2_BUSY BIT(1)
|
|
|
|
/* STM32F4 I2C Control Clock */
|
|
#define STM32F4_I2C_CCR_CCR_MASK GENMASK(11, 0)
|
|
#define STM32F4_I2C_CCR_CCR(n) ((n) & STM32F4_I2C_CCR_CCR_MASK)
|
|
#define STM32F4_I2C_CCR_FS BIT(15)
|
|
#define STM32F4_I2C_CCR_DUTY BIT(14)
|
|
|
|
/* STM32F4 I2C Trise */
|
|
#define STM32F4_I2C_TRISE_VALUE_MASK GENMASK(5, 0)
|
|
#define STM32F4_I2C_TRISE_VALUE(n) ((n) & STM32F4_I2C_TRISE_VALUE_MASK)
|
|
|
|
#define STM32F4_I2C_MIN_STANDARD_FREQ 2U
|
|
#define STM32F4_I2C_MIN_FAST_FREQ 6U
|
|
#define STM32F4_I2C_MAX_FREQ 46U
|
|
#define HZ_TO_MHZ 1000000
|
|
|
|
enum stm32f4_i2c_speed {
|
|
STM32F4_I2C_SPEED_STANDARD, /* 100 kHz */
|
|
STM32F4_I2C_SPEED_FAST, /* 400 kHz */
|
|
STM32F4_I2C_SPEED_END,
|
|
};
|
|
|
|
/**
|
|
* struct stm32f4_i2c_msg - client specific data
|
|
* @addr: 8-bit slave addr, including r/w bit
|
|
* @count: number of bytes to be transferred
|
|
* @buf: data buffer
|
|
* @result: result of the transfer
|
|
* @stop: last I2C msg to be sent, i.e. STOP to be generated
|
|
*/
|
|
struct stm32f4_i2c_msg {
|
|
u8 addr;
|
|
u32 count;
|
|
u8 *buf;
|
|
int result;
|
|
bool stop;
|
|
};
|
|
|
|
/**
|
|
* struct stm32f4_i2c_dev - private data of the controller
|
|
* @adap: I2C adapter for this controller
|
|
* @dev: device for this controller
|
|
* @base: virtual memory area
|
|
* @complete: completion of I2C message
|
|
* @clk: hw i2c clock
|
|
* @speed: I2C clock frequency of the controller. Standard or Fast are supported
|
|
* @parent_rate: I2C clock parent rate in MHz
|
|
* @msg: I2C transfer information
|
|
*/
|
|
struct stm32f4_i2c_dev {
|
|
struct i2c_adapter adap;
|
|
struct device *dev;
|
|
void __iomem *base;
|
|
struct completion complete;
|
|
struct clk *clk;
|
|
int speed;
|
|
int parent_rate;
|
|
struct stm32f4_i2c_msg msg;
|
|
};
|
|
|
|
static inline void stm32f4_i2c_set_bits(void __iomem *reg, u32 mask)
|
|
{
|
|
writel_relaxed(readl_relaxed(reg) | mask, reg);
|
|
}
|
|
|
|
static inline void stm32f4_i2c_clr_bits(void __iomem *reg, u32 mask)
|
|
{
|
|
writel_relaxed(readl_relaxed(reg) & ~mask, reg);
|
|
}
|
|
|
|
static void stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
|
|
|
|
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_IRQ_MASK);
|
|
}
|
|
|
|
static int stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
u32 freq;
|
|
u32 cr2 = 0;
|
|
|
|
i2c_dev->parent_rate = clk_get_rate(i2c_dev->clk);
|
|
freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
|
|
|
|
if (i2c_dev->speed == STM32F4_I2C_SPEED_STANDARD) {
|
|
/*
|
|
* To reach 100 kHz, the parent clk frequency should be between
|
|
* a minimum value of 2 MHz and a maximum value of 46 MHz due
|
|
* to hardware limitation
|
|
*/
|
|
if (freq < STM32F4_I2C_MIN_STANDARD_FREQ ||
|
|
freq > STM32F4_I2C_MAX_FREQ) {
|
|
dev_err(i2c_dev->dev,
|
|
"bad parent clk freq for standard mode\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
/*
|
|
* To be as close as possible to 400 kHz, the parent clk
|
|
* frequency should be between a minimum value of 6 MHz and a
|
|
* maximum value of 46 MHz due to hardware limitation
|
|
*/
|
|
if (freq < STM32F4_I2C_MIN_FAST_FREQ ||
|
|
freq > STM32F4_I2C_MAX_FREQ) {
|
|
dev_err(i2c_dev->dev,
|
|
"bad parent clk freq for fast mode\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
cr2 |= STM32F4_I2C_CR2_FREQ(freq);
|
|
writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
u32 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
|
|
u32 trise;
|
|
|
|
/*
|
|
* These bits must be programmed with the maximum SCL rise time given in
|
|
* the I2C bus specification, incremented by 1.
