mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
958f338e96
Merge L1 Terminal Fault fixes from Thomas Gleixner: "L1TF, aka L1 Terminal Fault, is yet another speculative hardware engineering trainwreck. It's a hardware vulnerability which allows unprivileged speculative access to data which is available in the Level 1 Data Cache when the page table entry controlling the virtual address, which is used for the access, has the Present bit cleared or other reserved bits set. If an instruction accesses a virtual address for which the relevant page table entry (PTE) has the Present bit cleared or other reserved bits set, then speculative execution ignores the invalid PTE and loads the referenced data if it is present in the Level 1 Data Cache, as if the page referenced by the address bits in the PTE was still present and accessible. While this is a purely speculative mechanism and the instruction will raise a page fault when it is retired eventually, the pure act of loading the data and making it available to other speculative instructions opens up the opportunity for side channel attacks to unprivileged malicious code, similar to the Meltdown attack. While Meltdown breaks the user space to kernel space protection, L1TF allows to attack any physical memory address in the system and the attack works across all protection domains. It allows an attack of SGX and also works from inside virtual machines because the speculation bypasses the extended page table (EPT) protection mechanism. The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646 The mitigations provided by this pull request include: - Host side protection by inverting the upper address bits of a non present page table entry so the entry points to uncacheable memory. - Hypervisor protection by flushing L1 Data Cache on VMENTER. - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT by offlining the sibling CPU threads. The knobs are available on the kernel command line and at runtime via sysfs - Control knobs for the hypervisor mitigation, related to L1D flush and SMT control. The knobs are available on the kernel command line and at runtime via sysfs - Extensive documentation about L1TF including various degrees of mitigations. Thanks to all people who have contributed to this in various ways - patches, review, testing, backporting - and the fruitful, sometimes heated, but at the end constructive discussions. There is work in progress to provide other forms of mitigations, which might be less horrible performance wise for a particular kind of workloads, but this is not yet ready for consumption due to their complexity and limitations" * 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits) x86/microcode: Allow late microcode loading with SMT disabled tools headers: Synchronise x86 cpufeatures.h for L1TF additions x86/mm/kmmio: Make the tracer robust against L1TF x86/mm/pat: Make set_memory_np() L1TF safe x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert x86/speculation/l1tf: Invert all not present mappings cpu/hotplug: Fix SMT supported evaluation KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry x86/speculation: Simplify sysfs report of VMX L1TF vulnerability Documentation/l1tf: Remove Yonah processors from not vulnerable list x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr() x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d x86: Don't include linux/irq.h from asm/hardirq.h x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d x86/irq: Demote irq_cpustat_t::__softirq_pending to u16 x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush() x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond' x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush() cpu/hotplug: detect SMT disabled by BIOS ...
1895 lines
47 KiB
C
1895 lines
47 KiB
C
/* cpu_feature_enabled() cannot be used this early */
|
|
#define USE_EARLY_PGTABLE_L5
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kgdb.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/io.h>
|
|
#include <linux/syscore_ops.h>
|
|
|
|
#include <asm/stackprotector.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/archrandom.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/vsyscall.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/cpumask.h>
|
|
#include <asm/pgtable.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/hwcap2.h>
|
|
#include <linux/numa.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/bugs.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/pat.h>
|
|
#include <asm/microcode.h>
|
|
#include <asm/microcode_intel.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/cpu_device_id.h>
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
#include <asm/uv/uv.h>
|
|
#endif
|
|
|
|
#include "cpu.h"
|
|
|
|
u32 elf_hwcap2 __read_mostly;
|
|
|
|
/* all of these masks are initialized in setup_cpu_local_masks() */
|
|
cpumask_var_t cpu_initialized_mask;
|
|
cpumask_var_t cpu_callout_mask;
|
|
cpumask_var_t cpu_callin_mask;
|
|
|
|
/* representing cpus for which sibling maps can be computed */
