mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-18 01:46:48 +07:00
8ff468c29e
Pull x86 FPU state handling updates from Borislav Petkov: "This contains work started by Rik van Riel and brought to fruition by Sebastian Andrzej Siewior with the main goal to optimize when to load FPU registers: only when returning to userspace and not on every context switch (while the task remains in the kernel). In addition, this optimization makes kernel_fpu_begin() cheaper by requiring registers saving only on the first invocation and skipping that in following ones. What is more, this series cleans up and streamlines many aspects of the already complex FPU code, hopefully making it more palatable for future improvements and simplifications. Finally, there's a __user annotations fix from Jann Horn" * 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits) x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails x86/pkeys: Add PKRU value to init_fpstate x86/fpu: Restore regs in copy_fpstate_to_sigframe() in order to use the fastpath x86/fpu: Add a fastpath to copy_fpstate_to_sigframe() x86/fpu: Add a fastpath to __fpu__restore_sig() x86/fpu: Defer FPU state load until return to userspace x86/fpu: Merge the two code paths in __fpu__restore_sig() x86/fpu: Restore from kernel memory on the 64-bit path too x86/fpu: Inline copy_user_to_fpregs_zeroing() x86/fpu: Update xstate's PKRU value on write_pkru() x86/fpu: Prepare copy_fpstate_to_sigframe() for TIF_NEED_FPU_LOAD x86/fpu: Always store the registers in copy_fpstate_to_sigframe() x86/entry: Add TIF_NEED_FPU_LOAD x86/fpu: Eager switch PKRU state x86/pkeys: Don't check if PKRU is zero before writing it x86/fpu: Only write PKRU if it is different from current x86/pkeys: Provide *pkru() helpers x86/fpu: Use a feature number instead of mask in two more helpers x86/fpu: Make __raw_xsave_addr() use a feature number instead of mask x86/fpu: Add an __fpregs_load_activate() internal helper ...
878 lines
21 KiB
C
878 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/idle.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/random.h>
|
|
#include <linux/user-return-notifier.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/stackprotector.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/elf-randomize.h>
|
|
#include <trace/events/power.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/syscalls.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/mwait.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/vm86.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/prctl.h>
|
|
#include <asm/spec-ctrl.h>
|
|
#include <asm/proto.h>
|
|
|
|
#include "process.h"
|
|
|
|
/*
|
|
* per-CPU TSS segments. Threads are completely 'soft' on Linux,
|
|
* no more per-task TSS's. The TSS size is kept cacheline-aligned
|
|
* so they are allowed to end up in the .data..cacheline_aligned
|
|
* section. Since TSS's are completely CPU-local, we want them
|
|
* on exact cacheline boundaries, to eliminate cacheline ping-pong.
|
|
*/
|
|
__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
|
|
.x86_tss = {
|
|
/*
|
|
* .sp0 is only used when entering ring 0 from a lower
|
|
* privilege level. Since the init task never runs anything
|
|
* but ring 0 code, there is no need for a valid value here.
|
|
* Poison it.
|
|
*/
|
|
.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
|
|
|
|
/*
|
|
* .sp1 is cpu_current_top_of_stack. The init task never
|
|
* runs user code, but cpu_current_top_of_stack should still
|
|
* be well defined before the first context switch.
|
|
*/
|
|
.sp1 = TOP_OF_INIT_STACK,
|
|
|
|
#ifdef CONFIG_X86_32
|
|
.ss0 = __KERNEL_DS,
|
|
.ss1 = __KERNEL_CS,
|
|
.io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
|
|
#endif
|
|
},
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Note that the .io_bitmap member must be extra-big. This is because
|
|
* the CPU will access an additional byte beyond the end of the IO
|
|
* permission bitmap. The extra byte must be all 1 bits, and must
|
|
* be within the limit.
|
|
*/
|
|
.io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
|
|
#endif
|
|
};
|
|
EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
|
|
|
|
DEFINE_PER_CPU(bool, __tss_limit_invalid);
|
|
EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
|
|
|
|
/*
|
|
* this gets called so that we can store lazy state into memory and copy the
|
|
* current task into the new thread.
