mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 08:53:18 +07:00
8d6f7c5aa3
To support split core we need to be able to force all secondaries into nap, so the core can detect they are idle and do an unsplit. Currently power7_nap() will return without napping if there is an irq pending. We want to ignore the pending irq and nap anyway, we will deal with the interrupt later. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
476 lines
14 KiB
C
476 lines
14 KiB
C
#ifndef _ASM_POWERPC_PROCESSOR_H
|
|
#define _ASM_POWERPC_PROCESSOR_H
|
|
|
|
/*
|
|
* Copyright (C) 2001 PPC 64 Team, IBM Corp
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <asm/reg.h>
|
|
|
|
#ifdef CONFIG_VSX
|
|
#define TS_FPRWIDTH 2
|
|
|
|
#ifdef __BIG_ENDIAN__
|
|
#define TS_FPROFFSET 0
|
|
#define TS_VSRLOWOFFSET 1
|
|
#else
|
|
#define TS_FPROFFSET 1
|
|
#define TS_VSRLOWOFFSET 0
|
|
#endif
|
|
|
|
#else
|
|
#define TS_FPRWIDTH 1
|
|
#define TS_FPROFFSET 0
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* Default SMT priority is set to 3. Use 11- 13bits to save priority. */
|
|
#define PPR_PRIORITY 3
|
|
#ifdef __ASSEMBLY__
|
|
#define INIT_PPR (PPR_PRIORITY << 50)
|
|
#else
|
|
#define INIT_PPR ((u64)PPR_PRIORITY << 50)
|
|
#endif /* __ASSEMBLY__ */
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#include <linux/compiler.h>
|
|
#include <linux/cache.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/types.h>
|
|
#include <asm/hw_breakpoint.h>
|
|
|
|
/* We do _not_ want to define new machine types at all, those must die
|
|
* in favor of using the device-tree
|
|
* -- BenH.
|
|
*/
|
|
|
|
/* PREP sub-platform types. Unused */
|
|
#define _PREP_Motorola 0x01 /* motorola prep */
|
|
#define _PREP_Firm 0x02 /* firmworks prep */
|
|
#define _PREP_IBM 0x00 /* ibm prep */
|
|
#define _PREP_Bull 0x03 /* bull prep */
|
|
|
|
/* CHRP sub-platform types. These are arbitrary */
|
|
#define _CHRP_Motorola 0x04 /* motorola chrp, the cobra */
|
|
#define _CHRP_IBM 0x05 /* IBM chrp, the longtrail and longtrail 2 */
|
|
#define _CHRP_Pegasos 0x06 /* Genesi/bplan's Pegasos and Pegasos2 */
|
|
#define _CHRP_briq 0x07 /* TotalImpact's briQ */
|
|
|
|
#if defined(__KERNEL__) && defined(CONFIG_PPC32)
|
|
|
|
extern int _chrp_type;
|
|
|
|
#endif /* defined(__KERNEL__) && defined(CONFIG_PPC32) */
|
|
|
|
/*
|
|
* Default implementation of macro that returns current
|
|
* instruction pointer ("program counter").
|
|
*/
|
|
#define current_text_addr() ({ __label__ _l; _l: &&_l;})
|
|
|
|
/* Macros for adjusting thread priority (hardware multi-threading) */
|
|
#define HMT_very_low() asm volatile("or 31,31,31 # very low priority")
|
|
#define HMT_low() asm volatile("or 1,1,1 # low priority")
|
|
#define HMT_medium_low() asm volatile("or 6,6,6 # medium low priority")
|
|
#define HMT_medium() asm volatile("or 2,2,2 # medium priority")
|
|
#define HMT_medium_high() asm volatile("or 5,5,5 # medium high priority")
|
|
#define HMT_high() asm volatile("or 3,3,3 # high priority")
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
struct task_struct;
|
|
void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp);
|
|
void release_thread(struct task_struct *);
|
|
|
|
/* Lazy FPU handling on uni-processor */
|
|
extern struct task_struct *last_task_used_math;
|
|
extern struct task_struct *last_task_used_altivec;
|
|
extern struct task_struct *last_task_used_vsx;
|
|
extern struct task_struct *last_task_used_spe;
|
|
|
|
#ifdef CONFIG_PPC32
|
|
|
|
#if CONFIG_TASK_SIZE > CONFIG_KERNEL_START
|
|
#error User TASK_SIZE overlaps with KERNEL_START address
|
|
#endif
|
|
#define TASK_SIZE (CONFIG_TASK_SIZE)
|
|
|
|
/* This decides where the kernel will search for a free chunk of vm
|
|
* space during mmap's.