|
|
*
|
|
* In standard mode, the maximum allowed SCL rise time is 1000 ns.
|
|
* If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
|
|
* 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
|
|
* programmed with 0x9. (1000 ns / 125 ns + 1)
|
|
* So, for I2C standard mode TRISE = FREQ[5:0] + 1
|
|
*
|
|
* In fast mode, the maximum allowed SCL rise time is 300 ns.
|
|
* If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
|
|
* 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
|
|
* programmed with 0x3. (300 ns / 125 ns + 1)
|
|
* So, for I2C fast mode TRISE = FREQ[5:0] * 300 / 1000 + 1
|
|
*
|
|
* Function stm32f4_i2c_set_periph_clk_freq made sure that parent rate
|
|
* is not higher than 46 MHz . As a result trise is at most 4 bits wide
|
|
* and so fits into the TRISE bits [5:0].
|
|
*/
|
|
if (i2c_dev->speed == STM32F4_I2C_SPEED_STANDARD)
|
|
trise = freq + 1;
|
|
else
|
|
trise = freq * 3 / 10 + 1;
|
|
|
|
writel_relaxed(STM32F4_I2C_TRISE_VALUE(trise),
|
|
i2c_dev->base + STM32F4_I2C_TRISE);
|
|
}
|
|
|
|
static void stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
u32 val;
|
|
u32 ccr = 0;
|
|
|
|
if (i2c_dev->speed == STM32F4_I2C_SPEED_STANDARD) {
|
|
/*
|
|
* In standard mode:
|
|
* t_scl_high = t_scl_low = CCR * I2C parent clk period
|
|
* So to reach 100 kHz, we have:
|
|
* CCR = I2C parent rate / 100 kHz >> 1
|
|
*
|
|
* For example with parent rate = 2 MHz:
|
|
* CCR = 2000000 / (100000 << 1) = 10
|
|
* t_scl_high = t_scl_low = 10 * (1 / 2000000) = 5000 ns
|
|
* t_scl_high + t_scl_low = 10000 ns so 100 kHz is reached
|
|
*
|
|
* Function stm32f4_i2c_set_periph_clk_freq made sure that
|
|
* parent rate is not higher than 46 MHz . As a result val
|
|
* is at most 8 bits wide and so fits into the CCR bits [11:0].
|
|
*/
|
|
val = i2c_dev->parent_rate / (100000 << 1);
|
|
} else {
|
|
/*
|
|
* In fast mode, we compute CCR with duty = 0 as with low
|
|
* frequencies we are not able to reach 400 kHz.
|
|
* In that case:
|
|
* t_scl_high = CCR * I2C parent clk period
|
|
* t_scl_low = 2 * CCR * I2C parent clk period
|
|
* So, CCR = I2C parent rate / (400 kHz * 3)
|
|
*
|
|
* For example with parent rate = 6 MHz:
|
|
* CCR = 6000000 / (400000 * 3) = 5
|
|
* t_scl_high = 5 * (1 / 6000000) = 833 ns > 600 ns
|
|
* t_scl_low = 2 * 5 * (1 / 6000000) = 1667 ns > 1300 ns
|
|
* t_scl_high + t_scl_low = 2500 ns so 400 kHz is reached
|
|
*
|
|
* Function stm32f4_i2c_set_periph_clk_freq made sure that
|
|
* parent rate is not higher than 46 MHz . As a result val
|
|
* is at most 6 bits wide and so fits into the CCR bits [11:0].
