mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
6dc66f7c26
When using the macro le32_to_cpu(x), we need to correctly convert x to be __le32 in case it is defined as u32 variable. Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Reviewed-by: Tomer Tayar <ttayar@habana.ai>
1673 lines
57 KiB
C
1673 lines
57 KiB
C
/* SPDX-License-Identifier: GPL-2.0
|
|
*
|
|
* Copyright 2016-2019 HabanaLabs, Ltd.
|
|
* All Rights Reserved.
|
|
*
|
|
*/
|
|
|
|
#ifndef HABANALABSP_H_
|
|
#define HABANALABSP_H_
|
|
|
|
#include "include/armcp_if.h"
|
|
#include "include/qman_if.h"
|
|
|
|
#include <linux/cdev.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/irqreturn.h>
|
|
#include <linux/dma-fence.h>
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/hashtable.h>
|
|
|
|
#define HL_NAME "habanalabs"
|
|
|
|
#define HL_MMAP_CB_MASK (0x8000000000000000ull >> PAGE_SHIFT)
|
|
|
|
#define HL_PENDING_RESET_PER_SEC 5
|
|
|
|
#define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
|
|
|
|
#define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
|
|
|
|
#define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
|
|
|
|
#define HL_ARMCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
|
|
#define HL_ARMCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
|
|
|
|
#define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
|
|
|
|
#define HL_SIM_MAX_TIMEOUT_US 10000000 /* 10s */
|
|
|
|
#define HL_MAX_QUEUES 128
|
|
|
|
#define HL_MAX_JOBS_PER_CS 64
|
|
|
|
/* MUST BE POWER OF 2 and larger than 1 */
|
|
#define HL_MAX_PENDING_CS 64
|
|
|
|
#define HL_IDLE_BUSY_TS_ARR_SIZE 4096
|
|
|
|
/* Memory */
|
|
#define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
|
|
|
|
/* MMU */
|
|
#define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
|
|
|
|
/**
|
|
* struct pgt_info - MMU hop page info.
|
|
* @node: hash linked-list node for the pgts shadow hash of pgts.
|
|
* @phys_addr: physical address of the pgt.
|
|
* @shadow_addr: shadow hop in the host.
|
|
* @ctx: pointer to the owner ctx.
|
|
* @num_of_ptes: indicates how many ptes are used in the pgt.
|
|
*
|
|
* The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
|
|
* is needed during mapping, a new page is allocated and this structure holds
|
|
* its essential information. During unmapping, if no valid PTEs remained in the
|
|
* page, it is freed with its pgt_info structure.
|
|
*/
|
|
struct pgt_info {
|
|
struct hlist_node node;
|
|
u64 phys_addr;
|
|
u64 shadow_addr;
|
|
struct hl_ctx *ctx;
|
|
int num_of_ptes;
|
|
};
|
|
|
|
struct hl_device;
|
|
struct hl_fpriv;
|
|
|
|
/**
|
|
* enum hl_queue_type - Supported QUEUE types.
|
|
* @QUEUE_TYPE_NA: queue is not available.
|
|
* @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
|
|
* host.
|
|
* @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
|
|
* memories and/or operates the compute engines.
|
|
* @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
|
|
*/
|
|
enum hl_queue_type {
|
|
QUEUE_TYPE_NA,
|
|
QUEUE_TYPE_EXT,
|
|
QUEUE_TYPE_INT,
|
|
QUEUE_TYPE_CPU
|
|
};
|
|
|
|
/**
|
|
* struct hw_queue_properties - queue information.
|
|
* @type: queue type.
|
|
* @driver_only: true if only the driver is allowed to send a job to this queue,
|
|
* false otherwise.
|
|
*/
|
|
struct hw_queue_properties {
|
|
enum hl_queue_type type;
|
|
u8 driver_only;
|
|
};
|
|
|
|
/**
|
|
* enum vm_type_t - virtual memory mapping request information.
|
|
* @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
|
|
* @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
|
|
*/
|
|
enum vm_type_t {
|
|
VM_TYPE_USERPTR,
|
|
VM_TYPE_PHYS_PACK
|
|
};
|
|
|
|
/**
|
|
* enum hl_device_hw_state - H/W device state. use this to understand whether
|
|
* to do reset before hw_init or not
|
|
* @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
|
|
* @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
|
|
* hw_init
|
|
*/
|
|
enum hl_device_hw_state {
|
|
HL_DEVICE_HW_STATE_CLEAN = 0,
|
|
HL_DEVICE_HW_STATE_DIRTY
|
|
};
|
|
|
|
/**
|
|
* struct asic_fixed_properties - ASIC specific immutable properties.
|
|
* @hw_queues_props: H/W queues properties.
|
|
* @armcp_info: received various information from ArmCP regarding the H/W, e.g.
|
|
* available sensors.
|
|
* @uboot_ver: F/W U-boot version.
|
|
* @preboot_ver: F/W Preboot version.
|
|
* @sram_base_address: SRAM physical start address.
|
|
* @sram_end_address: SRAM physical end address.
|
|
* @sram_user_base_address - SRAM physical start address for user access.
|
|
* @dram_base_address: DRAM physical start address.
|
|
* @dram_end_address: DRAM physical end address.
|
|
* @dram_user_base_address: DRAM physical start address for user access.
|
|
* @dram_size: DRAM total size.
|
|
* @dram_pci_bar_size: size of PCI bar towards DRAM.
|
|
* @max_power_default: max power of the device after reset
|
|
* @va_space_host_start_address: base address of virtual memory range for
|
|
* mapping host memory.
|
|
* @va_space_host_end_address: end address of virtual memory range for
|
|
* mapping host memory.
|
|
* @va_space_dram_start_address: base address of virtual memory range for
|
|
* mapping DRAM memory.
|
|
* @va_space_dram_end_address: end address of virtual memory range for
|
|
* mapping DRAM memory.
|
|
* @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
|
|
* fault.
|
|
* @pcie_dbi_base_address: Base address of the PCIE_DBI block.
|
|
* @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
|
|
* @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
|
|
* @mmu_dram_default_page_addr: DRAM default page physical address.
|
|
* @mmu_pgt_size: MMU page tables total size.
|
|
* @mmu_pte_size: PTE size in MMU page tables.
|
|
* @mmu_hop_table_size: MMU hop table size.
|
|
* @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
|
|
* @dram_page_size: page size for MMU DRAM allocation.
|
|
* @cfg_size: configuration space size on SRAM.
|
|
* @sram_size: total size of SRAM.
|
|
* @max_asid: maximum number of open contexts (ASIDs).
|
|
* @num_of_events: number of possible internal H/W IRQs.
|
|
* @psoc_pci_pll_nr: PCI PLL NR value.
|
|
* @psoc_pci_pll_nf: PCI PLL NF value.
|
|
* @psoc_pci_pll_od: PCI PLL OD value.
|
|
* @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
|
|
* @completion_queues_count: number of completion queues.
|
|
* @high_pll: high PLL frequency used by the device.
|
|
* @cb_pool_cb_cnt: number of CBs in the CB pool.
|
|
* @cb_pool_cb_size: size of each CB in the CB pool.
|
|
* @tpc_enabled_mask: which TPCs are enabled.
|
|
*/
|
|
struct asic_fixed_properties {
|
|
struct hw_queue_properties hw_queues_props[HL_MAX_QUEUES];
|
|
struct armcp_info armcp_info;
|
|
char uboot_ver[VERSION_MAX_LEN];
|
|
char preboot_ver[VERSION_MAX_LEN];
|
|
u64 sram_base_address;
|
|
u64 sram_end_address;
|
|
u64 sram_user_base_address;
|
|
u64 dram_base_address;
|
|
u64 dram_end_address;
|
|
u64 dram_user_base_address;
|
|
u64 dram_size;
|
|
u64 dram_pci_bar_size;
|
|
u64 max_power_default;
|
|
u64 va_space_host_start_address;
|
|
u64 va_space_host_end_address;
|
|
u64 va_space_dram_start_address;
|
|
u64 va_space_dram_end_address;
|
|
u64 dram_size_for_default_page_mapping;
|
|
u64 pcie_dbi_base_address;
|
|
u64 pcie_aux_dbi_reg_addr;
|
|
u64 mmu_pgt_addr;
|
|
u64 mmu_dram_default_page_addr;
|
|
u32 mmu_pgt_size;
|
|
u32 mmu_pte_size;
|
|
u32 mmu_hop_table_size;
|
|
u32 mmu_hop0_tables_total_size;
|
|
u32 dram_page_size;
|
|
u32 cfg_size;
|
|
u32 sram_size;
|
|
u32 max_asid;
|
|
u32 num_of_events;
|
|
u32 psoc_pci_pll_nr;
|
|
u32 psoc_pci_pll_nf;
|
|
u32 psoc_pci_pll_od;
|
|
u32 psoc_pci_pll_div_factor;
|
|
u32 high_pll;
|
|
u32 cb_pool_cb_cnt;
|
|
u32 cb_pool_cb_size;
|
|
u8 completion_queues_count;
|
|
u8 tpc_enabled_mask;
|
|
};
|
|
|
|
/**
|
|
* struct hl_dma_fence - wrapper for fence object used by command submissions.