|
|
cpumask_var_t cpu_sibling_setup_mask;
|
|
|
|
/* Number of siblings per CPU package */
|
|
int smp_num_siblings = 1;
|
|
EXPORT_SYMBOL(smp_num_siblings);
|
|
|
|
/* Last level cache ID of each logical CPU */
|
|
DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
|
|
|
|
/* correctly size the local cpu masks */
|
|
void __init setup_cpu_local_masks(void)
|
|
{
|
|
alloc_bootmem_cpumask_var(&cpu_initialized_mask);
|
|
alloc_bootmem_cpumask_var(&cpu_callin_mask);
|
|
alloc_bootmem_cpumask_var(&cpu_callout_mask);
|
|
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
|
|
}
|
|
|
|
static void default_init(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
cpu_detect_cache_sizes(c);
|
|
#else
|
|
/* Not much we can do here... */
|
|
/* Check if at least it has cpuid */
|
|
if (c->cpuid_level == -1) {
|
|
/* No cpuid. It must be an ancient CPU */
|
|
if (c->x86 == 4)
|
|
strcpy(c->x86_model_id, "486");
|
|
else if (c->x86 == 3)
|
|
strcpy(c->x86_model_id, "386");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static const struct cpu_dev default_cpu = {
|
|
.c_init = default_init,
|
|
.c_vendor = "Unknown",
|
|
.c_x86_vendor = X86_VENDOR_UNKNOWN,
|
|
};
|
|
|
|
static const struct cpu_dev *this_cpu = &default_cpu;
|
|
|
|
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* We need valid kernel segments for data and code in long mode too
|
|
* IRET will check the segment types kkeil 2000/10/28
|
|
* Also sysret mandates a special GDT layout
|
|
*
|
|
* TLS descriptors are currently at a different place compared to i386.
|
|
* Hopefully nobody expects them at a fixed place (Wine?)
|
|
*/
|
|
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
|
|
#else
|
|
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
|
|
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
|
|
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
|
|
/*
|
|
* Segments used for calling PnP BIOS have byte granularity.
|
|
* They code segments and data segments have fixed 64k limits,
|
|
* the transfer segment sizes are set at run time.
|
|
*/
|
|
/* 32-bit code */
|
|
[GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
|
|
/* 16-bit code */
|
|
[GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
|
|
/*
|
|
* The APM segments have byte granularity and their bases
|
|
* are set at run time. All have 64k limits.
|
|
*/
|
|
/* 32-bit code */
|
|
[GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
|
|
/* 16-bit code */
|
|
[GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
|
|
/* data */
|
|
[GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
|
|
|
|
[GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
|
|
[GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
|
|
GDT_STACK_CANARY_INIT
|
|
#endif
|
|
} };
|
|
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
|
|
|
|
static int __init x86_mpx_setup(char *s)
|
|
{
|
|
/* require an exact match without trailing characters */
|
|
if (strlen(s))
|
|
return 0;
|
|
|
|
/* do not emit a message if the feature is not present */
|
|
if (!boot_cpu_has(X86_FEATURE_MPX))
|
|
return 1;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_MPX);
|
|
pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
|
|
return 1;
|
|
}
|
|
__setup("nompx", x86_mpx_setup);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static int __init x86_nopcid_setup(char *s)
|
|
{
|
|
/* nopcid doesn't accept parameters */
|
|
if (s)
|
|
return -EINVAL;
|
|
|
|
/* do not emit a message if the feature is not present */
|
|
if (!boot_cpu_has(X86_FEATURE_PCID))
|
|
return 0;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
|
pr_info("nopcid: PCID feature disabled\n");
|
|
return 0;
|
|
}
|
|
early_param("nopcid", x86_nopcid_setup);
|
|
#endif
|
|
|
|
static int __init x86_noinvpcid_setup(char *s)
|
|
{
|
|
/* noinvpcid doesn't accept parameters */
|
|
if (s)
|
|
return -EINVAL;
|
|
|
|
/* do not emit a message if the feature is not present */
|
|
if (!boot_cpu_has(X86_FEATURE_INVPCID))
|
|
return 0;
|
|
|
|
setup_clear_cpu_cap(X86_FEATURE_INVPCID);
|
|
pr_info("noinvpcid: INVPCID feature disabled\n");
|
|
return 0;
|
|
}
|
|
early_param("noinvpcid", x86_noinvpcid_setup);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static int cachesize_override = -1;
|
|
static int disable_x86_serial_nr = 1;
|
|
|
|
static int __init cachesize_setup(char *str)
|
|
{
|
|
get_option(&str, &cachesize_override);
|
|
return 1;
|
|
}
|
|
__setup("cachesize=", cachesize_setup);
|
|
|
|
static int __init x86_sep_setup(char *s)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_SEP);
|
|
return 1;
|
|
}
|
|
__setup("nosep", x86_sep_setup);
|
|
|
|
/* Standard macro to see if a specific flag is changeable */
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
u32 f1, f2;
|
|
|
|
/*
|
|
* Cyrix and IDT cpus allow disabling of CPUID
|
|
* so the code below may return different results
|
|
* when it is executed before and after enabling
|
|
* the CPUID. Add "volatile" to not allow gcc to
|
|
* optimize the subsequent calls to this function.