|
|
*/
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
memcpy(dst, src, arch_task_struct_size);
|
|
#ifdef CONFIG_VM86
|
|
dst->thread.vm86 = NULL;
|
|
#endif
|
|
|
|
return fpu__copy(dst, src);
|
|
}
|
|
|
|
/*
|
|
* Free current thread data structures etc..
|
|
*/
|
|
void exit_thread(struct task_struct *tsk)
|
|
{
|
|
struct thread_struct *t = &tsk->thread;
|
|
unsigned long *bp = t->io_bitmap_ptr;
|
|
struct fpu *fpu = &t->fpu;
|
|
|
|
if (bp) {
|
|
struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
|
|
|
|
t->io_bitmap_ptr = NULL;
|
|
clear_thread_flag(TIF_IO_BITMAP);
|
|
/*
|
|
* Careful, clear this in the TSS too:
|
|
*/
|
|
memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
|
|
t->io_bitmap_max = 0;
|
|
put_cpu();
|
|
kfree(bp);
|
|
}
|
|
|
|
free_vm86(t);
|
|
|
|
fpu__drop(fpu);
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
flush_ptrace_hw_breakpoint(tsk);
|
|
memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
|
|
|
|
fpu__clear(&tsk->thread.fpu);
|
|
}
|
|
|
|
void disable_TSC(void)
|
|
{
|
|
preempt_disable();
|
|
if (!test_and_set_thread_flag(TIF_NOTSC))
|
|
/*
|
|
* Must flip the CPU state synchronously with
|
|
* TIF_NOTSC in the current running context.
|
|
*/
|
|
cr4_set_bits(X86_CR4_TSD);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void enable_TSC(void)
|
|
{
|
|
preempt_disable();
|
|
if (test_and_clear_thread_flag(TIF_NOTSC))
|
|
/*
|
|
* Must flip the CPU state synchronously with
|
|
* TIF_NOTSC in the current running context.
|
|
*/
|
|
cr4_clear_bits(X86_CR4_TSD);
|
|
preempt_enable();
|
|
}
|
|
|
|
int get_tsc_mode(unsigned long adr)
|
|
{
|
|
unsigned int val;
|
|
|
|
if (test_thread_flag(TIF_NOTSC))
|
|
val = PR_TSC_SIGSEGV;
|
|
else
|
|
val = PR_TSC_ENABLE;
|
|
|
|
return put_user(val, (unsigned int __user *)adr);
|
|
}
|
|
|
|
int set_tsc_mode(unsigned int val)
|
|
{
|
|
if (val == PR_TSC_SIGSEGV)
|
|
disable_TSC();
|
|
else if (val == PR_TSC_ENABLE)
|
|
enable_TSC();
|
|
else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_PER_CPU(u64, msr_misc_features_shadow);
|
|
|
|
static void set_cpuid_faulting(bool on)
|
|
{
|
|
u64 msrval;
|
|
|
|
msrval = this_cpu_read(msr_misc_features_shadow);
|
|
msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
|
|
msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
|
|
this_cpu_write(msr_misc_features_shadow, msrval);
|
|
wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
|
|
}
|
|
|
|
static void disable_cpuid(void)
|
|
{
|
|
preempt_disable();
|
|
if (!test_and_set_thread_flag(TIF_NOCPUID)) {
|
|
/*
|
|
* Must flip the CPU state synchronously with
|
|
* TIF_NOCPUID in the current running context.
|
|
*/
|
|
set_cpuid_faulting(true);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
static void enable_cpuid(void)
|
|
{
|
|
preempt_disable();
|
|
if (test_and_clear_thread_flag(TIF_NOCPUID)) {
|
|
/*
|
|
* Must flip the CPU state synchronously with
|
|
* TIF_NOCPUID in the current running context.