|
|
*/
|
|
val = DIV_ROUND_UP(i2c_dev->parent_rate, 400000 * 3);
|
|
|
|
/* Select Fast mode */
|
|
ccr |= STM32F4_I2C_CCR_FS;
|
|
}
|
|
|
|
ccr |= STM32F4_I2C_CCR_CCR(val);
|
|
writel_relaxed(ccr, i2c_dev->base + STM32F4_I2C_CCR);
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_hw_config() - Prepare I2C block
|
|
* @i2c_dev: Controller's private data
|
|
*/
|
|
static int stm32f4_i2c_hw_config(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
int ret;
|
|
|
|
ret = stm32f4_i2c_set_periph_clk_freq(i2c_dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
stm32f4_i2c_set_rise_time(i2c_dev);
|
|
|
|
stm32f4_i2c_set_speed_mode(i2c_dev);
|
|
|
|
/* Enable I2C */
|
|
writel_relaxed(STM32F4_I2C_CR1_PE, i2c_dev->base + STM32F4_I2C_CR1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
u32 status;
|
|
int ret;
|
|
|
|
ret = readl_relaxed_poll_timeout(i2c_dev->base + STM32F4_I2C_SR2,
|
|
status,
|
|
!(status & STM32F4_I2C_SR2_BUSY),
|
|
10, 1000);
|
|
if (ret) {
|
|
dev_dbg(i2c_dev->dev, "bus not free\n");
|
|
ret = -EBUSY;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_write_ byte() - Write a byte in the data register
|
|
* @i2c_dev: Controller's private data
|
|
* @byte: Data to write in the register
|
|
*/
|
|
static void stm32f4_i2c_write_byte(struct stm32f4_i2c_dev *i2c_dev, u8 byte)
|
|
{
|
|
writel_relaxed(byte, i2c_dev->base + STM32F4_I2C_DR);
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_write_msg() - Fill the data register in write mode
|
|
* @i2c_dev: Controller's private data
|
|
*
|
|
* This function fills the data register with I2C transfer buffer
|
|
*/
|
|
static void stm32f4_i2c_write_msg(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
|
|
stm32f4_i2c_write_byte(i2c_dev, *msg->buf++);
|
|
msg->count--;
|
|
}
|
|
|
|
static void stm32f4_i2c_read_msg(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
u32 rbuf;
|
|
|
|
rbuf = readl_relaxed(i2c_dev->base + STM32F4_I2C_DR);
|
|
*msg->buf++ = rbuf;
|
|
msg->count--;
|
|
}
|
|
|
|
static void stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
|
|
|
|
stm32f4_i2c_disable_irq(i2c_dev);
|
|
|
|
reg = i2c_dev->base + STM32F4_I2C_CR1;
|
|
if (msg->stop)
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
|
|
else
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
|
|
|
|
complete(&i2c_dev->complete);
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_handle_write() - Handle FIFO empty interrupt in case of write
|
|
* @i2c_dev: Controller's private data
|
|
*/
|
|
static void stm32f4_i2c_handle_write(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
|
|
|
|
if (msg->count) {
|
|
stm32f4_i2c_write_msg(i2c_dev);
|
|
if (!msg->count) {
|
|
/*
|
|
* Disable buffer interrupts for RX not empty and TX
|
|
* empty events
|
|
*/
|
|
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
|
|
}
|
|
} else {
|
|
stm32f4_i2c_terminate_xfer(i2c_dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_handle_read() - Handle FIFO empty interrupt in case of read
|
|
* @i2c_dev: Controller's private data
|
|
*
|
|
* This function is called when a new data is received in data register
|
|
*/
|
|
static void stm32f4_i2c_handle_read(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
|
|
|
|
switch (msg->count) {
|
|
case 1:
|
|
stm32f4_i2c_disable_irq(i2c_dev);
|
|
stm32f4_i2c_read_msg(i2c_dev);
|
|
complete(&i2c_dev->complete);
|
|
break;
|
|
/*
|
|
* For 2-byte reception, 3-byte reception and for Data N-2, N-1 and N
|
|
* for N-byte reception with N > 3, we do not have to read the data
|
|
* register when RX not empty event occurs as we have to wait for byte
|
|
* transferred finished event before reading data.