|
|
* @base_fence: kernel fence object.
|
|
* @lock: spinlock to protect fence.
|
|
* @hdev: habanalabs device structure.
|
|
* @cs_seq: command submission sequence number.
|
|
*/
|
|
struct hl_dma_fence {
|
|
struct dma_fence base_fence;
|
|
spinlock_t lock;
|
|
struct hl_device *hdev;
|
|
u64 cs_seq;
|
|
};
|
|
|
|
/*
|
|
* Command Buffers
|
|
*/
|
|
|
|
#define HL_MAX_CB_SIZE 0x200000 /* 2MB */
|
|
|
|
/**
|
|
* struct hl_cb_mgr - describes a Command Buffer Manager.
|
|
* @cb_lock: protects cb_handles.
|
|
* @cb_handles: an idr to hold all command buffer handles.
|
|
*/
|
|
struct hl_cb_mgr {
|
|
spinlock_t cb_lock;
|
|
struct idr cb_handles; /* protected by cb_lock */
|
|
};
|
|
|
|
/**
|
|
* struct hl_cb - describes a Command Buffer.
|
|
* @refcount: reference counter for usage of the CB.
|
|
* @hdev: pointer to device this CB belongs to.
|
|
* @lock: spinlock to protect mmap/cs flows.
|
|
* @debugfs_list: node in debugfs list of command buffers.
|
|
* @pool_list: node in pool list of command buffers.
|
|
* @kernel_address: Holds the CB's kernel virtual address.
|
|
* @bus_address: Holds the CB's DMA address.
|
|
* @mmap_size: Holds the CB's size that was mmaped.
|
|
* @size: holds the CB's size.
|
|
* @id: the CB's ID.
|
|
* @cs_cnt: holds number of CS that this CB participates in.
|
|
* @ctx_id: holds the ID of the owner's context.
|
|
* @mmap: true if the CB is currently mmaped to user.
|
|
* @is_pool: true if CB was acquired from the pool, false otherwise.
|
|
*/
|
|
struct hl_cb {
|
|
struct kref refcount;
|
|
struct hl_device *hdev;
|
|
spinlock_t lock;
|
|
struct list_head debugfs_list;
|
|
struct list_head pool_list;
|
|
u64 kernel_address;
|
|
dma_addr_t bus_address;
|
|
u32 mmap_size;
|
|
u32 size;
|
|
u32 id;
|
|
u32 cs_cnt;
|
|
u32 ctx_id;
|
|
u8 mmap;
|
|
u8 is_pool;
|
|
};
|
|
|
|
|
|
/*
|
|
* QUEUES
|
|
*/
|
|
|
|
struct hl_cs_job;
|
|
|
|
/*
|
|
* Currently, there are two limitations on the maximum length of a queue:
|
|
*
|
|
* 1. The memory footprint of the queue. The current allocated space for the
|
|
* queue is PAGE_SIZE. Because each entry in the queue is HL_BD_SIZE,
|
|
* the maximum length of the queue can be PAGE_SIZE / HL_BD_SIZE,
|
|
* which currently is 4096/16 = 256 entries.
|
|
*
|
|
* To increase that, we need either to decrease the size of the
|
|
* BD (difficult), or allocate more than a single page (easier).
|
|
*
|
|
* 2. Because the size of the JOB handle field in the BD CTL / completion queue
|
|
* is 10-bit, we can have up to 1024 open jobs per hardware queue.
|
|
* Therefore, each queue can hold up to 1024 entries.
|
|
*
|
|
* HL_QUEUE_LENGTH is in units of struct hl_bd.
|
|
* HL_QUEUE_LENGTH * sizeof(struct hl_bd) should be <= HL_PAGE_SIZE
|
|
*/
|
|
|
|
#define HL_PAGE_SIZE 4096 /* minimum page size */
|
|
/* Must be power of 2 (HL_PAGE_SIZE / HL_BD_SIZE) */
|
|
#define HL_QUEUE_LENGTH 256
|
|
#define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
|
|
|
|
/*
|
|
* HL_CQ_LENGTH is in units of struct hl_cq_entry.
|
|
* HL_CQ_LENGTH should be <= HL_PAGE_SIZE
|
|
*/
|
|
#define HL_CQ_LENGTH HL_QUEUE_LENGTH
|
|
#define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
|
|
|
|
/* Must be power of 2 (HL_PAGE_SIZE / HL_EQ_ENTRY_SIZE) */
|
|
#define HL_EQ_LENGTH 64
|
|
#define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
|
|
|
|
/* Host <-> ArmCP shared memory size */
|
|
#define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
|
|
|
|
/**
|
|
* struct hl_hw_queue - describes a H/W transport queue.
|
|
* @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
|
|
* @queue_type: type of queue.
|
|
* @kernel_address: holds the queue's kernel virtual address.
|
|
* @bus_address: holds the queue's DMA address.
|
|
* @pi: holds the queue's pi value.
|
|
* @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
|
|
* @hw_queue_id: the id of the H/W queue.
|
|
* @int_queue_len: length of internal queue (number of entries).
|
|
* @valid: is the queue valid (we have array of 32 queues, not all of them
|
|
* exists).
|
|
*/
|
|
struct hl_hw_queue {
|
|
struct hl_cs_job **shadow_queue;
|
|
enum hl_queue_type queue_type;
|
|
u64 kernel_address;
|
|
dma_addr_t bus_address;
|
|
u32 pi;
|
|
u32 ci;
|
|
u32 hw_queue_id;
|
|
u16 int_queue_len;
|
|
u8 valid;
|
|
};
|
|
|
|
/**
|
|
* struct hl_cq - describes a completion queue
|
|
* @hdev: pointer to the device structure
|
|
* @kernel_address: holds the queue's kernel virtual address
|
|
* @bus_address: holds the queue's DMA address
|
|
* @hw_queue_id: the id of the matching H/W queue
|
|
* @ci: ci inside the queue
|
|
* @pi: pi inside the queue
|
|
* @free_slots_cnt: counter of free slots in queue
|
|
*/
|
|
struct hl_cq {
|
|
struct hl_device *hdev;
|
|
u64 kernel_address;
|
|
dma_addr_t bus_address;
|
|
u32 hw_queue_id;
|
|
u32 ci;
|
|
u32 pi;
|
|
atomic_t free_slots_cnt;
|
|
};
|
|
|
|
/**
|
|
* struct hl_eq - describes the event queue (single one per device)
|
|
* @hdev: pointer to the device structure
|
|
* @kernel_address: holds the queue's kernel virtual address
|
|
* @bus_address: holds the queue's DMA address
|
|
* @ci: ci inside the queue
|
|
*/
|
|
struct hl_eq {
|
|
struct hl_device *hdev;
|
|
u64 kernel_address;
|
|
dma_addr_t bus_address;
|
|
u32 ci;
|
|
};
|
|
|
|
|
|
/*
|
|
* ASICs
|
|
*/
|
|
|
|
/**
|
|
* enum hl_asic_type - supported ASIC types.
|
|
* @ASIC_INVALID: Invalid ASIC type.
|
|
* @ASIC_GOYA: Goya device.
|
|
*/
|
|
enum hl_asic_type {
|
|
ASIC_INVALID,
|
|
ASIC_GOYA
|
|
};
|
|
|
|
struct hl_cs_parser;
|
|
|
|
/**
|
|
* enum hl_pm_mng_profile - power management profile.
|
|
* @PM_AUTO: internal clock is set by the Linux driver.
|
|
* @PM_MANUAL: internal clock is set by the user.
|
|
* @PM_LAST: last power management type.
|
|
*/
|
|
enum hl_pm_mng_profile {
|
|
PM_AUTO = 1,
|
|
PM_MANUAL,
|
|
PM_LAST
|
|
};
|
|
|
|
/**
|
|
* enum hl_pll_frequency - PLL frequency.
|
|
* @PLL_HIGH: high frequency.
|
|
* @PLL_LOW: low frequency.
