mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-24 06:29:31 +07:00
1c13f3c904
Add a suite of NUMA performance benchmarks. The goal was simulate the behavior and access patterns of real NUMA workloads, via a wide range of parameters, so this tool goes well beyond simple bzero() measurements that most NUMA micro-benchmarks use: - It processes the data and creates a chain of data dependencies, like a real workload would. Neither the compiler, nor the kernel (via KSM and other optimizations) nor the CPU can eliminate parts of the workload. - It randomizes the initial state and also randomizes the target addresses of the processing - it's not a simple forward scan of addresses. - It provides flexible options to set process, thread and memory relationship information: -G sets "global" memory shared between all test processes, -P sets "process" memory shared by all threads of a process and -T sets "thread" private memory. - There's a NUMA convergence monitoring and convergence latency measurement option via -c and -m. - Micro-sleeps and synchronization can be injected to provoke lock contention and scheduling, via the -u and -S options. This simulates IO and contention. - The -x option instructs the workload to 'perturb' itself artificially every N seconds, by moving to the first and last CPU of the system periodically. This way the stability of convergence equilibrium and the number of steps taken for the scheduler to reach equilibrium again can be measured. - The amount of work can be specified via the -l loop count, and/or via a -s seconds-timeout value. - CPU and node memory binding options, to test hard binding scenarios. THP can be turned on and off via madvise() calls. - Live reporting of convergence progress in an 'at glance' output format. Printing of convergence and deconvergence events. The 'perf bench numa mem -a' option will start an array of about 30 individual tests that will each output such measurements: # Running 5x5-bw-thread, "perf bench numa mem -p 5 -t 5 -P 512 -s 20 -zZ0q --thp 1" 5x5-bw-thread, 20.276, secs, runtime-max/thread 5x5-bw-thread, 20.004, secs, runtime-min/thread 5x5-bw-thread, 20.155, secs, runtime-avg/thread 5x5-bw-thread, 0.671, %, spread-runtime/thread 5x5-bw-thread, 21.153, GB, data/thread 5x5-bw-thread, 528.818, GB, data-total 5x5-bw-thread, 0.959, nsecs, runtime/byte/thread 5x5-bw-thread, 1.043, GB/sec, thread-speed 5x5-bw-thread, 26.081, GB/sec, total-speed See the help text and the code for more details. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
---|---|---|
.. | ||
bench.h | ||
mem-memcpy-arch.h | ||
mem-memcpy-x86-64-asm-def.h | ||
mem-memcpy-x86-64-asm.S | ||
mem-memcpy.c | ||
mem-memset-arch.h | ||
mem-memset-x86-64-asm-def.h | ||
mem-memset-x86-64-asm.S | ||
mem-memset.c | ||
numa.c | ||
sched-messaging.c | ||
sched-pipe.c |