|
|
*/
|
|
set_cpuid_faulting(false);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
static int get_cpuid_mode(void)
|
|
{
|
|
return !test_thread_flag(TIF_NOCPUID);
|
|
}
|
|
|
|
static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
|
|
return -ENODEV;
|
|
|
|
if (cpuid_enabled)
|
|
enable_cpuid();
|
|
else
|
|
disable_cpuid();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called immediately after a successful exec.
|
|
*/
|
|
void arch_setup_new_exec(void)
|
|
{
|
|
/* If cpuid was previously disabled for this task, re-enable it. */
|
|
if (test_thread_flag(TIF_NOCPUID))
|
|
enable_cpuid();
|
|
|
|
/*
|
|
* Don't inherit TIF_SSBD across exec boundary when
|
|
* PR_SPEC_DISABLE_NOEXEC is used.
|
|
*/
|
|
if (test_thread_flag(TIF_SSBD) &&
|
|
task_spec_ssb_noexec(current)) {
|
|
clear_thread_flag(TIF_SSBD);
|
|
task_clear_spec_ssb_disable(current);
|
|
task_clear_spec_ssb_noexec(current);
|
|
speculation_ctrl_update(task_thread_info(current)->flags);
|
|
}
|
|
}
|
|
|
|
static inline void switch_to_bitmap(struct thread_struct *prev,
|
|
struct thread_struct *next,
|
|
unsigned long tifp, unsigned long tifn)
|
|
{
|
|
struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
|
|
|
|
if (tifn & _TIF_IO_BITMAP) {
|
|
/*
|
|
* Copy the relevant range of the IO bitmap.
|
|
* Normally this is 128 bytes or less:
|
|
*/
|
|
memcpy(tss->io_bitmap, next->io_bitmap_ptr,
|
|
max(prev->io_bitmap_max, next->io_bitmap_max));
|
|
/*
|
|
* Make sure that the TSS limit is correct for the CPU
|
|
* to notice the IO bitmap.
|
|
*/
|
|
refresh_tss_limit();
|
|
} else if (tifp & _TIF_IO_BITMAP) {
|
|
/*
|
|
* Clear any possible leftover bits:
|
|
*/
|
|
memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
struct ssb_state {
|
|
struct ssb_state *shared_state;
|
|
raw_spinlock_t lock;
|
|
unsigned int disable_state;
|
|
unsigned long local_state;
|
|
};
|
|
|
|
#define LSTATE_SSB 0
|
|
|
|
static DEFINE_PER_CPU(struct ssb_state, ssb_state);
|
|
|
|
void speculative_store_bypass_ht_init(void)
|
|
{
|
|
struct ssb_state *st = this_cpu_ptr(&ssb_state);
|
|
unsigned int this_cpu = smp_processor_id();
|
|
unsigned int cpu;
|
|
|
|
st->local_state = 0;
|
|
|
|
/*
|
|
* Shared state setup happens once on the first bringup
|
|
* of the CPU. It's not destroyed on CPU hotunplug.
|
|
*/
|
|
if (st->shared_state)
|
|
return;
|
|
|
|
raw_spin_lock_init(&st->lock);
|
|
|
|
/*
|
|
* Go over HT siblings and check whether one of them has set up the
|
|
* shared state pointer already.
|
|
*/
|
|
for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
|
|
if (cpu == this_cpu)
|
|
continue;
|
|
|
|
if (!per_cpu(ssb_state, cpu).shared_state)
|
|
continue;
|
|
|
|
/* Link it to the state of the sibling: */
|
|
st->shared_state = per_cpu(ssb_state, cpu).shared_state;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* First HT sibling to come up on the core. Link shared state of
|
|
* the first HT sibling to itself. The siblings on the same core
|
|
* which come up later will see the shared state pointer and link
|
|
* themself to the state of this CPU.