|
|
*/
|
|
#define TASK_UNMAPPED_BASE (TASK_SIZE / 8 * 3)
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* 64-bit user address space is 46-bits (64TB user VM) */
|
|
#define TASK_SIZE_USER64 (0x0000400000000000UL)
|
|
|
|
/*
|
|
* 32-bit user address space is 4GB - 1 page
|
|
* (this 1 page is needed so referencing of 0xFFFFFFFF generates EFAULT
|
|
*/
|
|
#define TASK_SIZE_USER32 (0x0000000100000000UL - (1*PAGE_SIZE))
|
|
|
|
#define TASK_SIZE_OF(tsk) (test_tsk_thread_flag(tsk, TIF_32BIT) ? \
|
|
TASK_SIZE_USER32 : TASK_SIZE_USER64)
|
|
#define TASK_SIZE TASK_SIZE_OF(current)
|
|
|
|
/* This decides where the kernel will search for a free chunk of vm
|
|
* space during mmap's.
|
|
*/
|
|
#define TASK_UNMAPPED_BASE_USER32 (PAGE_ALIGN(TASK_SIZE_USER32 / 4))
|
|
#define TASK_UNMAPPED_BASE_USER64 (PAGE_ALIGN(TASK_SIZE_USER64 / 4))
|
|
|
|
#define TASK_UNMAPPED_BASE ((is_32bit_task()) ? \
|
|
TASK_UNMAPPED_BASE_USER32 : TASK_UNMAPPED_BASE_USER64 )
|
|
#endif
|
|
|
|
#ifdef __powerpc64__
|
|
|
|
#define STACK_TOP_USER64 TASK_SIZE_USER64
|
|
#define STACK_TOP_USER32 TASK_SIZE_USER32
|
|
|
|
#define STACK_TOP (is_32bit_task() ? \
|
|
STACK_TOP_USER32 : STACK_TOP_USER64)
|
|
|
|
#define STACK_TOP_MAX STACK_TOP_USER64
|
|
|
|
#else /* __powerpc64__ */
|
|
|
|
#define STACK_TOP TASK_SIZE
|
|
#define STACK_TOP_MAX STACK_TOP
|
|
|
|
#endif /* __powerpc64__ */
|
|
|
|
typedef struct {
|
|
unsigned long seg;
|
|
} mm_segment_t;
|
|
|
|
#define TS_FPR(i) fp_state.fpr[i][TS_FPROFFSET]
|
|
#define TS_TRANS_FPR(i) transact_fp.fpr[i][TS_FPROFFSET]
|
|
|
|
/* FP and VSX 0-31 register set */
|
|
struct thread_fp_state {
|
|
u64 fpr[32][TS_FPRWIDTH] __attribute__((aligned(16)));
|
|
u64 fpscr; /* Floating point status */
|
|
};
|
|
|
|
/* Complete AltiVec register set including VSCR */
|
|
struct thread_vr_state {
|
|
vector128 vr[32] __attribute__((aligned(16)));
|
|
vector128 vscr __attribute__((aligned(16)));
|
|
};
|
|
|
|
struct debug_reg {
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
/*
|
|
* The following help to manage the use of Debug Control Registers
|
|
* om the BookE platforms.
|
|
*/
|
|
uint32_t dbcr0;
|
|
uint32_t dbcr1;
|
|
#ifdef CONFIG_BOOKE
|
|
uint32_t dbcr2;
|
|
#endif
|
|
/*
|
|
* The stored value of the DBSR register will be the value at the
|
|
* last debug interrupt. This register can only be read from the
|
|
* user (will never be written to) and has value while helping to
|
|
* describe the reason for the last debug trap. Torez
|
|
*/
|
|
uint32_t dbsr;
|
|
/*
|
|
* The following will contain addresses used by debug applications
|
|
* to help trace and trap on particular address locations.
