mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
19a8d6b760
04c81c7293
("MIPS: PCI: Replace pci_fixup_irqs() call with host bridge IRQ mapping hooks") moved the PCI IRQ fixup to the new host bridge map/swizzle_irq() hooks mechanism. Those hooks can also be called after boot, when all the __init/__initdata/__initconst sections have been freed. Therefore, functions called by them (and the data they refer to) must not be marked as __init/__initdata/__initconst lest compilation trigger section mismatch warnings. Fix all the board files map_irq() hooks by simply removing the respective __init/__initdata/__initconst section markers and by adding another persistent hook IRQ map for the txx9 board files. Fixes:04c81c7293
("MIPS: PCI: Replace pci_fixup_irqs() call with host bridge IRQ mapping hooks") Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Steve French <smfrench@gmail.com>
716 lines
22 KiB
C
716 lines
22 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2005-2009 Cavium Networks
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/time.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/swiotlb.h>
|
|
|
|
#include <asm/time.h>
|
|
|
|
#include <asm/octeon/octeon.h>
|
|
#include <asm/octeon/cvmx-npi-defs.h>
|
|
#include <asm/octeon/cvmx-pci-defs.h>
|
|
#include <asm/octeon/pci-octeon.h>
|
|
|
|
#include <dma-coherence.h>
|
|
|
|
#define USE_OCTEON_INTERNAL_ARBITER
|
|
|
|
/*
|
|
* Octeon's PCI controller uses did=3, subdid=2 for PCI IO
|
|
* addresses. Use PCI endian swapping 1 so no address swapping is
|
|
* necessary. The Linux io routines will endian swap the data.
|
|
*/
|
|
#define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
|
|
#define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
|
|
|
|
/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
|
|
#define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
|
|
|
|
u64 octeon_bar1_pci_phys;
|
|
|
|
/**
|
|
* This is the bit decoding used for the Octeon PCI controller addresses
|
|
*/
|
|
union octeon_pci_address {
|
|
uint64_t u64;
|
|
struct {
|
|
uint64_t upper:2;
|
|
uint64_t reserved:13;
|
|
uint64_t io:1;
|
|
uint64_t did:5;
|
|
uint64_t subdid:3;
|
|
uint64_t reserved2:4;
|
|
uint64_t endian_swap:2;
|
|
uint64_t reserved3:10;
|
|
uint64_t bus:8;
|
|
uint64_t dev:5;
|
|
uint64_t func:3;
|
|
uint64_t reg:8;
|
|
} s;
|
|
};
|
|
|
|
int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin);
|
|
enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
|
|
|
|
/**
|
|
* Map a PCI device to the appropriate interrupt line
|
|
*
|
|
* @dev: The Linux PCI device structure for the device to map
|
|
* @slot: The slot number for this device on __BUS 0__. Linux
|
|
* enumerates through all the bridges and figures out the
|
|
* slot on Bus 0 where this device eventually hooks to.
|
|
* @pin: The PCI interrupt pin read from the device, then swizzled
|
|
* as it goes through each bridge.
|
|
* Returns Interrupt number for the device
|
|
*/
|
|
int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
|
|
{
|
|
if (octeon_pcibios_map_irq)
|
|
return octeon_pcibios_map_irq(dev, slot, pin);
|
|
else
|
|
panic("octeon_pcibios_map_irq not set.");
|
|
}
|
|
|
|
|
|
/*
|
|
* Called to perform platform specific PCI setup
|
|
*/
|
|
int pcibios_plat_dev_init(struct pci_dev *dev)
|
|
{
|
|
uint16_t config;
|
|
uint32_t dconfig;
|
|
int pos;
|
|
/*
|
|
* Force the Cache line setting to 64 bytes. The standard
|
|
* Linux bus scan doesn't seem to set it. Octeon really has
|
|
* 128 byte lines, but Intel bridges get really upset if you
|
|
* try and set values above 64 bytes. Value is specified in
|
|
* 32bit words.