|
|
*/
|
|
st->shared_state = st;
|
|
}
|
|
|
|
/*
|
|
* Logic is: First HT sibling enables SSBD for both siblings in the core
|
|
* and last sibling to disable it, disables it for the whole core. This how
|
|
* MSR_SPEC_CTRL works in "hardware":
|
|
*
|
|
* CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
|
|
*/
|
|
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
|
|
{
|
|
struct ssb_state *st = this_cpu_ptr(&ssb_state);
|
|
u64 msr = x86_amd_ls_cfg_base;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_ZEN)) {
|
|
msr |= ssbd_tif_to_amd_ls_cfg(tifn);
|
|
wrmsrl(MSR_AMD64_LS_CFG, msr);
|
|
return;
|
|
}
|
|
|
|
if (tifn & _TIF_SSBD) {
|
|
/*
|
|
* Since this can race with prctl(), block reentry on the
|
|
* same CPU.
|
|
*/
|
|
if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
|
|
return;
|
|
|
|
msr |= x86_amd_ls_cfg_ssbd_mask;
|
|
|
|
raw_spin_lock(&st->shared_state->lock);
|
|
/* First sibling enables SSBD: */
|
|
if (!st->shared_state->disable_state)
|
|
wrmsrl(MSR_AMD64_LS_CFG, msr);
|
|
st->shared_state->disable_state++;
|
|
raw_spin_unlock(&st->shared_state->lock);
|
|
} else {
|
|
if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
|
|
return;
|
|
|
|
raw_spin_lock(&st->shared_state->lock);
|
|
st->shared_state->disable_state--;
|
|
if (!st->shared_state->disable_state)
|
|
wrmsrl(MSR_AMD64_LS_CFG, msr);
|
|
raw_spin_unlock(&st->shared_state->lock);
|
|
}
|
|
}
|
|
#else
|
|
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
|
|
{
|
|
u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
|
|
|
|
wrmsrl(MSR_AMD64_LS_CFG, msr);
|
|
}
|
|
#endif
|
|
|
|
static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
|
|
{
|
|
/*
|
|
* SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
|
|
* so ssbd_tif_to_spec_ctrl() just works.
|
|
*/
|
|
wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
|
|
}
|
|
|
|
/*
|
|
* Update the MSRs managing speculation control, during context switch.
|
|
*
|
|
* tifp: Previous task's thread flags
|
|
* tifn: Next task's thread flags
|
|
*/
|
|
static __always_inline void __speculation_ctrl_update(unsigned long tifp,
|
|
unsigned long tifn)
|
|
{
|
|
unsigned long tif_diff = tifp ^ tifn;
|
|
u64 msr = x86_spec_ctrl_base;
|
|
bool updmsr = false;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
/*
|
|
* If TIF_SSBD is different, select the proper mitigation
|
|
* method. Note that if SSBD mitigation is disabled or permanentely
|
|
* enabled this branch can't be taken because nothing can set
|
|
* TIF_SSBD.
|
|
*/
|
|
if (tif_diff & _TIF_SSBD) {
|
|
if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
|
|
amd_set_ssb_virt_state(tifn);
|
|
} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
|
|
amd_set_core_ssb_state(tifn);
|
|
} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
|
|
static_cpu_has(X86_FEATURE_AMD_SSBD)) {
|
|
msr |= ssbd_tif_to_spec_ctrl(tifn);
|
|
updmsr = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
|
|
* otherwise avoid the MSR write.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_SMP) &&
|
|
static_branch_unlikely(&switch_to_cond_stibp)) {
|
|
updmsr |= !!(tif_diff & _TIF_SPEC_IB);
|
|
msr |= stibp_tif_to_spec_ctrl(tifn);
|
|
}
|
|
|
|
if (updmsr)
|
|
wrmsrl(MSR_IA32_SPEC_CTRL, msr);
|
|
}
|
|
|
|
static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
|
|
{
|
|
if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
|
|
if (task_spec_ssb_disable(tsk))
|
|
set_tsk_thread_flag(tsk, TIF_SSBD);
|
|
else
|
|
clear_tsk_thread_flag(tsk, TIF_SSBD);
|
|
|
|
if (task_spec_ib_disable(tsk))
|
|
set_tsk_thread_flag(tsk, TIF_SPEC_IB);
|
|
else
|
|
clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
|
|
}
|
|
/* Return the updated threadinfo flags*/
|
|
return task_thread_info(tsk)->flags;
|
|
}
|
|
|
|