|
|
* @PLL_LAST: last frequency values that were configured by the user.
|
|
*/
|
|
enum hl_pll_frequency {
|
|
PLL_HIGH = 1,
|
|
PLL_LOW,
|
|
PLL_LAST
|
|
};
|
|
|
|
/**
|
|
* struct hl_asic_funcs - ASIC specific functions that are can be called from
|
|
* common code.
|
|
* @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
|
|
* @early_fini: tears down what was done in early_init.
|
|
* @late_init: sets up late driver/hw state (post hw_init) - Optional.
|
|
* @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
|
|
* @sw_init: sets up driver state, does not configure H/W.
|
|
* @sw_fini: tears down driver state, does not configure H/W.
|
|
* @hw_init: sets up the H/W state.
|
|
* @hw_fini: tears down the H/W state.
|
|
* @halt_engines: halt engines, needed for reset sequence. This also disables
|
|
* interrupts from the device. Should be called before
|
|
* hw_fini and before CS rollback.
|
|
* @suspend: handles IP specific H/W or SW changes for suspend.
|
|
* @resume: handles IP specific H/W or SW changes for resume.
|
|
* @cb_mmap: maps a CB.
|
|
* @ring_doorbell: increment PI on a given QMAN.
|
|
* @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
|
|
* function because the PQs are located in different memory areas
|
|
* per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
|
|
* writing the PQE must match the destination memory area
|
|
* properties.
|
|
* @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
|
|
* dma_alloc_coherent(). This is ASIC function because
|
|
* its implementation is not trivial when the driver
|
|
* is loaded in simulation mode (not upstreamed).
|
|
* @asic_dma_free_coherent: Free coherent DMA memory by calling
|
|
* dma_free_coherent(). This is ASIC function because
|
|
* its implementation is not trivial when the driver
|
|
* is loaded in simulation mode (not upstreamed).
|
|
* @get_int_queue_base: get the internal queue base address.
|
|
* @test_queues: run simple test on all queues for sanity check.
|
|
* @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
|
|
* size of allocation is HL_DMA_POOL_BLK_SIZE.
|
|
* @asic_dma_pool_free: free small DMA allocation from pool.
|
|
* @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
|
|
* @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
|
|
* @hl_dma_unmap_sg: DMA unmap scatter-gather list.
|
|
* @cs_parser: parse Command Submission.
|
|
* @asic_dma_map_sg: DMA map scatter-gather list.
|
|
* @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
|
|
* @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
|
|
* @update_eq_ci: update event queue CI.
|
|
* @context_switch: called upon ASID context switch.
|
|
* @restore_phase_topology: clear all SOBs amd MONs.
|
|
* @debugfs_read32: debug interface for reading u32 from DRAM/SRAM.
|
|
* @debugfs_write32: debug interface for writing u32 to DRAM/SRAM.
|
|
* @add_device_attr: add ASIC specific device attributes.
|
|
* @handle_eqe: handle event queue entry (IRQ) from ArmCP.
|
|
* @set_pll_profile: change PLL profile (manual/automatic).
|
|
* @get_events_stat: retrieve event queue entries histogram.
|
|
* @read_pte: read MMU page table entry from DRAM.
|
|
* @write_pte: write MMU page table entry to DRAM.
|
|
* @mmu_invalidate_cache: flush MMU STLB cache, either with soft (L1 only) or
|
|
* hard (L0 & L1) flush.
|
|
* @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
|
|
* ASID-VA-size mask.
|
|
* @send_heartbeat: send is-alive packet to ArmCP and verify response.
|
|
* @debug_coresight: perform certain actions on Coresight for debugging.
|
|
* @is_device_idle: return true if device is idle, false otherwise.
|
|
* @soft_reset_late_init: perform certain actions needed after soft reset.
|
|
* @hw_queues_lock: acquire H/W queues lock.
|
|
* @hw_queues_unlock: release H/W queues lock.
|
|
* @get_pci_id: retrieve PCI ID.
|
|
* @get_eeprom_data: retrieve EEPROM data from F/W.
|
|
* @send_cpu_message: send buffer to ArmCP.
|
|
* @get_hw_state: retrieve the H/W state
|
|
* @pci_bars_map: Map PCI BARs.
|
|
* @set_dram_bar_base: Set DRAM BAR to map specific device address. Returns
|
|
* old address the bar pointed to or U64_MAX for failure
|
|
* @init_iatu: Initialize the iATU unit inside the PCI controller.
|
|
* @rreg: Read a register. Needed for simulator support.
|
|
* @wreg: Write a register. Needed for simulator support.
|
|
* @halt_coresight: stop the ETF and ETR traces.
|
|
*/
|
|
struct hl_asic_funcs {
|
|
int (*early_init)(struct hl_device *hdev);
|
|
int (*early_fini)(struct hl_device *hdev);
|
|
int (*late_init)(struct hl_device *hdev);
|
|
void (*late_fini)(struct hl_device *hdev);
|
|
int (*sw_init)(struct hl_device *hdev);
|
|
int (*sw_fini)(struct hl_device *hdev);
|
|
int (*hw_init)(struct hl_device *hdev);
|
|
void (*hw_fini)(struct hl_device *hdev, bool hard_reset);
|
|
void (*halt_engines)(struct hl_device *hdev, bool hard_reset);
|
|
int (*suspend)(struct hl_device *hdev);
|
|
int (*resume)(struct hl_device *hdev);
|
|
int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
|
|
u64 kaddress, phys_addr_t paddress, u32 size);
|
|
void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
|
|
void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
|
|
struct hl_bd *bd);
|
|
void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flag);
|
|
void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
|
|
void *cpu_addr, dma_addr_t dma_handle);
|
|
void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
|
|
dma_addr_t *dma_handle, u16 *queue_len);
|
|
int (*test_queues)(struct hl_device *hdev);
|
|
void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
|
|
gfp_t mem_flags, dma_addr_t *dma_handle);
|
|
void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
|
|
dma_addr_t dma_addr);
|
|
void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
|
|
size_t size, dma_addr_t *dma_handle);
|
|
void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
|
|
size_t size, void *vaddr);
|
|
void (*hl_dma_unmap_sg)(struct hl_device *hdev,
|
|
struct scatterlist *sgl, int nents,
|
|
enum dma_data_direction dir);
|
|
int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
|
|
int (*asic_dma_map_sg)(struct hl_device *hdev,
|
|
struct scatterlist *sgl, int nents,
|
|
enum dma_data_direction dir);
|
|
u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
|
|
struct sg_table *sgt);
|
|
void (*add_end_of_cb_packets)(struct hl_device *hdev,
|
|
u64 kernel_address, u32 len,
|
|
u64 cq_addr, u32 cq_val, u32 msix_num);
|
|
void (*update_eq_ci)(struct hl_device *hdev, u32 val);
|
|
int (*context_switch)(struct hl_device *hdev, u32 asid);
|
|
void (*restore_phase_topology)(struct hl_device *hdev);
|
|
int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val);
|
|
int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val);
|
|
void (*add_device_attr)(struct hl_device *hdev,
|
|
struct attribute_group *dev_attr_grp);
|
|
void (*handle_eqe)(struct hl_device *hdev,
|
|
struct hl_eq_entry *eq_entry);
|
|
void (*set_pll_profile)(struct hl_device *hdev,
|
|
enum hl_pll_frequency freq);
|
|
void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
|
|
u32 *size);
|
|
u64 (*read_pte)(struct hl_device *hdev, u64 addr);
|
|
void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
|
|
void (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard);
|
|
void (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
|
|
u32 asid, u64 va, u64 size);
|
|
int (*send_heartbeat)(struct hl_device *hdev);
|
|
int (*debug_coresight)(struct hl_device *hdev, void *data);
|
|
bool (*is_device_idle)(struct hl_device *hdev, u32 *mask,
|
|
struct seq_file *s);
|
|
int (*soft_reset_late_init)(struct hl_device *hdev);
|
|
void (*hw_queues_lock)(struct hl_device *hdev);
|
|
void (*hw_queues_unlock)(struct hl_device *hdev);
|
|
u32 (*get_pci_id)(struct hl_device *hdev);
|
|
int (*get_eeprom_data)(struct hl_device *hdev, void *data,
|
|
size_t max_size);
|
|
int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
|
|
u16 len, u32 timeout, long *result);
|
|
enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev);
|
|
int (*pci_bars_map)(struct hl_device *hdev);
|
|
u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
|
|
int (*init_iatu)(struct hl_device *hdev);
|
|
u32 (*rreg)(struct hl_device *hdev, u32 reg);
|
|
void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
|
|
void (*halt_coresight)(struct hl_device *hdev);
|
|
};
|
|
|
|
|
|
/*
|
|
* CONTEXTS
|
|
*/
|
|
|
|
#define HL_KERNEL_ASID_ID 0
|
|
|
|
/**
|
|
* struct hl_va_range - virtual addresses range.