|
|
*/
|
|
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
|
|
/* Set latency timers for all devices */
|
|
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
|
|
|
|
/* Enable reporting System errors and parity errors on all devices */
|
|
/* Enable parity checking and error reporting */
|
|
pci_read_config_word(dev, PCI_COMMAND, &config);
|
|
config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
|
|
pci_write_config_word(dev, PCI_COMMAND, config);
|
|
|
|
if (dev->subordinate) {
|
|
/* Set latency timers on sub bridges */
|
|
pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
|
|
/* More bridge error detection */
|
|
pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
|
|
config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
|
|
pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
|
|
}
|
|
|
|
/* Enable the PCIe normal error reporting */
|
|
config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
|
|
config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
|
|
config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */
|
|
config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */
|
|
pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
|
|
|
|
/* Find the Advanced Error Reporting capability */
|
|
pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
|
|
if (pos) {
|
|
/* Clear Uncorrectable Error Status */
|
|
pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
|
|
&dconfig);
|
|
pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
|
|
dconfig);
|
|
/* Enable reporting of all uncorrectable errors */
|
|
/* Uncorrectable Error Mask - turned on bits disable errors */
|
|
pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
|
|
/*
|
|
* Leave severity at HW default. This only controls if
|
|
* errors are reported as uncorrectable or
|
|
* correctable, not if the error is reported.
|
|
*/
|
|
/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
|
|
/* Clear Correctable Error Status */
|
|
pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
|
|
pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
|
|
/* Enable reporting of all correctable errors */
|
|
/* Correctable Error Mask - turned on bits disable errors */
|
|
pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
|
|
/* Advanced Error Capabilities */
|
|
pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
|
|
/* ECRC Generation Enable */
|
|
if (config & PCI_ERR_CAP_ECRC_GENC)
|
|
config |= PCI_ERR_CAP_ECRC_GENE;
|
|
/* ECRC Check Enable */
|
|
if (config & PCI_ERR_CAP_ECRC_CHKC)
|
|
config |= PCI_ERR_CAP_ECRC_CHKE;
|
|
pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
|
|
/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
|
|
/* Report all errors to the root complex */
|
|
pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
|
|
PCI_ERR_ROOT_CMD_COR_EN |
|
|
PCI_ERR_ROOT_CMD_NONFATAL_EN |
|
|
PCI_ERR_ROOT_CMD_FATAL_EN);
|
|
/* Clear the Root status register */
|
|
pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
|
|
pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
|
|
}
|
|
|
|
dev->dev.dma_ops = octeon_pci_dma_map_ops;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Return the mapping of PCI device number to IRQ line. Each
|
|
* character in the return string represents the interrupt
|
|
* line for the device at that position. Device 1 maps to the
|
|
* first character, etc. The characters A-D are used for PCI
|
|
* interrupts.
|
|
*
|
|
* Returns PCI interrupt mapping
|
|
*/
|
|
const char *octeon_get_pci_interrupts(void)
|
|
{
|
|
/*
|
|
* Returning an empty string causes the interrupts to be
|
|
* routed based on the PCI specification. From the PCI spec:
|
|
*
|
|
* INTA# of Device Number 0 is connected to IRQW on the system
|
|
* board. (Device Number has no significance regarding being
|
|
* located on the system board or in a connector.) INTA# of
|
|
* Device Number 1 is connected to IRQX on the system
|
|
* board. INTA# of Device Number 2 is connected to IRQY on the
|
|
* system board. INTA# of Device Number 3 is connected to IRQZ
|
|
* on the system board. The table below describes how each
|
|
* agent's INTx# lines are connected to the system board
|
|
* interrupt lines. The following equation can be used to
|
|
* determine to which INTx# signal on the system board a given
|
|
* device's INTx# line(s) is connected.
|
|
*
|
|
* MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
|
|
* IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
|
|
* Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
|
|
* INTD# = 3)
|
|
*/
|
|
if (of_machine_is_compatible("dlink,dsr-500n"))
|
|
return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
|
|
switch (octeon_bootinfo->board_type) {
|
|
case CVMX_BOARD_TYPE_NAO38:
|
|
/* This is really the NAC38 */
|
|
return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
|
|
case CVMX_BOARD_TYPE_EBH3100:
|
|
case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
|
|
case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
|
|
return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
|
|
case CVMX_BOARD_TYPE_BBGW_REF:
|
|
return "AABCD";
|
|
case CVMX_BOARD_TYPE_CUST_DSR1000N:
|
|
return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
|
|
case CVMX_BOARD_TYPE_THUNDER:
|
|
case CVMX_BOARD_TYPE_EBH3000:
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Map a PCI device to the appropriate interrupt line
|
|
*
|
|
* @dev: The Linux PCI device structure for the device to map
|
|
* @slot: The slot number for this device on __BUS 0__. Linux
|
|
* enumerates through all the bridges and figures out the
|
|
* slot on Bus 0 where this device eventually hooks to.