|
|
*/
|
|
asm volatile ("pushfl \n\t"
|
|
"pushfl \n\t"
|
|
"popl %0 \n\t"
|
|
"movl %0, %1 \n\t"
|
|
"xorl %2, %0 \n\t"
|
|
"pushl %0 \n\t"
|
|
"popfl \n\t"
|
|
"pushfl \n\t"
|
|
"popl %0 \n\t"
|
|
"popfl \n\t"
|
|
|
|
: "=&r" (f1), "=&r" (f2)
|
|
: "ir" (flag));
|
|
|
|
return ((f1^f2) & flag) != 0;
|
|
}
|
|
|
|
/* Probe for the CPUID instruction */
|
|
int have_cpuid_p(void)
|
|
{
|
|
return flag_is_changeable_p(X86_EFLAGS_ID);
|
|
}
|
|
|
|
static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long lo, hi;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
|
|
return;
|
|
|
|
/* Disable processor serial number: */
|
|
|
|
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
|
|
lo |= 0x200000;
|
|
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
|
|
|
|
pr_notice("CPU serial number disabled.\n");
|
|
clear_cpu_cap(c, X86_FEATURE_PN);
|
|
|
|
/* Disabling the serial number may affect the cpuid level */
|
|
c->cpuid_level = cpuid_eax(0);
|
|
}
|
|
|
|
static int __init x86_serial_nr_setup(char *s)
|
|
{
|
|
disable_x86_serial_nr = 0;
|
|
return 1;
|
|
}
|
|
__setup("serialnumber", x86_serial_nr_setup);
|
|
#else
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
return 1;
|
|
}
|
|
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static __init int setup_disable_smep(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_SMEP);
|
|
/* Check for things that depend on SMEP being enabled: */
|
|
check_mpx_erratum(&boot_cpu_data);
|
|
return 1;
|
|
}
|
|
__setup("nosmep", setup_disable_smep);
|
|
|
|
static __always_inline void setup_smep(struct cpuinfo_x86 *c)
|
|
{
|
|
if (cpu_has(c, X86_FEATURE_SMEP))
|
|
cr4_set_bits(X86_CR4_SMEP);
|
|
}
|
|
|
|
static __init int setup_disable_smap(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_SMAP);
|
|
return 1;
|
|
}
|
|
__setup("nosmap", setup_disable_smap);
|
|
|
|
static __always_inline void setup_smap(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long eflags = native_save_fl();
|
|
|
|
/* This should have been cleared long ago */
|
|
BUG_ON(eflags & X86_EFLAGS_AC);
|
|
|
|
if (cpu_has(c, X86_FEATURE_SMAP)) {
|
|
#ifdef CONFIG_X86_SMAP
|
|
cr4_set_bits(X86_CR4_SMAP);
|
|
#else
|
|
cr4_clear_bits(X86_CR4_SMAP);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static __always_inline void setup_umip(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Check the boot processor, plus build option for UMIP. */
|
|
if (!cpu_feature_enabled(X86_FEATURE_UMIP))
|
|
goto out;
|
|
|
|
/* Check the current processor's cpuid bits. */
|
|
if (!cpu_has(c, X86_FEATURE_UMIP))
|
|
goto out;
|
|
|
|
cr4_set_bits(X86_CR4_UMIP);
|
|
|
|
pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
|
|
|
|
return;
|
|
|
|
out:
|
|
/*
|
|
* Make sure UMIP is disabled in case it was enabled in a
|
|
* previous boot (e.g., via kexec).