|
|
* @lock: protects the virtual addresses list.
|
|
* @list: list of virtual addresses blocks available for mappings.
|
|
* @start_addr: range start address.
|
|
* @end_addr: range end address.
|
|
*/
|
|
struct hl_va_range {
|
|
struct mutex lock;
|
|
struct list_head list;
|
|
u64 start_addr;
|
|
u64 end_addr;
|
|
};
|
|
|
|
/**
|
|
* struct hl_ctx - user/kernel context.
|
|
* @mem_hash: holds mapping from virtual address to virtual memory area
|
|
* descriptor (hl_vm_phys_pg_list or hl_userptr).
|
|
* @mmu_phys_hash: holds a mapping from physical address to pgt_info structure.
|
|
* @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
|
|
* @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
|
|
* @hdev: pointer to the device structure.
|
|
* @refcount: reference counter for the context. Context is released only when
|
|
* this hits 0l. It is incremented on CS and CS_WAIT.
|
|
* @cs_pending: array of DMA fence objects representing pending CS.
|
|
* @host_va_range: holds available virtual addresses for host mappings.
|
|
* @dram_va_range: holds available virtual addresses for DRAM mappings.
|
|
* @mem_hash_lock: protects the mem_hash.
|
|
* @mmu_lock: protects the MMU page tables. Any change to the PGT, modifing the
|
|
* MMU hash or walking the PGT requires talking this lock
|
|
* @debugfs_list: node in debugfs list of contexts.
|
|
* @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
|
|
* to user so user could inquire about CS. It is used as
|
|
* index to cs_pending array.
|
|
* @dram_default_hops: array that holds all hops addresses needed for default
|
|
* DRAM mapping.
|
|
* @cs_lock: spinlock to protect cs_sequence.
|
|
* @dram_phys_mem: amount of used physical DRAM memory by this context.
|
|
* @thread_ctx_switch_token: token to prevent multiple threads of the same
|
|
* context from running the context switch phase.
|
|
* Only a single thread should run it.
|
|
* @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
|
|
* the context switch phase from moving to their
|
|
* execution phase before the context switch phase
|
|
* has finished.
|
|
* @asid: context's unique address space ID in the device's MMU.
|
|
* @handle: context's opaque handle for user
|
|
*/
|
|
struct hl_ctx {
|
|
DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
|
|
DECLARE_HASHTABLE(mmu_phys_hash, MMU_HASH_TABLE_BITS);
|
|
DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
|
|
struct hl_fpriv *hpriv;
|
|
struct hl_device *hdev;
|
|
struct kref refcount;
|
|
struct dma_fence *cs_pending[HL_MAX_PENDING_CS];
|
|
struct hl_va_range host_va_range;
|
|
struct hl_va_range dram_va_range;
|
|
struct mutex mem_hash_lock;
|
|
struct mutex mmu_lock;
|
|
struct list_head debugfs_list;
|
|
u64 cs_sequence;
|
|
u64 *dram_default_hops;
|
|
spinlock_t cs_lock;
|
|
atomic64_t dram_phys_mem;
|
|
atomic_t thread_ctx_switch_token;
|
|
u32 thread_ctx_switch_wait_token;
|
|
u32 asid;
|
|
u32 handle;
|
|
};
|
|
|
|
/**
|
|
* struct hl_ctx_mgr - for handling multiple contexts.
|
|
* @ctx_lock: protects ctx_handles.
|
|
* @ctx_handles: idr to hold all ctx handles.
|
|
*/
|
|
struct hl_ctx_mgr {
|
|
struct mutex ctx_lock;
|
|
struct idr ctx_handles;
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
* COMMAND SUBMISSIONS
|
|
*/
|
|
|
|
/**
|
|
* struct hl_userptr - memory mapping chunk information
|
|
* @vm_type: type of the VM.
|
|
* @job_node: linked-list node for hanging the object on the Job's list.
|
|
* @vec: pointer to the frame vector.
|
|
* @sgt: pointer to the scatter-gather table that holds the pages.
|
|
* @dir: for DMA unmapping, the direction must be supplied, so save it.
|
|
* @debugfs_list: node in debugfs list of command submissions.
|
|
* @addr: user-space virtual pointer to the start of the memory area.
|
|
* @size: size of the memory area to pin & map.
|
|
* @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
|
|
*/
|
|
struct hl_userptr {
|
|
enum vm_type_t vm_type; /* must be first */
|
|
struct list_head job_node;
|
|
struct frame_vector *vec;
|
|
struct sg_table *sgt;
|
|
enum dma_data_direction dir;
|
|
struct list_head debugfs_list;
|
|
u64 addr;
|
|
u32 size;
|
|
u8 dma_mapped;
|
|
};
|
|
|
|
/**
|
|
* struct hl_cs - command submission.
|
|
* @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
|
|
* @ctx: the context this CS belongs to.
|
|
* @job_list: list of the CS's jobs in the various queues.
|
|
* @job_lock: spinlock for the CS's jobs list. Needed for free_job.
|
|
* @refcount: reference counter for usage of the CS.
|
|
* @fence: pointer to the fence object of this CS.
|
|
* @work_tdr: delayed work node for TDR.
|
|
* @mirror_node : node in device mirror list of command submissions.
|
|
* @debugfs_list: node in debugfs list of command submissions.
|
|
* @sequence: the sequence number of this CS.
|
|
* @submitted: true if CS was submitted to H/W.
|
|
* @completed: true if CS was completed by device.
|
|
* @timedout : true if CS was timedout.
|
|
* @tdr_active: true if TDR was activated for this CS (to prevent
|
|
* double TDR activation).
|
|
* @aborted: true if CS was aborted due to some device error.
|
|
*/
|
|
struct hl_cs {
|
|
u8 jobs_in_queue_cnt[HL_MAX_QUEUES];
|
|
struct hl_ctx *ctx;
|
|
struct list_head job_list;
|
|
spinlock_t job_lock;
|
|
struct kref refcount;
|
|
struct dma_fence *fence;
|
|
struct delayed_work work_tdr;
|
|
struct list_head mirror_node;
|
|
struct list_head debugfs_list;
|
|
u64 sequence;
|
|
u8 submitted;
|
|
u8 completed;
|
|
u8 timedout;
|
|
u8 tdr_active;
|
|
u8 aborted;
|
|
};
|
|
|
|
/**
|
|
* struct hl_cs_job - command submission job.
|
|
* @cs_node: the node to hang on the CS jobs list.
|
|
* @cs: the CS this job belongs to.
|
|
* @user_cb: the CB we got from the user.
|
|
* @patched_cb: in case of patching, this is internal CB which is submitted on
|
|
* the queue instead of the CB we got from the IOCTL.
|
|
* @finish_work: workqueue object to run when job is completed.
|
|
* @userptr_list: linked-list of userptr mappings that belong to this job and
|
|
* wait for completion.
|
|
* @debugfs_list: node in debugfs list of command submission jobs.
|
|
* @id: the id of this job inside a CS.
|
|
* @hw_queue_id: the id of the H/W queue this job is submitted to.
|
|
* @user_cb_size: the actual size of the CB we got from the user.
|
|
* @job_cb_size: the actual size of the CB that we put on the queue.
|
|
* @ext_queue: whether the job is for external queue or internal queue.
|
|
*/
|
|
struct hl_cs_job {
|
|
struct list_head cs_node;
|
|
struct hl_cs *cs;
|
|
struct hl_cb *user_cb;
|
|
struct hl_cb *patched_cb;
|
|
struct work_struct finish_work;
|
|
struct list_head userptr_list;
|
|
struct list_head debugfs_list;
|
|
u32 id;
|
|
u32 hw_queue_id;
|
|
u32 user_cb_size;
|
|
u32 job_cb_size;
|
|
u8 ext_queue;
|
|
};
|
|
|
|
/**
|
|
* struct hl_cs_parser - command submission paerser properties.
|
|
* @user_cb: the CB we got from the user.
|
|
* @patched_cb: in case of patching, this is internal CB which is submitted on
|
|
* the queue instead of the CB we got from the IOCTL.
|
|
* @job_userptr_list: linked-list of userptr mappings that belong to the related
|
|
* job and wait for completion.
|
|
* @cs_sequence: the sequence number of the related CS.
|
|
* @ctx_id: the ID of the context the related CS belongs to.