|
|
* @pin: The PCI interrupt pin read from the device, then swizzled
|
|
* as it goes through each bridge.
|
|
* Returns Interrupt number for the device
|
|
*/
|
|
int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
|
|
u8 slot, u8 pin)
|
|
{
|
|
int irq_num;
|
|
const char *interrupts;
|
|
int dev_num;
|
|
|
|
/* Get the board specific interrupt mapping */
|
|
interrupts = octeon_get_pci_interrupts();
|
|
|
|
dev_num = dev->devfn >> 3;
|
|
if (dev_num < strlen(interrupts))
|
|
irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
|
|
OCTEON_IRQ_PCI_INT0;
|
|
else
|
|
irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
|
|
return irq_num;
|
|
}
|
|
|
|
|
|
/*
|
|
* Read a value from configuration space
|
|
*/
|
|
static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
|
|
int reg, int size, u32 *val)
|
|
{
|
|
union octeon_pci_address pci_addr;
|
|
|
|
pci_addr.u64 = 0;
|
|
pci_addr.s.upper = 2;
|
|
pci_addr.s.io = 1;
|
|
pci_addr.s.did = 3;
|
|
pci_addr.s.subdid = 1;
|
|
pci_addr.s.endian_swap = 1;
|
|
pci_addr.s.bus = bus->number;
|
|
pci_addr.s.dev = devfn >> 3;
|
|
pci_addr.s.func = devfn & 0x7;
|
|
pci_addr.s.reg = reg;
|
|
|
|
switch (size) {
|
|
case 4:
|
|
*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
|
|
return PCIBIOS_SUCCESSFUL;
|
|
case 2:
|
|
*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
|
|
return PCIBIOS_SUCCESSFUL;
|
|
case 1:
|
|
*val = cvmx_read64_uint8(pci_addr.u64);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
return PCIBIOS_FUNC_NOT_SUPPORTED;
|
|
}
|
|
|
|
|
|
/*
|
|
* Write a value to PCI configuration space
|
|
*/
|
|
static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
|
|
int reg, int size, u32 val)
|
|
{
|
|
union octeon_pci_address pci_addr;
|
|
|
|
pci_addr.u64 = 0;
|
|
pci_addr.s.upper = 2;
|
|
pci_addr.s.io = 1;
|
|
pci_addr.s.did = 3;
|
|
pci_addr.s.subdid = 1;
|
|
pci_addr.s.endian_swap = 1;
|
|
pci_addr.s.bus = bus->number;
|
|
pci_addr.s.dev = devfn >> 3;
|
|
pci_addr.s.func = devfn & 0x7;
|
|
pci_addr.s.reg = reg;
|
|
|
|
switch (size) {
|
|
case 4:
|
|
cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
|
|
return PCIBIOS_SUCCESSFUL;
|
|
case 2:
|
|
cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
|
|
return PCIBIOS_SUCCESSFUL;
|
|
case 1:
|
|
cvmx_write64_uint8(pci_addr.u64, val);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
return PCIBIOS_FUNC_NOT_SUPPORTED;
|
|
}
|
|
|
|
|
|
static struct pci_ops octeon_pci_ops = {
|
|
.read = octeon_read_config,
|
|
.write = octeon_write_config,
|
|
};
|
|
|
|
static struct resource octeon_pci_mem_resource = {
|
|
.start = 0,
|
|
.end = 0,
|
|
.name = "Octeon PCI MEM",
|
|
.flags = IORESOURCE_MEM,
|
|
};
|
|
|
|
/*
|
|
* PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
|
|
* bridge
|
|
*/
|
|
static struct resource octeon_pci_io_resource = {
|
|
.start = 0x4000,
|
|
.end = OCTEON_PCI_IOSPACE_SIZE - 1,
|
|
.name = "Octeon PCI IO",
|
|
.flags = IORESOURCE_IO,
|
|
};
|
|
|
|
static struct pci_controller octeon_pci_controller = {
|
|
.pci_ops = &octeon_pci_ops,
|
|
.mem_resource = &octeon_pci_mem_resource,
|
|
.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
|
|
.io_resource = &octeon_pci_io_resource,
|
|
.io_offset = 0,
|
|
.io_map_base = OCTEON_PCI_IOSPACE_BASE,
|
|
};
|
|
|
|
|
|
/*
|
|
* Low level initialize the Octeon PCI controller
|
|
*/
|
|
static void octeon_pci_initialize(void)
|
|
{
|
|
union cvmx_pci_cfg01 cfg01;
|
|
union cvmx_npi_ctl_status ctl_status;
|
|
union cvmx_pci_ctl_status_2 ctl_status_2;
|
|
union cvmx_pci_cfg19 cfg19;
|
|
union cvmx_pci_cfg16 cfg16;
|
|
union cvmx_pci_cfg22 cfg22;
|
|
union cvmx_pci_cfg56 cfg56;
|
|
|
|
/* Reset the PCI Bus */
|
|
cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
|
|
cvmx_read_csr(CVMX_CIU_SOFT_PRST);
|
|
|
|
udelay(2000); /* Hold PCI reset for 2 ms */
|
|
|
|
ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
|
|
ctl_status.s.max_word = 1;
|
|
ctl_status.s.timer = 1;
|
|
cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
|
|
|
|
/* Deassert PCI reset and advertize PCX Host Mode Device Capability
|
|
(64b) */
|
|
cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
|
|
cvmx_read_csr(CVMX_CIU_SOFT_PRST);
|
|
|
|
udelay(2000); /* Wait 2 ms after deasserting PCI reset */
|
|
|
|
ctl_status_2.u32 = 0;
|
|
ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
|
|
before any PCI reads. */
|
|
ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
|
|
ctl_status_2.s.bar2_enb = 1;
|
|
ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
|
|
ctl_status_2.s.bar2_esx = 1;
|
|
ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
|
|
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
|
|
/* BAR1 hole */
|
|
ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
|
|
ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
|
|
ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
|
|
ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
|
|
ctl_status_2.s.bb1 = 1; /* BAR1 is big */
|
|
ctl_status_2.s.bb0 = 1; /* BAR0 is big */
|
|
}
|
|
|
|
octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
|
|
udelay(2000); /* Wait 2 ms before doing PCI reads */
|
|
|
|
ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
|
|
pr_notice("PCI Status: %s %s-bit\n",
|
|
ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
|
|
ctl_status_2.s.ap_64ad ? "64" : "32");
|
|
|
|
if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
|
|
union cvmx_pci_cnt_reg cnt_reg_start;
|
|
union cvmx_pci_cnt_reg cnt_reg_end;
|
|
unsigned long cycles, pci_clock;
|
|
|
|
cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
|
|
cycles = read_c0_cvmcount();
|
|
udelay(1000);
|
|
cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
|
|
cycles = read_c0_cvmcount() - cycles;
|
|
pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
|
|
(cycles / (mips_hpt_frequency / 1000000));
|
|
pr_notice("PCI Clock: %lu MHz\n", pci_clock);
|
|
}
|
|
|
|
/*
|
|
* TDOMC must be set to one in PCI mode. TDOMC should be set to 4
|
|
* in PCI-X mode to allow four outstanding splits. Otherwise,
|
|
* should not change from its reset value. Don't write PCI_CFG19
|
|
* in PCI mode (0x82000001 reset value), write it to 0x82000004
|
|
* after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
|
|
* MRBCM -> must be one.
|
|
*/
|
|
if (ctl_status_2.s.ap_pcix) {
|
|
cfg19.u32 = 0;
|
|
/*
|
|
* Target Delayed/Split request outstanding maximum
|
|
* count. [1..31] and 0=32. NOTE: If the user
|
|
* programs these bits beyond the Designed Maximum
|
|
* outstanding count, then the designed maximum table
|
|
* depth will be used instead. No additional
|
|
* Deferred/Split transactions will be accepted if
|
|
* this outstanding maximum count is
|
|
* reached. Furthermore, no additional deferred/split
|
|
* transactions will be accepted if the I/O delay/ I/O
|
|
* Split Request outstanding maximum is reached.
|
|
*/
|
|
cfg19.s.tdomc = 4;
|
|
/*
|
|
* Master Deferred Read Request Outstanding Max Count
|
|
* (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
|
|
* cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
|
|
* 5 2 110 6 3 111 7 3 For example, if these bits are
|
|
* programmed to 100, the core can support 2 DAC
|
|
* cycles, 4 SAC cycles or a combination of 1 DAC and
|
|
* 2 SAC cycles. NOTE: For the PCI-X maximum
|
|
* outstanding split transactions, refer to
|
|
* CRE0[22:20].