|
|
* The bits in the Debug Control Registers above help define which
|
|
* of the following registers will contain valid data and/or addresses.
|
|
*/
|
|
unsigned long iac1;
|
|
unsigned long iac2;
|
|
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
|
|
unsigned long iac3;
|
|
unsigned long iac4;
|
|
#endif
|
|
unsigned long dac1;
|
|
unsigned long dac2;
|
|
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
|
|
unsigned long dvc1;
|
|
unsigned long dvc2;
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
struct thread_struct {
|
|
unsigned long ksp; /* Kernel stack pointer */
|
|
|
|
#ifdef CONFIG_PPC64
|
|
unsigned long ksp_vsid;
|
|
#endif
|
|
struct pt_regs *regs; /* Pointer to saved register state */
|
|
mm_segment_t fs; /* for get_fs() validation */
|
|
#ifdef CONFIG_BOOKE
|
|
/* BookE base exception scratch space; align on cacheline */
|
|
unsigned long normsave[8] ____cacheline_aligned;
|
|
#endif
|
|
#ifdef CONFIG_PPC32
|
|
void *pgdir; /* root of page-table tree */
|
|
unsigned long ksp_limit; /* if ksp <= ksp_limit stack overflow */
|
|
#endif
|
|
/* Debug Registers */
|
|
struct debug_reg debug;
|
|
struct thread_fp_state fp_state;
|
|
struct thread_fp_state *fp_save_area;
|
|
int fpexc_mode; /* floating-point exception mode */
|
|
unsigned int align_ctl; /* alignment handling control */
|
|
#ifdef CONFIG_PPC64
|
|
unsigned long start_tb; /* Start purr when proc switched in */
|
|
unsigned long accum_tb; /* Total accumilated purr for process */
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
struct perf_event *ptrace_bps[HBP_NUM];
|
|
/*
|
|
* Helps identify source of single-step exception and subsequent
|
|
* hw-breakpoint enablement
|
|
*/
|
|
struct perf_event *last_hit_ubp;
|
|
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
#endif
|
|
struct arch_hw_breakpoint hw_brk; /* info on the hardware breakpoint */
|
|
unsigned long trap_nr; /* last trap # on this thread */
|
|
#ifdef CONFIG_ALTIVEC
|
|
struct thread_vr_state vr_state;
|
|
struct thread_vr_state *vr_save_area;
|
|
unsigned long vrsave;
|
|
int used_vr; /* set if process has used altivec */
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_VSX
|
|
/* VSR status */
|
|
int used_vsr; /* set if process has used altivec */
|
|
#endif /* CONFIG_VSX */
|
|
#ifdef CONFIG_SPE
|
|
unsigned long evr[32]; /* upper 32-bits of SPE regs */
|
|
u64 acc; /* Accumulator */
|
|
unsigned long spefscr; /* SPE & eFP status */
|
|
unsigned long spefscr_last; /* SPEFSCR value on last prctl
|
|
call or trap return */
|
|
int used_spe; /* set if process has used spe */
|
|
#endif /* CONFIG_SPE */
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
u64 tm_tfhar; /* Transaction fail handler addr */
|
|
u64 tm_texasr; /* Transaction exception & summary */
|
|
u64 tm_tfiar; /* Transaction fail instr address reg */
|
|
unsigned long tm_orig_msr; /* Thread's MSR on ctx switch */
|
|
struct pt_regs ckpt_regs; /* Checkpointed registers */
|
|
|
|
unsigned long tm_tar;
|
|
unsigned long tm_ppr;
|
|
unsigned long tm_dscr;
|
|
|
|
/*
|
|
* Transactional FP and VSX 0-31 register set.
|
|
* NOTE: the sense of these is the opposite of the integer ckpt_regs!
|
|
*
|
|
* When a transaction is active/signalled/scheduled etc., *regs is the
|
|
* most recent set of/speculated GPRs with ckpt_regs being the older
|
|
* checkpointed regs to which we roll back if transaction aborts.
|
|
*
|
|
* However, fpr[] is the checkpointed 'base state' of FP regs, and
|
|
* transact_fpr[] is the new set of transactional values.
|
|
* VRs work the same way.