|
|
*/
|
|
cr4_clear_bits(X86_CR4_UMIP);
|
|
}
|
|
|
|
/*
|
|
* Protection Keys are not available in 32-bit mode.
|
|
*/
|
|
static bool pku_disabled;
|
|
|
|
static __always_inline void setup_pku(struct cpuinfo_x86 *c)
|
|
{
|
|
/* check the boot processor, plus compile options for PKU: */
|
|
if (!cpu_feature_enabled(X86_FEATURE_PKU))
|
|
return;
|
|
/* checks the actual processor's cpuid bits: */
|
|
if (!cpu_has(c, X86_FEATURE_PKU))
|
|
return;
|
|
if (pku_disabled)
|
|
return;
|
|
|
|
cr4_set_bits(X86_CR4_PKE);
|
|
/*
|
|
* Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
|
|
* cpuid bit to be set. We need to ensure that we
|
|
* update that bit in this CPU's "cpu_info".
|
|
*/
|
|
get_cpu_cap(c);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
|
|
static __init int setup_disable_pku(char *arg)
|
|
{
|
|
/*
|
|
* Do not clear the X86_FEATURE_PKU bit. All of the
|
|
* runtime checks are against OSPKE so clearing the
|
|
* bit does nothing.
|
|
*
|
|
* This way, we will see "pku" in cpuinfo, but not
|
|
* "ospke", which is exactly what we want. It shows
|
|
* that the CPU has PKU, but the OS has not enabled it.
|
|
* This happens to be exactly how a system would look
|
|
* if we disabled the config option.
|
|
*/
|
|
pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
|
|
pku_disabled = true;
|
|
return 1;
|
|
}
|
|
__setup("nopku", setup_disable_pku);
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Some CPU features depend on higher CPUID levels, which may not always
|
|
* be available due to CPUID level capping or broken virtualization
|
|
* software. Add those features to this table to auto-disable them.
|
|
*/
|
|
struct cpuid_dependent_feature {
|
|
u32 feature;
|
|
u32 level;
|
|
};
|
|
|
|
static const struct cpuid_dependent_feature
|
|
cpuid_dependent_features[] = {
|
|
{ X86_FEATURE_MWAIT, 0x00000005 },
|
|
{ X86_FEATURE_DCA, 0x00000009 },
|
|
{ X86_FEATURE_XSAVE, 0x0000000d },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
|
|
{
|
|
const struct cpuid_dependent_feature *df;
|
|
|
|
for (df = cpuid_dependent_features; df->feature; df++) {
|
|
|
|
if (!cpu_has(c, df->feature))
|
|
continue;
|
|
/*
|
|
* Note: cpuid_level is set to -1 if unavailable, but
|
|
* extended_extended_level is set to 0 if unavailable
|
|
* and the legitimate extended levels are all negative
|
|
* when signed; hence the weird messing around with
|
|
* signs here...
|
|
*/
|
|
if (!((s32)df->level < 0 ?
|
|
(u32)df->level > (u32)c->extended_cpuid_level :
|
|
(s32)df->level > (s32)c->cpuid_level))
|
|
continue;
|
|
|
|
clear_cpu_cap(c, df->feature);
|
|
if (!warn)
|
|
continue;
|
|
|
|
pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
|
|
x86_cap_flag(df->feature), df->level);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Naming convention should be: <Name> [(<Codename>)]
|
|
* This table only is used unless init_<vendor>() below doesn't set it;
|
|
* in particular, if CPUID levels 0x80000002..4 are supported, this
|
|
* isn't used
|
|
*/
|
|
|
|
/* Look up CPU names by table lookup. */
|
|
static const char *table_lookup_model(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
const struct legacy_cpu_model_info *info;
|
|
|
|
if (c->x86_model >= 16)
|
|
return NULL; /* Range check */
|
|
|
|
if (!this_cpu)
|
|
return NULL;
|
|
|
|
info = this_cpu->legacy_models;
|
|
|
|
while (info->family) {
|
|
if (info->family == c->x86)
|
|
return info->model_names[c->x86_model];
|
|
info++;
|
|
}
|
|
#endif
|
|
return NULL; /* Not found */
|
|
}
|
|
|
|
__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
|
|
__u32 cpu_caps_set[NCAPINTS + NBUGINTS];
|
|
|
|
void load_percpu_segment(int cpu)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
loadsegment(fs, __KERNEL_PERCPU);
|
|
#else
|
|
__loadsegment_simple(gs, 0);
|
|
wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
|
|
#endif
|
|
load_stack_canary_segment();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* The 32-bit entry code needs to find cpu_entry_area. */
|
|
DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Special IST stacks which the CPU switches to when it calls
|
|
* an IST-marked descriptor entry. Up to 7 stacks (hardware
|
|
* limit), all of them are 4K, except the debug stack which
|
|
* is 8K.