|
|
*/
|
|
cfg19.s.mdrrmc = 2;
|
|
/*
|
|
* Master Request (Memory Read) Byte Count/Byte Enable
|
|
* select. 0 = Byte Enables valid. In PCI mode, a
|
|
* burst transaction cannot be performed using Memory
|
|
* Read command=4?h6. 1 = DWORD Byte Count valid
|
|
* (default). In PCI Mode, the memory read byte
|
|
* enables are automatically generated by the
|
|
* core. Note: N3 Master Request transaction sizes are
|
|
* always determined through the
|
|
* am_attr[<35:32>|<7:0>] field.
|
|
*/
|
|
cfg19.s.mrbcm = 1;
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
|
|
}
|
|
|
|
|
|
cfg01.u32 = 0;
|
|
cfg01.s.msae = 1; /* Memory Space Access Enable */
|
|
cfg01.s.me = 1; /* Master Enable */
|
|
cfg01.s.pee = 1; /* PERR# Enable */
|
|
cfg01.s.see = 1; /* System Error Enable */
|
|
cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
|
|
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
|
|
|
|
#ifdef USE_OCTEON_INTERNAL_ARBITER
|
|
/*
|
|
* When OCTEON is a PCI host, most systems will use OCTEON's
|
|
* internal arbiter, so must enable it before any PCI/PCI-X
|
|
* traffic can occur.
|
|
*/
|
|
{
|
|
union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
|
|
|
|
pci_int_arb_cfg.u64 = 0;
|
|
pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
|
|
cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
|
|
}
|
|
#endif /* USE_OCTEON_INTERNAL_ARBITER */
|
|
|
|
/*
|
|
* Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
|
|
* TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
|
|
* 1..7.
|
|
*/
|
|
cfg16.u32 = 0;
|
|
cfg16.s.mltd = 1; /* Master Latency Timer Disable */
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
|
|
|
|
/*
|
|
* Should be written to 0x4ff00. MTTV -> must be zero.
|
|
* FLUSH -> must be 1. MRV -> should be 0xFF.
|
|
*/
|
|
cfg22.u32 = 0;
|
|
/* Master Retry Value [1..255] and 0=infinite */
|
|
cfg22.s.mrv = 0xff;
|
|
/*
|
|
* AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
|
|
* N3K operation.
|
|
*/
|
|
cfg22.s.flush = 1;
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
|
|
|
|
/*
|
|
* MOST Indicates the maximum number of outstanding splits (in -1
|
|
* notation) when OCTEON is in PCI-X mode. PCI-X performance is
|
|
* affected by the MOST selection. Should generally be written
|
|
* with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
|
|
* depending on the desired MOST of 3, 2, 1, or 0, respectively.
|
|
*/
|
|
cfg56.u32 = 0;
|
|
cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
|
|
cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
|
|
cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
|
|
cfg56.s.roe = 1; /* Relaxed Ordering Enable */
|
|
cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
|
|
[0=512B,1=1024B,2=2048B,3=4096B] */
|
|
cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
|
|
.. 7=32] */
|
|
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
|
|
|
|
/*
|
|
* Affects PCI performance when OCTEON services reads to its
|
|
* BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
|
|
* 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
|
|
* PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
|
|
* these values need to be changed so they won't possibly prefetch off
|
|
* of the end of memory if PCI is DMAing a buffer at the end of
|
|
* memory. Note that these values differ from their reset values.