|
|
* @hw_queue_id: the id of the H/W queue this job is submitted to.
|
|
* @user_cb_size: the actual size of the CB we got from the user.
|
|
* @patched_cb_size: the size of the CB after parsing.
|
|
* @ext_queue: whether the job is for external queue or internal queue.
|
|
* @job_id: the id of the related job inside the related CS.
|
|
*/
|
|
struct hl_cs_parser {
|
|
struct hl_cb *user_cb;
|
|
struct hl_cb *patched_cb;
|
|
struct list_head *job_userptr_list;
|
|
u64 cs_sequence;
|
|
u32 ctx_id;
|
|
u32 hw_queue_id;
|
|
u32 user_cb_size;
|
|
u32 patched_cb_size;
|
|
u8 ext_queue;
|
|
u8 job_id;
|
|
};
|
|
|
|
|
|
/*
|
|
* MEMORY STRUCTURE
|
|
*/
|
|
|
|
/**
|
|
* struct hl_vm_hash_node - hash element from virtual address to virtual
|
|
* memory area descriptor (hl_vm_phys_pg_list or
|
|
* hl_userptr).
|
|
* @node: node to hang on the hash table in context object.
|
|
* @vaddr: key virtual address.
|
|
* @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
|
|
*/
|
|
struct hl_vm_hash_node {
|
|
struct hlist_node node;
|
|
u64 vaddr;
|
|
void *ptr;
|
|
};
|
|
|
|
/**
|
|
* struct hl_vm_phys_pg_pack - physical page pack.
|
|
* @vm_type: describes the type of the virtual area descriptor.
|
|
* @pages: the physical page array.
|
|
* @npages: num physical pages in the pack.
|
|
* @total_size: total size of all the pages in this list.
|
|
* @mapping_cnt: number of shared mappings.
|
|
* @asid: the context related to this list.
|
|
* @page_size: size of each page in the pack.
|
|
* @flags: HL_MEM_* flags related to this list.
|
|
* @handle: the provided handle related to this list.
|
|
* @offset: offset from the first page.
|
|
* @contiguous: is contiguous physical memory.
|
|
* @created_from_userptr: is product of host virtual address.
|
|
*/
|
|
struct hl_vm_phys_pg_pack {
|
|
enum vm_type_t vm_type; /* must be first */
|
|
u64 *pages;
|
|
u64 npages;
|
|
u64 total_size;
|
|
atomic_t mapping_cnt;
|
|
u32 asid;
|
|
u32 page_size;
|
|
u32 flags;
|
|
u32 handle;
|
|
u32 offset;
|
|
u8 contiguous;
|
|
u8 created_from_userptr;
|
|
};
|
|
|
|
/**
|
|
* struct hl_vm_va_block - virtual range block information.
|
|
* @node: node to hang on the virtual range list in context object.
|
|
* @start: virtual range start address.
|
|
* @end: virtual range end address.
|
|
* @size: virtual range size.
|
|
*/
|
|
struct hl_vm_va_block {
|
|
struct list_head node;
|
|
u64 start;
|
|
u64 end;
|
|
u64 size;
|
|
};
|
|
|
|
/**
|
|
* struct hl_vm - virtual memory manager for MMU.
|
|
* @dram_pg_pool: pool for DRAM physical pages of 2MB.
|
|
* @dram_pg_pool_refcount: reference counter for the pool usage.
|
|
* @idr_lock: protects the phys_pg_list_handles.
|
|
* @phys_pg_pack_handles: idr to hold all device allocations handles.
|
|
* @init_done: whether initialization was done. We need this because VM
|
|
* initialization might be skipped during device initialization.
|
|
*/
|
|
struct hl_vm {
|
|
struct gen_pool *dram_pg_pool;
|
|
struct kref dram_pg_pool_refcount;
|
|
spinlock_t idr_lock;
|
|
struct idr phys_pg_pack_handles;
|
|
u8 init_done;
|
|
};
|
|
|
|
|
|
/*
|
|
* DEBUG, PROFILING STRUCTURE
|
|
*/
|
|
|
|
/**
|
|
* struct hl_debug_params - Coresight debug parameters.
|
|
* @input: pointer to component specific input parameters.
|
|
* @output: pointer to component specific output parameters.
|
|
* @output_size: size of output buffer.
|
|
* @reg_idx: relevant register ID.
|
|
* @op: component operation to execute.
|
|
* @enable: true if to enable component debugging, false otherwise.
|
|
*/
|
|
struct hl_debug_params {
|
|
void *input;
|
|
void *output;
|
|
u32 output_size;
|
|
u32 reg_idx;
|
|
u32 op;
|
|
bool enable;
|
|
};
|
|
|
|
/*
|
|
* FILE PRIVATE STRUCTURE
|
|
*/
|
|
|
|
/**
|
|
* struct hl_fpriv - process information stored in FD private data.
|
|
* @hdev: habanalabs device structure.
|
|
* @filp: pointer to the given file structure.
|
|
* @taskpid: current process ID.
|
|
* @ctx: current executing context. TODO: remove for multiple ctx per process
|
|
* @ctx_mgr: context manager to handle multiple context for this FD.
|
|
* @cb_mgr: command buffer manager to handle multiple buffers for this FD.
|
|
* @debugfs_list: list of relevant ASIC debugfs.
|
|
* @dev_node: node in the device list of file private data
|
|
* @refcount: number of related contexts.
|
|
* @restore_phase_mutex: lock for context switch and restore phase.
|
|
* @is_control: true for control device, false otherwise
|
|
*/
|
|
struct hl_fpriv {
|
|
struct hl_device *hdev;
|
|
struct file *filp;
|
|
struct pid *taskpid;
|
|
struct hl_ctx *ctx;
|
|
struct hl_ctx_mgr ctx_mgr;
|
|
struct hl_cb_mgr cb_mgr;
|
|
struct list_head debugfs_list;
|
|
struct list_head dev_node;
|
|
struct kref refcount;
|
|
struct mutex restore_phase_mutex;
|
|
u8 is_control;
|
|
};
|
|
|
|
|
|
/*
|
|
* DebugFS
|
|
*/
|
|
|
|
/**
|
|
* struct hl_info_list - debugfs file ops.
|
|
* @name: file name.
|
|
* @show: function to output information.
|
|
* @write: function to write to the file.
|
|
*/
|
|
struct hl_info_list {
|
|
const char *name;
|
|
int (*show)(struct seq_file *s, void *data);
|
|
ssize_t (*write)(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *f_pos);
|
|
};
|
|
|
|
/**
|
|
* struct hl_debugfs_entry - debugfs dentry wrapper.
|
|
* @dent: base debugfs entry structure.
|
|
* @info_ent: dentry realted ops.
|
|
* @dev_entry: ASIC specific debugfs manager.
|
|
*/
|
|
struct hl_debugfs_entry {
|
|
struct dentry *dent;
|
|
const struct hl_info_list *info_ent;
|
|
struct hl_dbg_device_entry *dev_entry;
|
|
};
|
|
|
|
/**
|
|
* struct hl_dbg_device_entry - ASIC specific debugfs manager.
|
|
* @root: root dentry.
|
|
* @hdev: habanalabs device structure.
|
|
* @entry_arr: array of available hl_debugfs_entry.
|
|
* @file_list: list of available debugfs files.
|
|
* @file_mutex: protects file_list.
|
|
* @cb_list: list of available CBs.
|
|
* @cb_spinlock: protects cb_list.
|
|
* @cs_list: list of available CSs.
|
|
* @cs_spinlock: protects cs_list.
|
|
* @cs_job_list: list of available CB jobs.
|
|
* @cs_job_spinlock: protects cs_job_list.
|
|
* @userptr_list: list of available userptrs (virtual memory chunk descriptor).
|
|
* @userptr_spinlock: protects userptr_list.
|
|
* @ctx_mem_hash_list: list of available contexts with MMU mappings.
|
|
* @ctx_mem_hash_spinlock: protects cb_list.
|
|
* @addr: next address to read/write from/to in read/write32.
|
|
* @mmu_addr: next virtual address to translate to physical address in mmu_show.
|
|
* @mmu_asid: ASID to use while translating in mmu_show.
|
|
* @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
|
|
* @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read.
|
|
* @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read.
