mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
ee03b9b447
Although it is often possible to recover a CPU that was interrupted from OPAL with a system reset NMI, it's undesirable to interrupt them for a few reasons. Firstly because dump/debug code itself needs to call firmware, so it could hang on a lock or possibly corrupt a per-cpu data structure if it or another CPU was interrupted from OPAL. Secondly, the kexec crash dump code will not return from interrupt to unwind the OPAL call. Call OPAL_QUIESCE with QUIESCE_HOLD before sending an NMI IPI to another CPU, which wait for it to leave firmware (or time out) to avoid this problem in normal conditions. Firmware bugs may still result in a timeout and interrupting OPAL, but that is the best option (stops the CPU, and possibly allows firmware to be debugged). Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
419 lines
9.7 KiB
C
419 lines
9.7 KiB
C
/*
|
|
* SMP support for PowerNV machines.
|
|
*
|
|
* Copyright 2011 IBM Corp.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/vdso_datapage.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/xics.h>
|
|
#include <asm/xive.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/runlatch.h>
|
|
#include <asm/code-patching.h>
|
|
#include <asm/dbell.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/ppc-opcode.h>
|
|
#include <asm/cpuidle.h>
|
|
#include <asm/kexec.h>
|
|
#include <asm/reg.h>
|
|
|
|
#include "powernv.h"
|
|
|
|
#ifdef DEBUG
|
|
#include <asm/udbg.h>
|
|
#define DBG(fmt...) udbg_printf(fmt)
|
|
#else
|
|
#define DBG(fmt...)
|
|
#endif
|
|
|
|
static void pnv_smp_setup_cpu(int cpu)
|
|
{
|
|
/*
|
|
* P9 workaround for CI vector load (see traps.c),
|
|
* enable the corresponding HMI interrupt
|
|
*/
|
|
if (pvr_version_is(PVR_POWER9))
|
|
mtspr(SPRN_HMEER, mfspr(SPRN_HMEER) | PPC_BIT(17));
|
|
|
|
if (xive_enabled())
|
|
xive_smp_setup_cpu();
|
|
else if (cpu != boot_cpuid)
|
|
xics_setup_cpu();
|
|
}
|
|
|
|
static int pnv_smp_kick_cpu(int nr)
|
|
{
|
|
unsigned int pcpu;
|
|
unsigned long start_here =
|
|
__pa(ppc_function_entry(generic_secondary_smp_init));
|
|
long rc;
|
|
uint8_t status;
|
|
|
|
if (nr < 0 || nr >= nr_cpu_ids)
|
|
return -EINVAL;
|
|
|
|
pcpu = get_hard_smp_processor_id(nr);
|
|
/*
|
|
* If we already started or OPAL is not supported, we just
|
|
* kick the CPU via the PACA
|
|
*/
|
|
if (paca_ptrs[nr]->cpu_start || !firmware_has_feature(FW_FEATURE_OPAL))
|
|
goto kick;
|
|
|
|
/*
|
|
* At this point, the CPU can either be spinning on the way in
|
|
* from kexec or be inside OPAL waiting to be started for the
|
|
* first time. OPAL v3 allows us to query OPAL to know if it
|
|
* has the CPUs, so we do that
|
|
*/
|
|
rc = opal_query_cpu_status(pcpu, &status);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("OPAL Error %ld querying CPU %d state\n", rc, nr);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Already started, just kick it, probably coming from
|
|
* kexec and spinning
|
|
*/
|
|
if (status == OPAL_THREAD_STARTED)
|
|
goto kick;
|
|
|
|
/*
|
|
* Available/inactive, let's kick it
|
|
*/
|
|
if (status == OPAL_THREAD_INACTIVE) {
|
|
pr_devel("OPAL: Starting CPU %d (HW 0x%x)...\n", nr, pcpu);
|
|
rc = opal_start_cpu(pcpu, start_here);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("OPAL Error %ld starting CPU %d\n", rc, nr);
|
|
return -ENODEV;
|
|
}
|
|
} else {
|
|
/*
|
|
* An unavailable CPU (or any other unknown status)
|
|
* shouldn't be started. It should also
|
|
* not be in the possible map but currently it can
|
|
* happen
|
|
*/
|
|
pr_devel("OPAL: CPU %d (HW 0x%x) is unavailable"
|
|
" (status %d)...\n", nr, pcpu, status);
|
|
return -ENODEV;
|
|
}
|
|
|
|
kick:
|
|
return smp_generic_kick_cpu(nr);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
static int pnv_smp_cpu_disable(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
/* This is identical to pSeries... might consolidate by
|
|
* moving migrate_irqs_away to a ppc_md with default to
|
|
* the generic fixup_irqs. --BenH.