|
|
*/
|
|
octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
|
|
octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
|
|
octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize the Octeon PCI controller
|
|
*/
|
|
static int __init octeon_pci_setup(void)
|
|
{
|
|
union cvmx_npi_mem_access_subidx mem_access;
|
|
int index;
|
|
|
|
/* Only these chips have PCI */
|
|
if (octeon_has_feature(OCTEON_FEATURE_PCIE))
|
|
return 0;
|
|
|
|
/* Point pcibios_map_irq() to the PCI version of it */
|
|
octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
|
|
|
|
/* Only use the big bars on chips that support it */
|
|
if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
|
|
OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
|
|
OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
|
|
octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
|
|
else
|
|
octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
|
|
|
|
if (!octeon_is_pci_host()) {
|
|
pr_notice("Not in host mode, PCI Controller not initialized\n");
|
|
return 0;
|
|
}
|
|
|
|
/* PCI I/O and PCI MEM values */
|
|
set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
|
|
ioport_resource.start = 0;
|
|
ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
|
|
|
|
pr_notice("%s Octeon big bar support\n",
|
|
(octeon_dma_bar_type ==
|
|
OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
|
|
|
|
octeon_pci_initialize();
|
|
|
|
mem_access.u64 = 0;
|
|
mem_access.s.esr = 1; /* Endian-Swap on read. */
|
|
mem_access.s.esw = 1; /* Endian-Swap on write. */
|
|
mem_access.s.nsr = 0; /* No-Snoop on read. */
|
|
mem_access.s.nsw = 0; /* No-Snoop on write. */
|
|
mem_access.s.ror = 0; /* Relax Read on read. */
|
|
mem_access.s.row = 0; /* Relax Order on write. */
|
|
mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
|
|
cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
|
|
|
|
/*
|
|
* Remap the Octeon BAR 2 above all 32 bit devices
|
|
* (0x8000000000ul). This is done here so it is remapped
|
|
* before the readl()'s below. We don't want BAR2 overlapping
|
|
* with BAR0/BAR1 during these reads.
|
|
*/
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG08,
|
|
(u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG09,
|
|
(u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
|
|
|
|
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
|
|
/* Remap the Octeon BAR 0 to 0-2GB */
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
|
|
|
|
/*
|
|
* Remap the Octeon BAR 1 to map 2GB-4GB (minus the
|
|
* BAR 1 hole).
|
|
*/
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
|
|
|
|
/* BAR1 movable mappings set for identity mapping */
|
|
octeon_bar1_pci_phys = 0x80000000ull;
|
|
for (index = 0; index < 32; index++) {
|
|
union cvmx_pci_bar1_indexx bar1_index;
|
|
|
|
bar1_index.u32 = 0;
|
|
/* Address bits[35:22] sent to L2C */
|
|
bar1_index.s.addr_idx =
|
|
(octeon_bar1_pci_phys >> 22) + index;
|
|
/* Don't put PCI accesses in L2. */
|
|
bar1_index.s.ca = 1;
|
|
/* Endian Swap Mode */
|
|
bar1_index.s.end_swp = 1;
|
|
/* Set '1' when the selected address range is valid. */
|
|
bar1_index.s.addr_v = 1;
|
|
octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
|
|
bar1_index.u32);
|
|
}
|
|
|
|
/* Devices go after BAR1 */
|
|
octeon_pci_mem_resource.start =
|
|
OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
|
|
(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
|
|
octeon_pci_mem_resource.end =
|
|
octeon_pci_mem_resource.start + (1ul << 30);
|
|
} else {
|
|
/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
|
|
|
|
/* Remap the Octeon BAR 1 to map 0-128MB */
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
|
|
octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
|
|
|
|
/* BAR1 movable regions contiguous to cover the swiotlb */
|
|
octeon_bar1_pci_phys =
|
|
virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
|
|
|
|
for (index = 0; index < 32; index++) {
|
|
union cvmx_pci_bar1_indexx bar1_index;
|
|
|
|
bar1_index.u32 = 0;
|
|
/* Address bits[35:22] sent to L2C */
|
|
bar1_index.s.addr_idx =
|
|
(octeon_bar1_pci_phys >> 22) + index;
|
|
/* Don't put PCI accesses in L2. */
|
|
bar1_index.s.ca = 1;
|
|
/* Endian Swap Mode */
|
|
bar1_index.s.end_swp = 1;
|
|
/* Set '1' when the selected address range is valid. */
|
|
bar1_index.s.addr_v = 1;
|
|
octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
|
|
bar1_index.u32);
|
|
}
|
|
|
|
/* Devices go after BAR0 */
|
|
octeon_pci_mem_resource.start =
|
|
OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
|
|
(4ul << 10);
|
|
octeon_pci_mem_resource.end =
|
|
octeon_pci_mem_resource.start + (1ul << 30);
|
|
}
|
|
|
|
register_pci_controller(&octeon_pci_controller);
|
|
|
|
/*
|
|
* Clear any errors that might be pending from before the bus
|
|
* was setup properly.
|
|
*/
|
|
cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
|
|
|
|
if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
|
|
-1, NULL, 0)))
|
|
pr_err("Registration of co_pci_edac failed!\n");
|
|
|
|
octeon_pci_dma_init();
|
|
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(octeon_pci_setup);
|