|
|
*/
|
|
struct thread_fp_state transact_fp;
|
|
struct thread_vr_state transact_vr;
|
|
unsigned long transact_vrsave;
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
|
|
void* kvm_shadow_vcpu; /* KVM internal data */
|
|
#endif /* CONFIG_KVM_BOOK3S_32_HANDLER */
|
|
#if defined(CONFIG_KVM) && defined(CONFIG_BOOKE)
|
|
struct kvm_vcpu *kvm_vcpu;
|
|
#endif
|
|
#ifdef CONFIG_PPC64
|
|
unsigned long dscr;
|
|
int dscr_inherit;
|
|
unsigned long ppr; /* used to save/restore SMT priority */
|
|
#endif
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
unsigned long tar;
|
|
unsigned long ebbrr;
|
|
unsigned long ebbhr;
|
|
unsigned long bescr;
|
|
unsigned long siar;
|
|
unsigned long sdar;
|
|
unsigned long sier;
|
|
unsigned long mmcr2;
|
|
unsigned mmcr0;
|
|
unsigned used_ebb;
|
|
#endif
|
|
};
|
|
|
|
#define ARCH_MIN_TASKALIGN 16
|
|
|
|
#define INIT_SP (sizeof(init_stack) + (unsigned long) &init_stack)
|
|
#define INIT_SP_LIMIT \
|
|
(_ALIGN_UP(sizeof(init_thread_info), 16) + (unsigned long) &init_stack)
|
|
|
|
#ifdef CONFIG_SPE
|
|
#define SPEFSCR_INIT \
|
|
.spefscr = SPEFSCR_FINVE | SPEFSCR_FDBZE | SPEFSCR_FUNFE | SPEFSCR_FOVFE, \
|
|
.spefscr_last = SPEFSCR_FINVE | SPEFSCR_FDBZE | SPEFSCR_FUNFE | SPEFSCR_FOVFE,
|
|
#else
|
|
#define SPEFSCR_INIT
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC32
|
|
#define INIT_THREAD { \
|
|
.ksp = INIT_SP, \
|
|
.ksp_limit = INIT_SP_LIMIT, \
|
|
.fs = KERNEL_DS, \
|
|
.pgdir = swapper_pg_dir, \
|
|
.fpexc_mode = MSR_FE0 | MSR_FE1, \
|
|
SPEFSCR_INIT \
|
|
}
|
|
#else
|
|
#define INIT_THREAD { \
|
|
.ksp = INIT_SP, \
|
|
.regs = (struct pt_regs *)INIT_SP - 1, /* XXX bogus, I think */ \
|
|
.fs = KERNEL_DS, \
|
|
.fpexc_mode = 0, \
|
|
.ppr = INIT_PPR, \
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Return saved PC of a blocked thread. For now, this is the "user" PC
|
|
*/
|
|
#define thread_saved_pc(tsk) \
|
|
((tsk)->thread.regs? (tsk)->thread.regs->nip: 0)
|
|
|
|
#define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.regs)
|
|
|
|
unsigned long get_wchan(struct task_struct *p);
|
|
|
|
#define KSTK_EIP(tsk) ((tsk)->thread.regs? (tsk)->thread.regs->nip: 0)
|
|
#define KSTK_ESP(tsk) ((tsk)->thread.regs? (tsk)->thread.regs->gpr[1]: 0)
|
|
|
|
/* Get/set floating-point exception mode */
|
|
#define GET_FPEXC_CTL(tsk, adr) get_fpexc_mode((tsk), (adr))
|
|
#define SET_FPEXC_CTL(tsk, val) set_fpexc_mode((tsk), (val))
|
|
|
|
extern int get_fpexc_mode(struct task_struct *tsk, unsigned long adr);
|
|
extern int set_fpexc_mode(struct task_struct *tsk, unsigned int val);
|
|
|
|
#define GET_ENDIAN(tsk, adr) get_endian((tsk), (adr))
|
|
#define SET_ENDIAN(tsk, val) set_endian((tsk), (val))
|
|
|
|
extern int get_endian(struct task_struct *tsk, unsigned long adr);
|
|
extern int set_endian(struct task_struct *tsk, unsigned int val);
|
|
|
|
#define GET_UNALIGN_CTL(tsk, adr) get_unalign_ctl((tsk), (adr))
|
|
#define SET_UNALIGN_CTL(tsk, val) set_unalign_ctl((tsk), (val))
|
|
|
|