|
|
* So, here we just disable buffer interrupt in order to avoid another
|
|
* system preemption due to RX not empty event.
|
|
*/
|
|
case 2:
|
|
case 3:
|
|
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
|
|
break;
|
|
/*
|
|
* For N byte reception with N > 3 we directly read data register
|
|
* until N-2 data.
|
|
*/
|
|
default:
|
|
stm32f4_i2c_read_msg(i2c_dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_handle_rx_done() - Handle byte transfer finished interrupt
|
|
* in case of read
|
|
* @i2c_dev: Controller's private data
|
|
*
|
|
* This function is called when a new data is received in the shift register
|
|
* but data register has not been read yet.
|
|
*/
|
|
static void stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
void __iomem *reg;
|
|
u32 mask;
|
|
int i;
|
|
|
|
switch (msg->count) {
|
|
case 2:
|
|
/*
|
|
* In order to correctly send the Stop or Repeated Start
|
|
* condition on the I2C bus, the STOP/START bit has to be set
|
|
* before reading the last two bytes (data N-1 and N).
|
|
* After that, we could read the last two bytes, disable
|
|
* remaining interrupts and notify the end of xfer to the
|
|
* client
|
|
*/
|
|
reg = i2c_dev->base + STM32F4_I2C_CR1;
|
|
if (msg->stop)
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
|
|
else
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
|
|
|
|
for (i = 2; i > 0; i--)
|
|
stm32f4_i2c_read_msg(i2c_dev);
|
|
|
|
reg = i2c_dev->base + STM32F4_I2C_CR2;
|
|
mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
|
|
stm32f4_i2c_clr_bits(reg, mask);
|
|
|
|
complete(&i2c_dev->complete);
|
|
break;
|
|
case 3:
|
|
/*
|
|
* In order to correctly generate the NACK pulse after the last
|
|
* received data byte, we have to enable NACK before reading N-2
|
|
* data
|
|
*/
|
|
reg = i2c_dev->base + STM32F4_I2C_CR1;
|
|
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR1_ACK);
|
|
stm32f4_i2c_read_msg(i2c_dev);
|
|
break;
|
|
default:
|
|
stm32f4_i2c_read_msg(i2c_dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_handle_rx_addr() - Handle address matched interrupt in case of
|
|
* master receiver
|
|
* @i2c_dev: Controller's private data
|
|
*/
|
|
static void stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev *i2c_dev)
|
|
{
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
u32 cr1;
|
|
|
|
switch (msg->count) {
|
|
case 0:
|
|
stm32f4_i2c_terminate_xfer(i2c_dev);
|
|
|
|
/* Clear ADDR flag */
|
|
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
|
|
break;
|
|
case 1:
|
|
/*
|
|
* Single byte reception:
|
|
* Enable NACK and reset POS (Acknowledge position).
|
|
* Then, clear ADDR flag and set STOP or RepSTART.
|
|
* In that way, the NACK and STOP or RepStart pulses will be
|
|
* sent as soon as the byte will be received in shift register
|
|
*/
|
|
cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
|
|
cr1 &= ~(STM32F4_I2C_CR1_ACK | STM32F4_I2C_CR1_POS);
|
|
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
|
|
|
|
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
|
|
|
|
if (msg->stop)
|
|
cr1 |= STM32F4_I2C_CR1_STOP;
|
|
else
|
|
cr1 |= STM32F4_I2C_CR1_START;
|
|
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
|
|
break;
|
|
case 2:
|
|
/*
|
|
* 2-byte reception:
|
|
* Enable NACK, set POS (NACK position) and clear ADDR flag.
|
|
* In that way, NACK will be sent for the next byte which will
|
|
* be received in the shift register instead of the current
|
|
* one.
|
|
*/
|
|
cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
|
|
cr1 &= ~STM32F4_I2C_CR1_ACK;
|
|
cr1 |= STM32F4_I2C_CR1_POS;
|
|
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
|
|
|
|
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* N-byte reception:
|
|
* Enable ACK, reset POS (ACK postion) and clear ADDR flag.