|
|
*/
|
|
struct hl_dbg_device_entry {
|
|
struct dentry *root;
|
|
struct hl_device *hdev;
|
|
struct hl_debugfs_entry *entry_arr;
|
|
struct list_head file_list;
|
|
struct mutex file_mutex;
|
|
struct list_head cb_list;
|
|
spinlock_t cb_spinlock;
|
|
struct list_head cs_list;
|
|
spinlock_t cs_spinlock;
|
|
struct list_head cs_job_list;
|
|
spinlock_t cs_job_spinlock;
|
|
struct list_head userptr_list;
|
|
spinlock_t userptr_spinlock;
|
|
struct list_head ctx_mem_hash_list;
|
|
spinlock_t ctx_mem_hash_spinlock;
|
|
u64 addr;
|
|
u64 mmu_addr;
|
|
u32 mmu_asid;
|
|
u8 i2c_bus;
|
|
u8 i2c_addr;
|
|
u8 i2c_reg;
|
|
};
|
|
|
|
|
|
/*
|
|
* DEVICES
|
|
*/
|
|
|
|
/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
|
|
* x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
|
|
*/
|
|
#define HL_MAX_MINORS 256
|
|
|
|
/*
|
|
* Registers read & write functions.
|
|
*/
|
|
|
|
u32 hl_rreg(struct hl_device *hdev, u32 reg);
|
|
void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
|
|
|
|
#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
|
|
#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
|
|
#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
|
|
hdev->asic_funcs->rreg(hdev, (reg)))
|
|
|
|
#define WREG32_P(reg, val, mask) \
|
|
do { \
|
|
u32 tmp_ = RREG32(reg); \
|
|
tmp_ &= (mask); \
|
|
tmp_ |= ((val) & ~(mask)); \
|
|
WREG32(reg, tmp_); \
|
|
} while (0)
|
|
#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
|
|
#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
|
|
|
|
#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
|
|
#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
|
|
#define WREG32_FIELD(reg, field, val) \
|
|
WREG32(mm##reg, (RREG32(mm##reg) & ~REG_FIELD_MASK(reg, field)) | \
|
|
(val) << REG_FIELD_SHIFT(reg, field))
|
|
|
|
/* Timeout should be longer when working with simulator but cap the
|
|
* increased timeout to some maximum
|
|
*/
|
|
#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
|
|
({ \
|
|
ktime_t __timeout; \
|
|
if (hdev->pdev) \
|
|
__timeout = ktime_add_us(ktime_get(), timeout_us); \
|
|
else \
|
|
__timeout = ktime_add_us(ktime_get(),\
|
|
min((u64)(timeout_us * 10), \
|
|
(u64) HL_SIM_MAX_TIMEOUT_US)); \
|
|
might_sleep_if(sleep_us); \
|
|
for (;;) { \
|
|
(val) = RREG32(addr); \
|
|
if (cond) \
|
|
break; \
|
|
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
|
|
(val) = RREG32(addr); \
|
|
break; \
|
|
} \
|
|
if (sleep_us) \
|
|
usleep_range((sleep_us >> 2) + 1, sleep_us); \
|
|
} \
|
|
(cond) ? 0 : -ETIMEDOUT; \
|
|
})
|
|
|
|
/*
|
|
* address in this macro points always to a memory location in the
|
|
* host's (server's) memory. That location is updated asynchronously
|
|
* either by the direct access of the device or by another core.
|
|
*
|
|
* To work both in LE and BE architectures, we need to distinguish between the
|
|
* two states (device or another core updates the memory location). Therefore,
|
|
* if mem_written_by_device is true, the host memory being polled will be
|
|
* updated directly by the device. If false, the host memory being polled will
|
|
* be updated by host CPU. Required so host knows whether or not the memory
|
|
* might need to be byte-swapped before returning value to caller.
|
|
*/
|
|
#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
|
|
mem_written_by_device) \
|
|
({ \
|
|
ktime_t __timeout; \
|
|
if (hdev->pdev) \
|
|
__timeout = ktime_add_us(ktime_get(), timeout_us); \
|
|
else \
|
|
__timeout = ktime_add_us(ktime_get(),\
|
|
min((u64)(timeout_us * 10), \
|
|
(u64) HL_SIM_MAX_TIMEOUT_US)); \
|
|
might_sleep_if(sleep_us); \
|
|
for (;;) { \
|
|
/* Verify we read updates done by other cores or by device */ \
|
|
mb(); \
|
|
(val) = *((u32 *) (uintptr_t) (addr)); \
|
|
if (mem_written_by_device) \
|
|
(val) = le32_to_cpu(*(__le32 *) &(val)); \
|
|
if (cond) \
|
|
break; \
|
|
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
|
|
(val) = *((u32 *) (uintptr_t) (addr)); \
|
|
if (mem_written_by_device) \
|
|
(val) = le32_to_cpu(*(__le32 *) &(val)); \
|
|
break; \
|
|
} \
|
|
if (sleep_us) \
|
|
usleep_range((sleep_us >> 2) + 1, sleep_us); \
|
|
} \
|
|
(cond) ? 0 : -ETIMEDOUT; \
|
|
})
|
|
|
|
#define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
|
|
timeout_us) \
|
|
({ \
|
|
ktime_t __timeout; \
|
|
if (hdev->pdev) \
|
|
__timeout = ktime_add_us(ktime_get(), timeout_us); \
|
|
else \
|
|
__timeout = ktime_add_us(ktime_get(),\
|
|
min((u64)(timeout_us * 10), \
|
|
(u64) HL_SIM_MAX_TIMEOUT_US)); \
|
|
might_sleep_if(sleep_us); \
|
|
for (;;) { \
|
|
(val) = readl(addr); \
|
|
if (cond) \
|
|
break; \
|
|
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
|
|
(val) = readl(addr); \
|
|
break; \
|
|
} \
|
|
if (sleep_us) \
|
|
usleep_range((sleep_us >> 2) + 1, sleep_us); \
|
|
} \
|
|
(cond) ? 0 : -ETIMEDOUT; \
|
|
})
|
|
|
|
struct hwmon_chip_info;
|
|
|
|
/**
|
|
* struct hl_device_reset_work - reset workqueue task wrapper.
|
|
* @reset_work: reset work to be done.
|
|
* @hdev: habanalabs device structure.
|
|
*/
|
|
struct hl_device_reset_work {
|
|
struct work_struct reset_work;
|
|
struct hl_device *hdev;
|
|
};
|
|
|
|
/**
|
|
* struct hl_device_idle_busy_ts - used for calculating device utilization rate.
|
|
* @idle_to_busy_ts: timestamp where device changed from idle to busy.
|
|
* @busy_to_idle_ts: timestamp where device changed from busy to idle.
|
|
*/
|
|
struct hl_device_idle_busy_ts {
|
|
ktime_t idle_to_busy_ts;
|
|
ktime_t busy_to_idle_ts;
|
|
};
|
|
|
|
/**
|
|
* struct hl_device - habanalabs device structure.
|
|
* @pdev: pointer to PCI device, can be NULL in case of simulator device.
|
|
* @pcie_bar: array of available PCIe bars.
|
|
* @rmmio: configuration area address on SRAM.
|
|
* @cdev: related char device.
|
|
* @cdev_ctrl: char device for control operations only (INFO IOCTL)
|
|
* @dev: related kernel basic device structure.
|
|
* @dev_ctrl: related kernel device structure for the control device
|
|
* @work_freq: delayed work to lower device frequency if possible.
|
|
* @work_heartbeat: delayed work for ArmCP is-alive check.
|
|
* @asic_name: ASIC specific nmae.
|
|
* @asic_type: ASIC specific type.
|
|
* @completion_queue: array of hl_cq.
|
|
* @cq_wq: work queue of completion queues for executing work in process context
|
|
* @eq_wq: work queue of event queue for executing work in process context.
|
|
* @kernel_ctx: Kernel driver context structure.
|
|
* @kernel_queues: array of hl_hw_queue.
|
|
* @hw_queues_mirror_list: CS mirror list for TDR.
|
|
* @hw_queues_mirror_lock: protects hw_queues_mirror_list.
|
|
* @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
|
|
* @event_queue: event queue for IRQ from ArmCP.
|
|
* @dma_pool: DMA pool for small allocations.
|
|
* @cpu_accessible_dma_mem: Host <-> ArmCP shared memory CPU address.
|
|
* @cpu_accessible_dma_address: Host <-> ArmCP shared memory DMA address.
|
|
* @cpu_accessible_dma_pool: Host <-> ArmCP shared memory pool.
|
|
* @asid_bitmap: holds used/available ASIDs.
|
|
* @asid_mutex: protects asid_bitmap.
|
|
* @send_cpu_message_lock: enforces only one message in Host <-> ArmCP queue.
|
|
* @debug_lock: protects critical section of setting debug mode for device
|
|
* @asic_prop: ASIC specific immutable properties.