extern int get_unalign_ctl(struct task_struct *tsk, unsigned long adr);
|
|
extern int set_unalign_ctl(struct task_struct *tsk, unsigned int val);
|
|
|
|
extern void fp_enable(void);
|
|
extern void vec_enable(void);
|
|
extern void load_fp_state(struct thread_fp_state *fp);
|
|
extern void store_fp_state(struct thread_fp_state *fp);
|
|
extern void load_vr_state(struct thread_vr_state *vr);
|
|
extern void store_vr_state(struct thread_vr_state *vr);
|
|
|
|
static inline unsigned int __unpack_fe01(unsigned long msr_bits)
|
|
{
|
|
return ((msr_bits & MSR_FE0) >> 10) | ((msr_bits & MSR_FE1) >> 8);
|
|
}
|
|
|
|
static inline unsigned long __pack_fe01(unsigned int fpmode)
|
|
{
|
|
return ((fpmode << 10) & MSR_FE0) | ((fpmode << 8) & MSR_FE1);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
#define cpu_relax() do { HMT_low(); HMT_medium(); barrier(); } while (0)
|
|
#else
|
|
#define cpu_relax() barrier()
|
|
#endif
|
|
|
|
/* Check that a certain kernel stack pointer is valid in task_struct p */
|
|
int validate_sp(unsigned long sp, struct task_struct *p,
|
|
unsigned long nbytes);
|
|
|
|
/*
|
|
* Prefetch macros.
|
|
*/
|
|
#define ARCH_HAS_PREFETCH
|
|
#define ARCH_HAS_PREFETCHW
|
|
#define ARCH_HAS_SPINLOCK_PREFETCH
|
|
|
|
static inline void prefetch(const void *x)
|
|
{
|
|
if (unlikely(!x))
|
|
return;
|
|
|
|
__asm__ __volatile__ ("dcbt 0,%0" : : "r" (x));
|
|
}
|
|
|
|
static inline void prefetchw(const void *x)
|
|
{
|
|
if (unlikely(!x))
|
|
return;
|
|
|
|
__asm__ __volatile__ ("dcbtst 0,%0" : : "r" (x));
|
|
}
|
|
|
|
#define spin_lock_prefetch(x) prefetchw(x)
|
|
|
|
#define HAVE_ARCH_PICK_MMAP_LAYOUT
|
|
|
|
#ifdef CONFIG_PPC64
|
|
static inline unsigned long get_clean_sp(unsigned long sp, int is_32)
|
|
{
|
|
if (is_32)
|
|
return sp & 0x0ffffffffUL;
|
|
return sp;
|
|
}
|
|
#else
|
|
static inline unsigned long get_clean_sp(unsigned long sp, int is_32)
|
|
{
|
|
return sp;
|
|
}
|
|
#endif
|
|
|
|
extern unsigned long cpuidle_disable;
|
|
enum idle_boot_override {IDLE_NO_OVERRIDE = 0, IDLE_POWERSAVE_OFF};
|
|
|
|
extern int powersave_nap; /* set if nap mode can be used in idle loop */
|
|
extern void power7_nap(int check_irq);
|
|
extern void power7_sleep(void);
|
|
extern void flush_instruction_cache(void);
|
|
extern void hard_reset_now(void);
|
|
extern void poweroff_now(void);
|
|
extern int fix_alignment(struct pt_regs *);
|
|
extern void cvt_fd(float *from, double *to);
|
|
extern void cvt_df(double *from, float *to);
|
|
extern void _nmask_and_or_msr(unsigned long nmask, unsigned long or_val);
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/*
|
|
* We handle most unaligned accesses in hardware. On the other hand
|
|
* unaligned DMA can be very expensive on some ppc64 IO chips (it does
|
|
* powers of 2 writes until it reaches sufficient alignment).
|
|
*
|
|
* Based on this we disable the IP header alignment in network drivers.
|
|
*/
|
|
#define NET_IP_ALIGN 0
|
|
#endif
|
|
|
|
#endif /* __KERNEL__ */
|
|
#endif /* __ASSEMBLY__ */
|
|
#endif /* _ASM_POWERPC_PROCESSOR_H */
|