|
|
* In that way, ACK will be sent as soon as the current byte
|
|
* will be received in the shift register
|
|
*/
|
|
cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
|
|
cr1 |= STM32F4_I2C_CR1_ACK;
|
|
cr1 &= ~STM32F4_I2C_CR1_POS;
|
|
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
|
|
|
|
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_isr_event() - Interrupt routine for I2C bus event
|
|
* @irq: interrupt number
|
|
* @data: Controller's private data
|
|
*/
|
|
static irqreturn_t stm32f4_i2c_isr_event(int irq, void *data)
|
|
{
|
|
struct stm32f4_i2c_dev *i2c_dev = data;
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
u32 possible_status = STM32F4_I2C_SR1_ITEVTEN_MASK;
|
|
u32 status, ien, event, cr2;
|
|
|
|
cr2 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR2);
|
|
ien = cr2 & STM32F4_I2C_CR2_IRQ_MASK;
|
|
|
|
/* Update possible_status if buffer interrupt is enabled */
|
|
if (ien & STM32F4_I2C_CR2_ITBUFEN)
|
|
possible_status |= STM32F4_I2C_SR1_ITBUFEN_MASK;
|
|
|
|
status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
|
|
event = status & possible_status;
|
|
if (!event) {
|
|
dev_dbg(i2c_dev->dev,
|
|
"spurious evt irq (status=0x%08x, ien=0x%08x)\n",
|
|
status, ien);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/* Start condition generated */
|
|
if (event & STM32F4_I2C_SR1_SB)
|
|
stm32f4_i2c_write_byte(i2c_dev, msg->addr);
|
|
|
|
/* I2C Address sent */
|
|
if (event & STM32F4_I2C_SR1_ADDR) {
|
|
if (msg->addr & I2C_M_RD)
|
|
stm32f4_i2c_handle_rx_addr(i2c_dev);
|
|
else
|
|
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
|
|
|
|
/*
|
|
* Enable buffer interrupts for RX not empty and TX empty
|
|
* events
|
|
*/
|
|
cr2 |= STM32F4_I2C_CR2_ITBUFEN;
|
|
writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
|
|
}
|
|
|
|
/* TX empty */
|
|
if ((event & STM32F4_I2C_SR1_TXE) && !(msg->addr & I2C_M_RD))
|
|
stm32f4_i2c_handle_write(i2c_dev);
|
|
|
|
/* RX not empty */
|
|
if ((event & STM32F4_I2C_SR1_RXNE) && (msg->addr & I2C_M_RD))
|
|
stm32f4_i2c_handle_read(i2c_dev);
|
|
|
|
/*
|
|
* The BTF (Byte Transfer finished) event occurs when:
|
|
* - in reception : a new byte is received in the shift register
|
|
* but the previous byte has not been read yet from data register
|
|
* - in transmission: a new byte should be sent but the data register
|
|
* has not been written yet
|
|
*/
|
|
if (event & STM32F4_I2C_SR1_BTF) {
|
|
if (msg->addr & I2C_M_RD)
|
|
stm32f4_i2c_handle_rx_done(i2c_dev);
|
|
else
|
|
stm32f4_i2c_handle_write(i2c_dev);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_isr_error() - Interrupt routine for I2C bus error
|
|
* @irq: interrupt number
|
|
* @data: Controller's private data
|
|
*/
|
|
static irqreturn_t stm32f4_i2c_isr_error(int irq, void *data)
|
|
{
|
|
struct stm32f4_i2c_dev *i2c_dev = data;
|
|
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
|
|
void __iomem *reg;
|
|
u32 status;
|
|
|
|
status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
|
|
|
|
/* Arbitration lost */
|
|
if (status & STM32F4_I2C_SR1_ARLO) {
|
|
status &= ~STM32F4_I2C_SR1_ARLO;
|
|
writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
|
|
msg->result = -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Acknowledge failure:
|
|
* In master transmitter mode a Stop must be generated by software
|
|
*/
|
|