|
|
* @asic_funcs: ASIC specific functions.
|
|
* @asic_specific: ASIC specific information to use only from ASIC files.
|
|
* @mmu_pgt_pool: pool of available MMU hops.
|
|
* @vm: virtual memory manager for MMU.
|
|
* @mmu_cache_lock: protects MMU cache invalidation as it can serve one context.
|
|
* @mmu_shadow_hop0: shadow mapping of the MMU hop 0 zone.
|
|
* @hwmon_dev: H/W monitor device.
|
|
* @pm_mng_profile: current power management profile.
|
|
* @hl_chip_info: ASIC's sensors information.
|
|
* @hl_debugfs: device's debugfs manager.
|
|
* @cb_pool: list of preallocated CBs.
|
|
* @cb_pool_lock: protects the CB pool.
|
|
* @fpriv_list: list of file private data structures. Each structure is created
|
|
* when a user opens the device
|
|
* @fpriv_list_lock: protects the fpriv_list
|
|
* @compute_ctx: current compute context executing.
|
|
* @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy
|
|
* and vice-versa
|
|
* @dram_used_mem: current DRAM memory consumption.
|
|
* @timeout_jiffies: device CS timeout value.
|
|
* @max_power: the max power of the device, as configured by the sysadmin. This
|
|
* value is saved so in case of hard-reset, the driver will restore
|
|
* this value and update the F/W after the re-initialization
|
|
* @in_reset: is device in reset flow.
|
|
* @curr_pll_profile: current PLL profile.
|
|
* @cs_active_cnt: number of active command submissions on this device (active
|
|
* means already in H/W queues)
|
|
* @major: habanalabs kernel driver major.
|
|
* @high_pll: high PLL profile frequency.
|
|
* @soft_reset_cnt: number of soft reset since the driver was loaded.
|
|
* @hard_reset_cnt: number of hard reset since the driver was loaded.
|
|
* @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr
|
|
* @id: device minor.
|
|
* @id_control: minor of the control device
|
|
* @disabled: is device disabled.
|
|
* @late_init_done: is late init stage was done during initialization.
|
|
* @hwmon_initialized: is H/W monitor sensors was initialized.
|
|
* @hard_reset_pending: is there a hard reset work pending.
|
|
* @heartbeat: is heartbeat sanity check towards ArmCP enabled.
|
|
* @reset_on_lockup: true if a reset should be done in case of stuck CS, false
|
|
* otherwise.
|
|
* @dram_supports_virtual_memory: is MMU enabled towards DRAM.
|
|
* @dram_default_page_mapping: is DRAM default page mapping enabled.
|
|
* @init_done: is the initialization of the device done.
|
|
* @mmu_enable: is MMU enabled.
|
|
* @device_cpu_disabled: is the device CPU disabled (due to timeouts)
|
|
* @dma_mask: the dma mask that was set for this device
|
|
* @in_debug: is device under debug. This, together with fpriv_list, enforces
|
|
* that only a single user is configuring the debug infrastructure.
|
|
* @cdev_sysfs_created: were char devices and sysfs nodes created.
|
|
*/
|
|
struct hl_device {
|
|
struct pci_dev *pdev;
|
|
void __iomem *pcie_bar[6];
|
|
void __iomem *rmmio;
|
|
struct cdev cdev;
|
|
struct cdev cdev_ctrl;
|
|
struct device *dev;
|
|
struct device *dev_ctrl;
|
|
struct delayed_work work_freq;
|
|
struct delayed_work work_heartbeat;
|
|
char asic_name[16];
|
|
enum hl_asic_type asic_type;
|
|
struct hl_cq *completion_queue;
|
|
struct workqueue_struct *cq_wq;
|
|
struct workqueue_struct *eq_wq;
|
|
struct hl_ctx *kernel_ctx;
|
|
struct hl_hw_queue *kernel_queues;
|
|
struct list_head hw_queues_mirror_list;
|
|
spinlock_t hw_queues_mirror_lock;
|
|
struct hl_cb_mgr kernel_cb_mgr;
|
|
struct hl_eq event_queue;
|
|
struct dma_pool *dma_pool;
|
|
void *cpu_accessible_dma_mem;
|
|
dma_addr_t cpu_accessible_dma_address;
|
|
struct gen_pool *cpu_accessible_dma_pool;
|
|
unsigned long *asid_bitmap;
|
|
struct mutex asid_mutex;
|
|
struct mutex send_cpu_message_lock;
|
|
struct mutex debug_lock;
|
|
struct asic_fixed_properties asic_prop;
|
|
const struct hl_asic_funcs *asic_funcs;
|
|
void *asic_specific;
|
|
struct gen_pool *mmu_pgt_pool;
|
|
struct hl_vm vm;
|
|
struct mutex mmu_cache_lock;
|
|
void *mmu_shadow_hop0;
|
|
struct device *hwmon_dev;
|
|
enum hl_pm_mng_profile pm_mng_profile;
|
|
struct hwmon_chip_info *hl_chip_info;
|
|
|
|
struct hl_dbg_device_entry hl_debugfs;
|
|
|
|
struct list_head cb_pool;
|
|
spinlock_t cb_pool_lock;
|
|
|
|
struct list_head fpriv_list;
|
|
struct mutex fpriv_list_lock;
|
|
|
|
struct hl_ctx *compute_ctx;
|
|
|
|
struct hl_device_idle_busy_ts *idle_busy_ts_arr;
|
|
|
|
atomic64_t dram_used_mem;
|
|
u64 timeout_jiffies;
|
|
u64 max_power;
|
|
atomic_t in_reset;
|
|
enum hl_pll_frequency curr_pll_profile;
|
|
int cs_active_cnt;
|
|
u32 major;
|
|
u32 high_pll;
|
|
u32 soft_reset_cnt;
|
|
u32 hard_reset_cnt;
|
|
u32 idle_busy_ts_idx;
|
|
u16 id;
|
|
u16 id_control;
|
|
u8 disabled;
|
|
u8 late_init_done;
|
|
u8 hwmon_initialized;
|
|
u8 hard_reset_pending;
|
|
u8 heartbeat;
|
|
u8 reset_on_lockup;
|
|
u8 dram_supports_virtual_memory;
|
|
u8 dram_default_page_mapping;
|
|
u8 init_done;
|
|
u8 device_cpu_disabled;
|
|
u8 dma_mask;
|
|
u8 in_debug;
|
|
u8 cdev_sysfs_created;
|
|
|
|
/* Parameters for bring-up */
|
|
u8 mmu_enable;
|
|
u8 cpu_enable;
|
|
u8 reset_pcilink;
|
|
u8 cpu_queues_enable;
|
|
u8 fw_loading;
|
|
u8 pldm;
|
|
};
|
|
|
|
|
|
/*
|
|
* IOCTLs
|
|
*/
|
|
|
|
/**
|
|
* typedef hl_ioctl_t - typedef for ioctl function in the driver
|
|
* @hpriv: pointer to the FD's private data, which contains state of
|
|
* user process
|
|
* @data: pointer to the input/output arguments structure of the IOCTL
|
|
*
|
|
* Return: 0 for success, negative value for error
|
|
*/
|
|
typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
|
|
|
|
/**
|
|
* struct hl_ioctl_desc - describes an IOCTL entry of the driver.
|
|
* @cmd: the IOCTL code as created by the kernel macros.
|
|
* @func: pointer to the driver's function that should be called for this IOCTL.
|
|
*/
|
|
struct hl_ioctl_desc {
|
|
unsigned int cmd;
|
|
hl_ioctl_t *func;
|
|
};
|
|
|
|
|
|
/*
|
|
* Kernel module functions that can be accessed by entire module
|
|
*/
|
|
|
|
/**
|
|
* hl_mem_area_inside_range() - Checks whether address+size are inside a range.
|
|
* @address: The start address of the area we want to validate.
|
|
* @size: The size in bytes of the area we want to validate.
|
|
* @range_start_address: The start address of the valid range.
|
|
* @range_end_address: The end address of the valid range.
|
|
*
|
|
* Return: true if the area is inside the valid range, false otherwise.
|
|
*/
|
|
static inline bool hl_mem_area_inside_range(u64 address, u32 size,
|
|
u64 range_start_address, u64 range_end_address)
|
|
{
|
|
u64 end_address = address + size;
|
|
|
|
if ((address >= range_start_address) &&
|
|
(end_address <= range_end_address) &&
|
|
(end_address > address))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
|
|
* @address: The start address of the area we want to validate.
|
|
* @size: The size in bytes of the area we want to validate.
|
|
* @range_start_address: The start address of the valid range.