void speculation_ctrl_update(unsigned long tif)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* Forced update. Make sure all relevant TIF flags are different */
|
|
local_irq_save(flags);
|
|
__speculation_ctrl_update(~tif, tif);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* Called from seccomp/prctl update */
|
|
void speculation_ctrl_update_current(void)
|
|
{
|
|
preempt_disable();
|
|
speculation_ctrl_update(speculation_ctrl_update_tif(current));
|
|
preempt_enable();
|
|
}
|
|
|
|
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
|
|
{
|
|
struct thread_struct *prev, *next;
|
|
unsigned long tifp, tifn;
|
|
|
|
prev = &prev_p->thread;
|
|
next = &next_p->thread;
|
|
|
|
tifn = READ_ONCE(task_thread_info(next_p)->flags);
|
|
tifp = READ_ONCE(task_thread_info(prev_p)->flags);
|
|
switch_to_bitmap(prev, next, tifp, tifn);
|
|
|
|
propagate_user_return_notify(prev_p, next_p);
|
|
|
|
if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
|
|
arch_has_block_step()) {
|
|
unsigned long debugctl, msk;
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
debugctl &= ~DEBUGCTLMSR_BTF;
|
|
msk = tifn & _TIF_BLOCKSTEP;
|
|
debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
}
|
|
|
|
if ((tifp ^ tifn) & _TIF_NOTSC)
|
|
cr4_toggle_bits_irqsoff(X86_CR4_TSD);
|
|
|
|
if ((tifp ^ tifn) & _TIF_NOCPUID)
|
|
set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
|
|
|
|
if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
|
|
__speculation_ctrl_update(tifp, tifn);
|
|
} else {
|
|
speculation_ctrl_update_tif(prev_p);
|
|
tifn = speculation_ctrl_update_tif(next_p);
|
|
|
|
/* Enforce MSR update to ensure consistent state */
|
|
__speculation_ctrl_update(~tifn, tifn);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Idle related variables and functions
|
|
*/
|
|
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
|
|
EXPORT_SYMBOL(boot_option_idle_override);
|
|
|
|
static void (*x86_idle)(void);
|
|
|
|
#ifndef CONFIG_SMP
|
|
static inline void play_dead(void)
|
|
{
|
|
BUG();
|
|
}
|
|
#endif
|
|
|
|
void arch_cpu_idle_enter(void)
|
|
{
|
|
tsc_verify_tsc_adjust(false);
|
|
local_touch_nmi();
|
|
}
|
|
|
|
void arch_cpu_idle_dead(void)
|
|
{
|
|
play_dead();
|
|
}
|
|
|
|
/*
|
|
* Called from the generic idle code.
|
|
*/
|
|
void arch_cpu_idle(void)
|
|
{
|
|
x86_idle();
|
|
}
|
|
|
|
/*
|
|
* We use this if we don't have any better idle routine..
|
|
*/
|
|
void __cpuidle default_idle(void)
|
|
{
|
|
trace_cpu_idle_rcuidle(1, smp_processor_id());
|
|
safe_halt();
|
|
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
|
|
}
|
|
#ifdef CONFIG_APM_MODULE
|
|
EXPORT_SYMBOL(default_idle);
|
|
#endif
|
|
|
|
#ifdef CONFIG_XEN
|
|
bool xen_set_default_idle(void)
|
|
{
|
|
bool ret = !!x86_idle;
|
|
|
|
x86_idle = default_idle;
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
void stop_this_cpu(void *dummy)
|
|
{
|
|
local_irq_disable();
|
|
/*
|
|
* Remove this CPU:
|
|
*/
|
|
set_cpu_online(smp_processor_id(), false);
|
|
disable_local_APIC();
|
|
mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
|
|
|
|
/*
|
|
* Use wbinvd on processors that support SME. This provides support
|
|
* for performing a successful kexec when going from SME inactive
|
|
* to SME active (or vice-versa). The cache must be cleared so that
|
|
* if there are entries with the same physical address, both with and
|
|
* without the encryption bit, they don't race each other when flushed
|
|
* and potentially end up with the wrong entry being committed to
|
|
* memory.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_SME))
|
|
native_wbinvd();
|
|
for (;;) {
|
|
/*
|
|
* Use native_halt() so that memory contents don't change
|
|
* (stack usage and variables) after possibly issuing the
|
|
* native_wbinvd() above.