|
|
*/
|
|
set_cpu_online(cpu, false);
|
|
vdso_data->processorCount--;
|
|
if (cpu == boot_cpuid)
|
|
boot_cpuid = cpumask_any(cpu_online_mask);
|
|
if (xive_enabled())
|
|
xive_smp_disable_cpu();
|
|
else
|
|
xics_migrate_irqs_away();
|
|
return 0;
|
|
}
|
|
|
|
static void pnv_smp_cpu_kill_self(void)
|
|
{
|
|
unsigned int cpu;
|
|
unsigned long srr1, wmask;
|
|
|
|
/* Standard hot unplug procedure */
|
|
/*
|
|
* This hard disables local interurpts, ensuring we have no lazy
|
|
* irqs pending.
|
|
*/
|
|
WARN_ON(irqs_disabled());
|
|
hard_irq_disable();
|
|
WARN_ON(lazy_irq_pending());
|
|
|
|
idle_task_exit();
|
|
current->active_mm = NULL; /* for sanity */
|
|
cpu = smp_processor_id();
|
|
DBG("CPU%d offline\n", cpu);
|
|
generic_set_cpu_dead(cpu);
|
|
smp_wmb();
|
|
|
|
wmask = SRR1_WAKEMASK;
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
wmask = SRR1_WAKEMASK_P8;
|
|
|
|
while (!generic_check_cpu_restart(cpu)) {
|
|
/*
|
|
* Clear IPI flag, since we don't handle IPIs while
|
|
* offline, except for those when changing micro-threading
|
|
* mode, which are handled explicitly below, and those
|
|
* for coming online, which are handled via
|
|
* generic_check_cpu_restart() calls.
|
|
*/
|
|
kvmppc_set_host_ipi(cpu, 0);
|
|
|
|
srr1 = pnv_cpu_offline(cpu);
|
|
|
|
WARN_ON(lazy_irq_pending());
|
|
|
|
/*
|
|
* If the SRR1 value indicates that we woke up due to
|
|
* an external interrupt, then clear the interrupt.
|
|
* We clear the interrupt before checking for the
|
|
* reason, so as to avoid a race where we wake up for
|
|
* some other reason, find nothing and clear the interrupt
|
|
* just as some other cpu is sending us an interrupt.
|
|
* If we returned from power7_nap as a result of
|
|
* having finished executing in a KVM guest, then srr1
|
|
* contains 0.
|
|
*/
|
|
if (((srr1 & wmask) == SRR1_WAKEEE) ||
|
|
((srr1 & wmask) == SRR1_WAKEHVI)) {
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
if (xive_enabled())
|
|
xive_flush_interrupt();
|
|
else
|
|
icp_opal_flush_interrupt();
|
|
} else
|
|
icp_native_flush_interrupt();
|
|
} else if ((srr1 & wmask) == SRR1_WAKEHDBELL) {
|
|
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
|
|
asm volatile(PPC_MSGCLR(%0) : : "r" (msg));
|
|
} else if ((srr1 & wmask) == SRR1_WAKERESET) {
|
|
irq_set_pending_from_srr1(srr1);
|
|
/* Does not return */
|
|
}
|
|
|
|
smp_mb();
|
|
|
|
/*
|
|
* For kdump kernels, we process the ipi and jump to
|
|
* crash_ipi_callback
|
|
*/
|
|
if (kdump_in_progress()) {
|
|
/*
|
|
* If we got to this point, we've not used
|
|
* NMI's, otherwise we would have gone
|
|
* via the SRR1_WAKERESET path. We are
|
|
* using regular IPI's for waking up offline
|
|
* threads.
|
|
*/
|
|
struct pt_regs regs;
|
|
|
|
ppc_save_regs(®s);
|
|
crash_ipi_callback(®s);
|
|
/* Does not return */
|
|
}
|
|
|
|
if (cpu_core_split_required())
|
|
continue;
|
|
|
|
if (srr1 && !generic_check_cpu_restart(cpu))
|
|
DBG("CPU%d Unexpected exit while offline srr1=%lx!\n",
|
|
cpu, srr1);
|
|
|
|
}
|
|
|
|
DBG("CPU%d coming online...\n", cpu);
|
|
}
|
|
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static int pnv_cpu_bootable(unsigned int nr)
|
|
{
|
|
/*
|
|
* Starting with POWER8, the subcore logic relies on all threads of a
|
|
* core being booted so that they can participate in split mode
|
|
* switches. So on those machines we ignore the smt_enabled_at_boot
|
|
* setting (smt-enabled on the kernel command line).