if (status & STM32F4_I2C_SR1_AF) {
|
|
if (!(msg->addr & I2C_M_RD)) {
|
|
reg = i2c_dev->base + STM32F4_I2C_CR1;
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
|
|
}
|
|
status &= ~STM32F4_I2C_SR1_AF;
|
|
writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
|
|
msg->result = -EIO;
|
|
}
|
|
|
|
/* Bus error */
|
|
if (status & STM32F4_I2C_SR1_BERR) {
|
|
status &= ~STM32F4_I2C_SR1_BERR;
|
|
writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
|
|
msg->result = -EIO;
|
|
}
|
|
|
|
stm32f4_i2c_disable_irq(i2c_dev);
|
|
complete(&i2c_dev->complete);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_xfer_msg() - Transfer a single I2C message
|
|
* @i2c_dev: Controller's private data
|
|
* @msg: I2C message to transfer
|
|
* @is_first: first message of the sequence
|
|
* @is_last: last message of the sequence
|
|
*/
|
|
static int stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev *i2c_dev,
|
|
struct i2c_msg *msg, bool is_first,
|
|
bool is_last)
|
|
{
|
|
struct stm32f4_i2c_msg *f4_msg = &i2c_dev->msg;
|
|
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR1;
|
|
unsigned long timeout;
|
|
u32 mask;
|
|
int ret;
|
|
|
|
f4_msg->addr = i2c_8bit_addr_from_msg(msg);
|
|
f4_msg->buf = msg->buf;
|
|
f4_msg->count = msg->len;
|
|
f4_msg->result = 0;
|
|
f4_msg->stop = is_last;
|
|
|
|
reinit_completion(&i2c_dev->complete);
|
|
|
|
/* Enable events and errors interrupts */
|
|
mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
|
|
stm32f4_i2c_set_bits(i2c_dev->base + STM32F4_I2C_CR2, mask);
|
|
|
|
if (is_first) {
|
|
ret = stm32f4_i2c_wait_free_bus(i2c_dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* START generation */
|
|
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
|
|
}
|
|
|
|
timeout = wait_for_completion_timeout(&i2c_dev->complete,
|
|
i2c_dev->adap.timeout);
|
|
ret = f4_msg->result;
|
|
|
|
if (!timeout)
|
|
ret = -ETIMEDOUT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* stm32f4_i2c_xfer() - Transfer combined I2C message
|
|
* @i2c_adap: Adapter pointer to the controller
|
|
* @msgs: Pointer to data to be written.
|
|
* @num: Number of messages to be executed
|
|
*/
|
|
static int stm32f4_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[],
|
|
int num)
|
|
{
|
|
struct stm32f4_i2c_dev *i2c_dev = i2c_get_adapdata(i2c_adap);
|
|
int ret, i;
|
|
|
|
ret = clk_enable(i2c_dev->clk);
|
|
if (ret) {
|
|
dev_err(i2c_dev->dev, "Failed to enable clock\n");
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < num && !ret; i++)
|
|
ret = stm32f4_i2c_xfer_msg(i2c_dev, &msgs[i], i == 0,
|
|
i == num - 1);
|
|
|
|
clk_disable(i2c_dev->clk);
|
|
|
|
return (ret < 0) ? ret : num;
|
|
}
|
|
|
|
static u32 stm32f4_i2c_func(struct i2c_adapter *adap)
|
|
{
|
|
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
|
|
}
|
|
|
|
static const struct i2c_algorithm stm32f4_i2c_algo = {
|
|
.master_xfer = stm32f4_i2c_xfer,
|
|
.functionality = stm32f4_i2c_func,
|
|
};
|
|
|
|
static int stm32f4_i2c_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct stm32f4_i2c_dev *i2c_dev;
|
|
struct resource *res;
|
|
u32 irq_event, irq_error, clk_rate;
|
|
struct i2c_adapter *adap;
|
|
struct reset_control *rst;
|
|
int ret;
|
|
|
|
i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
|
|
if (!i2c_dev)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