|
|
*/
|
|
native_halt();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
|
|
* states (local apic timer and TSC stop).
|
|
*/
|
|
static void amd_e400_idle(void)
|
|
{
|
|
/*
|
|
* We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
|
|
* gets set after static_cpu_has() places have been converted via
|
|
* alternatives.
|
|
*/
|
|
if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
|
|
default_idle();
|
|
return;
|
|
}
|
|
|
|
tick_broadcast_enter();
|
|
|
|
default_idle();
|
|
|
|
/*
|
|
* The switch back from broadcast mode needs to be called with
|
|
* interrupts disabled.
|
|
*/
|
|
local_irq_disable();
|
|
tick_broadcast_exit();
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* Intel Core2 and older machines prefer MWAIT over HALT for C1.
|
|
* We can't rely on cpuidle installing MWAIT, because it will not load
|
|
* on systems that support only C1 -- so the boot default must be MWAIT.
|
|
*
|
|
* Some AMD machines are the opposite, they depend on using HALT.
|
|
*
|
|
* So for default C1, which is used during boot until cpuidle loads,
|
|
* use MWAIT-C1 on Intel HW that has it, else use HALT.
|
|
*/
|
|
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
|
|
{
|
|
if (c->x86_vendor != X86_VENDOR_INTEL)
|
|
return 0;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
|
|
* with interrupts enabled and no flags, which is backwards compatible with the
|
|
* original MWAIT implementation.
|
|
*/
|
|
static __cpuidle void mwait_idle(void)
|
|
{
|
|
if (!current_set_polling_and_test()) {
|
|
trace_cpu_idle_rcuidle(1, smp_processor_id());
|
|
if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
|
|
mb(); /* quirk */
|
|
clflush((void *)¤t_thread_info()->flags);
|
|
mb(); /* quirk */
|
|
}
|
|
|
|
__monitor((void *)¤t_thread_info()->flags, 0, 0);
|
|
if (!need_resched())
|
|
__sti_mwait(0, 0);
|
|
else
|
|
local_irq_enable();
|
|
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
|
|
} else {
|
|
local_irq_enable();
|
|
}
|
|
__current_clr_polling();
|
|
}
|
|
|
|
void select_idle_routine(const struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
|
|
pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
|
|
#endif
|
|
if (x86_idle || boot_option_idle_override == IDLE_POLL)
|
|
return;
|
|
|
|
if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
|
|
pr_info("using AMD E400 aware idle routine\n");
|
|
x86_idle = amd_e400_idle;
|
|
} else if (prefer_mwait_c1_over_halt(c)) {
|
|
pr_info("using mwait in idle threads\n");
|
|
x86_idle = mwait_idle;
|
|
} else
|
|
x86_idle = default_idle;
|
|
}
|
|
|
|
void amd_e400_c1e_apic_setup(void)
|
|
{
|
|
if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
|
|
pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
|
|
local_irq_disable();
|
|
tick_broadcast_force();
|
|
local_irq_enable();
|
|
}
|
|
}
|
|
|
|
void __init arch_post_acpi_subsys_init(void)
|
|
{
|
|
u32 lo, hi;
|
|
|
|
if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
|
|
return;
|
|
|
|
/*
|
|
* AMD E400 detection needs to happen after ACPI has been enabled. If
|
|
* the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
|
|
* MSR_K8_INT_PENDING_MSG.