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
return 1;
|
|
|
|
return smp_generic_cpu_bootable(nr);
|
|
}
|
|
|
|
static int pnv_smp_prepare_cpu(int cpu)
|
|
{
|
|
if (xive_enabled())
|
|
return xive_smp_prepare_cpu(cpu);
|
|
return 0;
|
|
}
|
|
|
|
/* Cause IPI as setup by the interrupt controller (xics or xive) */
|
|
static void (*ic_cause_ipi)(int cpu);
|
|
|
|
static void pnv_cause_ipi(int cpu)
|
|
{
|
|
if (doorbell_try_core_ipi(cpu))
|
|
return;
|
|
|
|
ic_cause_ipi(cpu);
|
|
}
|
|
|
|
static void pnv_p9_dd1_cause_ipi(int cpu)
|
|
{
|
|
int this_cpu = get_cpu();
|
|
|
|
/*
|
|
* POWER9 DD1 has a global addressed msgsnd, but for now we restrict
|
|
* IPIs to same core, because it requires additional synchronization
|
|
* for inter-core doorbells which we do not implement.
|
|
*/
|
|
if (cpumask_test_cpu(cpu, cpu_sibling_mask(this_cpu)))
|
|
doorbell_global_ipi(cpu);
|
|
else
|
|
ic_cause_ipi(cpu);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
static void __init pnv_smp_probe(void)
|
|
{
|
|
if (xive_enabled())
|
|
xive_smp_probe();
|
|
else
|
|
xics_smp_probe();
|
|
|
|
if (cpu_has_feature(CPU_FTR_DBELL)) {
|
|
ic_cause_ipi = smp_ops->cause_ipi;
|
|
WARN_ON(!ic_cause_ipi);
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
if (cpu_has_feature(CPU_FTR_POWER9_DD1))
|
|
smp_ops->cause_ipi = pnv_p9_dd1_cause_ipi;
|
|
else
|
|
smp_ops->cause_ipi = doorbell_global_ipi;
|
|
} else {
|
|
smp_ops->cause_ipi = pnv_cause_ipi;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int pnv_system_reset_exception(struct pt_regs *regs)
|
|
{
|
|
if (smp_handle_nmi_ipi(regs))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int pnv_cause_nmi_ipi(int cpu)
|
|
{
|
|
int64_t rc;
|
|
|
|
if (cpu >= 0) {
|
|
int h = get_hard_smp_processor_id(cpu);
|
|
|
|
if (opal_check_token(OPAL_QUIESCE))
|
|
opal_quiesce(QUIESCE_HOLD, h);
|
|
|
|
rc = opal_signal_system_reset(h);
|
|
|
|
if (opal_check_token(OPAL_QUIESCE))
|
|
opal_quiesce(QUIESCE_RESUME, h);
|
|
|
|
if (rc != OPAL_SUCCESS)
|
|
return 0;
|
|
return 1;
|
|
|
|
} else if (cpu == NMI_IPI_ALL_OTHERS) {
|
|
bool success = true;
|
|
int c;
|
|
|
|
if (opal_check_token(OPAL_QUIESCE))
|
|
opal_quiesce(QUIESCE_HOLD, -1);
|
|
|
|
/*
|
|
* We do not use broadcasts (yet), because it's not clear
|
|
* exactly what semantics Linux wants or the firmware should
|
|
* provide.
|
|
*/
|
|
for_each_online_cpu(c) {
|
|
if (c == smp_processor_id())
|
|
continue;
|
|
|
|
rc = opal_signal_system_reset(
|
|
get_hard_smp_processor_id(c));
|
|
if (rc != OPAL_SUCCESS)
|
|
success = false;
|
|
}
|
|
|
|
if (opal_check_token(OPAL_QUIESCE))
|
|
opal_quiesce(QUIESCE_RESUME, -1);
|
|
|
|
if (success)
|
|
return 1;
|
|
|
|
/*
|
|
* Caller will fall back to doorbells, which may pick
|
|
* up the remainders.
|
|
*/
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct smp_ops_t pnv_smp_ops = {
|
|
.message_pass = NULL, /* Use smp_muxed_ipi_message_pass */
|
|
.cause_ipi = NULL, /* Filled at runtime by pnv_smp_probe() */
|
|
.cause_nmi_ipi = NULL,
|
|
.probe = pnv_smp_probe,
|
|
.prepare_cpu = pnv_smp_prepare_cpu,
|
|
.kick_cpu = pnv_smp_kick_cpu,
|
|
.setup_cpu = pnv_smp_setup_cpu,
|
|
.cpu_bootable = pnv_cpu_bootable,
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
.cpu_disable = pnv_smp_cpu_disable,
|
|
.cpu_die = generic_cpu_die,
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
};
|
|
|
|
/* This is called very early during platform setup_arch */
|
|
void __init pnv_smp_init(void)
|
|
{
|
|
if (opal_check_token(OPAL_SIGNAL_SYSTEM_RESET)) {
|
|
ppc_md.system_reset_exception = pnv_system_reset_exception;
|
|
pnv_smp_ops.cause_nmi_ipi = pnv_cause_nmi_ipi;
|
|
}
|
|
smp_ops = &pnv_smp_ops;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
ppc_md.cpu_die = pnv_smp_cpu_kill_self;
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
crash_wake_offline = 1;
|
|
#endif
|
|
#endif
|
|
}
|