|
|
* @range_end_address: The end address of the valid range.
|
|
*
|
|
* Return: true if the area overlaps part or all of the valid range,
|
|
* false otherwise.
|
|
*/
|
|
static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
|
|
u64 range_start_address, u64 range_end_address)
|
|
{
|
|
u64 end_address = address + size;
|
|
|
|
if ((address >= range_start_address) &&
|
|
(address < range_end_address))
|
|
return true;
|
|
|
|
if ((end_address >= range_start_address) &&
|
|
(end_address < range_end_address))
|
|
return true;
|
|
|
|
if ((address < range_start_address) &&
|
|
(end_address >= range_end_address))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
int hl_device_open(struct inode *inode, struct file *filp);
|
|
int hl_device_open_ctrl(struct inode *inode, struct file *filp);
|
|
bool hl_device_disabled_or_in_reset(struct hl_device *hdev);
|
|
enum hl_device_status hl_device_status(struct hl_device *hdev);
|
|
int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
|
|
int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
|
|
enum hl_asic_type asic_type, int minor);
|
|
void destroy_hdev(struct hl_device *hdev);
|
|
int hl_hw_queues_create(struct hl_device *hdev);
|
|
void hl_hw_queues_destroy(struct hl_device *hdev);
|
|
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
|
|
u32 cb_size, u64 cb_ptr);
|
|
int hl_hw_queue_schedule_cs(struct hl_cs *cs);
|
|
u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
|
|
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
|
|
void hl_int_hw_queue_update_ci(struct hl_cs *cs);
|
|
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
|
|
|
|
#define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
|
|
#define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
|
|
|
|
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
|
|
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
|
|
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
|
|
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
|
|
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
|
|
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
|
|
irqreturn_t hl_irq_handler_cq(int irq, void *arg);
|
|
irqreturn_t hl_irq_handler_eq(int irq, void *arg);
|
|
u32 hl_cq_inc_ptr(u32 ptr);
|
|
|
|
int hl_asid_init(struct hl_device *hdev);
|
|
void hl_asid_fini(struct hl_device *hdev);
|
|
unsigned long hl_asid_alloc(struct hl_device *hdev);
|
|
void hl_asid_free(struct hl_device *hdev, unsigned long asid);
|
|
|
|
int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
|
|
void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
|
|
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
|
|
void hl_ctx_do_release(struct kref *ref);
|
|
void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx);
|
|
int hl_ctx_put(struct hl_ctx *ctx);
|
|
struct dma_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
|
|
void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
|
|
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
|
|
|
|
int hl_device_init(struct hl_device *hdev, struct class *hclass);
|
|
void hl_device_fini(struct hl_device *hdev);
|
|
int hl_device_suspend(struct hl_device *hdev);
|
|
int hl_device_resume(struct hl_device *hdev);
|
|
int hl_device_reset(struct hl_device *hdev, bool hard_reset,
|
|
bool from_hard_reset_thread);
|
|
void hl_hpriv_get(struct hl_fpriv *hpriv);
|
|
void hl_hpriv_put(struct hl_fpriv *hpriv);
|
|
int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
|
|
uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms);
|
|
|
|
int hl_build_hwmon_channel_info(struct hl_device *hdev,
|
|
struct armcp_sensor *sensors_arr);
|
|
|
|
int hl_sysfs_init(struct hl_device *hdev);
|
|
void hl_sysfs_fini(struct hl_device *hdev);
|
|
|
|
int hl_hwmon_init(struct hl_device *hdev);
|
|
void hl_hwmon_fini(struct hl_device *hdev);
|
|
|
|
int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 cb_size,
|
|
u64 *handle, int ctx_id);
|
|
int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
|
|
int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
|
|
struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr,
|
|
u32 handle);
|
|
void hl_cb_put(struct hl_cb *cb);
|
|
void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
|
|
void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
|
|
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size);
|
|
int hl_cb_pool_init(struct hl_device *hdev);
|
|
int hl_cb_pool_fini(struct hl_device *hdev);
|
|
|
|
void hl_cs_rollback_all(struct hl_device *hdev);
|
|
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, bool ext_queue);
|
|
|
|
void goya_set_asic_funcs(struct hl_device *hdev);
|
|
|
|
int hl_vm_ctx_init(struct hl_ctx *ctx);
|
|
void hl_vm_ctx_fini(struct hl_ctx *ctx);
|
|
|
|
int hl_vm_init(struct hl_device *hdev);
|
|
void hl_vm_fini(struct hl_device *hdev);
|
|
|
|
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
|
|
struct hl_userptr *userptr);
|
|
int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
|
|
void hl_userptr_delete_list(struct hl_device *hdev,
|
|
struct list_head *userptr_list);
|
|
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
|
|
struct list_head *userptr_list,
|
|
struct hl_userptr **userptr);
|
|
|
|
int hl_mmu_init(struct hl_device *hdev);
|
|
void hl_mmu_fini(struct hl_device *hdev);
|
|
int hl_mmu_ctx_init(struct hl_ctx *ctx);
|
|
void hl_mmu_ctx_fini(struct hl_ctx *ctx);
|
|
int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size);
|
|
int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size);
|
|
void hl_mmu_swap_out(struct hl_ctx *ctx);
|
|
void hl_mmu_swap_in(struct hl_ctx *ctx);
|
|
|
|
int hl_fw_push_fw_to_device(struct hl_device *hdev, const char *fw_name,
|
|
void __iomem *dst);
|
|
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
|
|
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
|
|
u16 len, u32 timeout, long *result);
|
|
int hl_fw_test_cpu_queue(struct hl_device *hdev);
|
|
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
|
|
dma_addr_t *dma_handle);
|
|
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
|
|
void *vaddr);
|
|
int hl_fw_send_heartbeat(struct hl_device *hdev);
|
|
int hl_fw_armcp_info_get(struct hl_device *hdev);
|
|
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
|
|
|
|
int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
|
|
bool is_wc[3]);
|
|
int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
|
|
int hl_pci_set_dram_bar_base(struct hl_device *hdev, u8 inbound_region, u8 bar,
|
|
u64 addr);
|
|
int hl_pci_init_iatu(struct hl_device *hdev, u64 sram_base_address,
|
|
u64 dram_base_address, u64 host_phys_base_address,
|
|
u64 host_phys_size);
|
|
int hl_pci_init(struct hl_device *hdev, u8 dma_mask);
|
|
void hl_pci_fini(struct hl_device *hdev);
|
|
int hl_pci_set_dma_mask(struct hl_device *hdev, u8 dma_mask);
|
|
|
|
long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
|
|
void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
|
|
long hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr);
|
|
long hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr);
|
|
long hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr);
|
|
long hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr);
|
|
long hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr);
|
|
void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
|
|
long value);
|
|
u64 hl_get_max_power(struct hl_device *hdev);
|
|
void hl_set_max_power(struct hl_device *hdev, u64 value);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
void hl_debugfs_init(void);
|
|
void hl_debugfs_fini(void);
|
|
void hl_debugfs_add_device(struct hl_device *hdev);
|
|
void hl_debugfs_remove_device(struct hl_device *hdev);
|
|
void hl_debugfs_add_file(struct hl_fpriv *hpriv);
|
|
void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
|
|
void hl_debugfs_add_cb(struct hl_cb *cb);
|
|
void hl_debugfs_remove_cb(struct hl_cb *cb);
|
|
void hl_debugfs_add_cs(struct hl_cs *cs);
|
|
void hl_debugfs_remove_cs(struct hl_cs *cs);
|
|
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
|
|
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
|
|
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
|
|
void hl_debugfs_remove_userptr(struct hl_device *hdev,
|
|
struct hl_userptr *userptr);
|
|
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
|
|
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
|
|
|
|
#else
|
|
|
|
static inline void __init hl_debugfs_init(void)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_fini(void)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_add_device(struct hl_device *hdev)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_remove_device(struct hl_device *hdev)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_add_cb(struct hl_cb *cb)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_add_cs(struct hl_cs *cs)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_add_job(struct hl_device *hdev,
|
|
struct hl_cs_job *job)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_remove_job(struct hl_device *hdev,
|
|
struct hl_cs_job *job)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
|
|
struct hl_userptr *userptr)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
|
|
struct hl_userptr *userptr)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
|
|
struct hl_ctx *ctx)
|
|
{
|
|
}
|
|
|
|
static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
|
|
struct hl_ctx *ctx)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
/* IOCTLs */
|
|
long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
|
|
long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
|
|
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
|
|
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
|
|
int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data);
|
|
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
|
|
|
|
#endif /* HABANALABSP_H_ */
|