|
|
*/
|
|
rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
|
|
if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
|
|
return;
|
|
|
|
boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
|
|
mark_tsc_unstable("TSC halt in AMD C1E");
|
|
pr_info("System has AMD C1E enabled\n");
|
|
}
|
|
|
|
static int __init idle_setup(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
|
|
if (!strcmp(str, "poll")) {
|
|
pr_info("using polling idle threads\n");
|
|
boot_option_idle_override = IDLE_POLL;
|
|
cpu_idle_poll_ctrl(true);
|
|
} else if (!strcmp(str, "halt")) {
|
|
/*
|
|
* When the boot option of idle=halt is added, halt is
|
|
* forced to be used for CPU idle. In such case CPU C2/C3
|
|
* won't be used again.
|
|
* To continue to load the CPU idle driver, don't touch
|
|
* the boot_option_idle_override.
|
|
*/
|
|
x86_idle = default_idle;
|
|
boot_option_idle_override = IDLE_HALT;
|
|
} else if (!strcmp(str, "nomwait")) {
|
|
/*
|
|
* If the boot option of "idle=nomwait" is added,
|
|
* it means that mwait will be disabled for CPU C2/C3
|
|
* states. In such case it won't touch the variable
|
|
* of boot_option_idle_override.
|
|
*/
|
|
boot_option_idle_override = IDLE_NOMWAIT;
|
|
} else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
early_param("idle", idle_setup);
|
|
|
|
unsigned long arch_align_stack(unsigned long sp)
|
|
{
|
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
|
sp -= get_random_int() % 8192;
|
|
return sp & ~0xf;
|
|
}
|
|
|
|
unsigned long arch_randomize_brk(struct mm_struct *mm)
|
|
{
|
|
return randomize_page(mm->brk, 0x02000000);
|
|
}
|
|
|
|
/*
|
|
* Called from fs/proc with a reference on @p to find the function
|
|
* which called into schedule(). This needs to be done carefully
|
|
* because the task might wake up and we might look at a stack
|
|
* changing under us.
|
|
*/
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long start, bottom, top, sp, fp, ip, ret = 0;
|
|
int count = 0;
|
|
|
|
if (p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
if (!try_get_task_stack(p))
|
|
return 0;
|
|
|
|
start = (unsigned long)task_stack_page(p);
|
|
if (!start)
|
|
goto out;
|
|
|
|
/*
|
|
* Layout of the stack page:
|
|
*
|
|
* ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
|
|
* PADDING
|
|
* ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
|
|
* stack
|
|
* ----------- bottom = start
|
|
*
|
|
* The tasks stack pointer points at the location where the
|
|
* framepointer is stored. The data on the stack is:
|
|
* ... IP FP ... IP FP
|
|
*
|
|
* We need to read FP and IP, so we need to adjust the upper
|
|
* bound by another unsigned long.
|
|
*/
|
|
top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
|
|
top -= 2 * sizeof(unsigned long);
|
|
bottom = start;
|
|
|
|
sp = READ_ONCE(p->thread.sp);
|
|
if (sp < bottom || sp > top)
|
|
goto out;
|
|
|
|
fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
|
|
do {
|
|
if (fp < bottom || fp > top)
|
|
goto out;
|
|
ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
|
|
if (!in_sched_functions(ip)) {
|
|
ret = ip;
|
|
goto out;
|
|
}
|
|
fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
|
|
} while (count++ < 16 && p->state != TASK_RUNNING);
|
|
|
|
out:
|
|
put_task_stack(p);
|
|
return ret;
|
|
}
|
|
|
|
long do_arch_prctl_common(struct task_struct *task, int option,
|
|
unsigned long cpuid_enabled)
|
|
{
|
|
switch (option) {
|
|
case ARCH_GET_CPUID:
|
|
return get_cpuid_mode();
|
|
case ARCH_SET_CPUID:
|
|
return set_cpuid_mode(task, cpuid_enabled);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|