i2c_dev->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(i2c_dev->base))
|
|
return PTR_ERR(i2c_dev->base);
|
|
|
|
irq_event = irq_of_parse_and_map(np, 0);
|
|
if (!irq_event) {
|
|
dev_err(&pdev->dev, "IRQ event missing or invalid\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
irq_error = irq_of_parse_and_map(np, 1);
|
|
if (!irq_error) {
|
|
dev_err(&pdev->dev, "IRQ error missing or invalid\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
i2c_dev->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(i2c_dev->clk)) {
|
|
dev_err(&pdev->dev, "Error: Missing controller clock\n");
|
|
return PTR_ERR(i2c_dev->clk);
|
|
}
|
|
ret = clk_prepare_enable(i2c_dev->clk);
|
|
if (ret) {
|
|
dev_err(i2c_dev->dev, "Failed to prepare_enable clock\n");
|
|
return ret;
|
|
}
|
|
|
|
rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
|
|
if (IS_ERR(rst)) {
|
|
dev_err(&pdev->dev, "Error: Missing controller reset\n");
|
|
ret = PTR_ERR(rst);
|
|
goto clk_free;
|
|
}
|
|
reset_control_assert(rst);
|
|
udelay(2);
|
|
reset_control_deassert(rst);
|
|
|
|
i2c_dev->speed = STM32F4_I2C_SPEED_STANDARD;
|
|
ret = of_property_read_u32(np, "clock-frequency", &clk_rate);
|
|
if (!ret && clk_rate >= 400000)
|
|
i2c_dev->speed = STM32F4_I2C_SPEED_FAST;
|
|
|
|
i2c_dev->dev = &pdev->dev;
|
|
|
|
ret = devm_request_irq(&pdev->dev, irq_event, stm32f4_i2c_isr_event, 0,
|
|
pdev->name, i2c_dev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Failed to request irq event %i\n",
|
|
irq_event);
|
|
goto clk_free;
|
|
}
|
|
|
|
ret = devm_request_irq(&pdev->dev, irq_error, stm32f4_i2c_isr_error, 0,
|
|
pdev->name, i2c_dev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Failed to request irq error %i\n",
|
|
irq_error);
|
|
goto clk_free;
|
|
}
|
|
|
|
ret = stm32f4_i2c_hw_config(i2c_dev);
|
|
if (ret)
|
|
goto clk_free;
|
|
|
|
adap = &i2c_dev->adap;
|
|
i2c_set_adapdata(adap, i2c_dev);
|
|
snprintf(adap->name, sizeof(adap->name), "STM32 I2C(%pa)", &res->start);
|
|
adap->owner = THIS_MODULE;
|
|
adap->timeout = 2 * HZ;
|
|
adap->retries = 0;
|
|
adap->algo = &stm32f4_i2c_algo;
|
|
adap->dev.parent = &pdev->dev;
|
|
adap->dev.of_node = pdev->dev.of_node;
|
|
|
|
init_completion(&i2c_dev->complete);
|
|
|
|
ret = i2c_add_adapter(adap);
|
|
if (ret)
|
|
goto clk_free;
|
|
|
|
platform_set_drvdata(pdev, i2c_dev);
|
|
|
|
clk_disable(i2c_dev->clk);
|
|
|
|
dev_info(i2c_dev->dev, "STM32F4 I2C driver registered\n");
|
|
|
|
return 0;
|
|
|
|
clk_free:
|
|
clk_disable_unprepare(i2c_dev->clk);
|
|
return ret;
|
|
}
|
|
|
|
static int stm32f4_i2c_remove(struct platform_device *pdev)
|
|
{
|
|
struct stm32f4_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
|
|
|
|
i2c_del_adapter(&i2c_dev->adap);
|
|
|
|
clk_unprepare(i2c_dev->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id stm32f4_i2c_match[] = {
|
|
{ .compatible = "st,stm32f4-i2c", },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stm32f4_i2c_match);
|
|
|
|
static struct platform_driver stm32f4_i2c_driver = {
|
|
.driver = {
|
|
.name = "stm32f4-i2c",
|
|
.of_match_table = stm32f4_i2c_match,
|
|
},
|
|
.probe = stm32f4_i2c_probe,
|
|
.remove = stm32f4_i2c_remove,
|
|
};
|
|
|
|
module_platform_driver(stm32f4_i2c_driver);
|
|
|
|
MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
|
|
MODULE_DESCRIPTION("STMicroelectronics STM32F4 I2C driver");
|
|
MODULE_LICENSE("GPL v2");
|