|
|
*/
|
|
static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
|
|
[0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
|
|
[DEBUG_STACK - 1] = DEBUG_STKSZ
|
|
};
|
|
#endif
|
|
|
|
/* Load the original GDT from the per-cpu structure */
|
|
void load_direct_gdt(int cpu)
|
|
{
|
|
struct desc_ptr gdt_descr;
|
|
|
|
gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
|
|
gdt_descr.size = GDT_SIZE - 1;
|
|
load_gdt(&gdt_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_direct_gdt);
|
|
|
|
/* Load a fixmap remapping of the per-cpu GDT */
|
|
void load_fixmap_gdt(int cpu)
|
|
{
|
|
struct desc_ptr gdt_descr;
|
|
|
|
gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
|
|
gdt_descr.size = GDT_SIZE - 1;
|
|
load_gdt(&gdt_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_fixmap_gdt);
|
|
|
|
/*
|
|
* Current gdt points %fs at the "master" per-cpu area: after this,
|
|
* it's on the real one.
|
|
*/
|
|
void switch_to_new_gdt(int cpu)
|
|
{
|
|
/* Load the original GDT */
|
|
load_direct_gdt(cpu);
|
|
/* Reload the per-cpu base */
|
|
load_percpu_segment(cpu);
|
|
}
|
|
|
|
static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
|
|
|
|
static void get_model_name(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int *v;
|
|
char *p, *q, *s;
|
|
|
|
if (c->extended_cpuid_level < 0x80000004)
|
|
return;
|
|
|
|
v = (unsigned int *)c->x86_model_id;
|
|
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
|
|
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
|
|
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
|
|
c->x86_model_id[48] = 0;
|
|
|
|
/* Trim whitespace */
|
|
p = q = s = &c->x86_model_id[0];
|
|
|
|
while (*p == ' ')
|
|
p++;
|
|
|
|
while (*p) {
|
|
/* Note the last non-whitespace index */
|
|
if (!isspace(*p))
|
|
s = q;
|
|
|
|
*q++ = *p++;
|
|
}
|
|
|
|
*(s + 1) = '\0';
|
|
}
|
|
|
|
void detect_num_cpu_cores(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
c->x86_max_cores = 1;
|
|
if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
|
|
return;
|
|
|
|
cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
|
|
if (eax & 0x1f)
|
|
c->x86_max_cores = (eax >> 26) + 1;
|
|
}
|
|
|
|
void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int n, dummy, ebx, ecx, edx, l2size;
|
|
|
|
n = c->extended_cpuid_level;
|
|
|
|
if (n >= 0x80000005) {
|
|
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
|
|
c->x86_cache_size = (ecx>>24) + (edx>>24);
|
|
#ifdef CONFIG_X86_64
|
|
/* On K8 L1 TLB is inclusive, so don't count it */
|
|
c->x86_tlbsize = 0;
|
|
#endif
|
|
}
|
|
|
|
if (n < 0x80000006) /* Some chips just has a large L1. */
|
|
return;
|
|
|
|
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
|
|
l2size = ecx >> 16;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
|
|
#else
|
|
/* do processor-specific cache resizing */
|
|
if (this_cpu->legacy_cache_size)
|
|
l2size = this_cpu->legacy_cache_size(c, l2size);
|
|
|
|
/* Allow user to override all this if necessary. */
|
|
if (cachesize_override != -1)
|
|
l2size = cachesize_override;
|
|
|
|
if (l2size == 0)
|
|
return; /* Again, no L2 cache is possible */
|
|
#endif
|
|
|
|
c->x86_cache_size = l2size;
|
|
}
|
|
|
|
u16 __read_mostly tlb_lli_4k[NR_INFO];
|
|
u16 __read_mostly tlb_lli_2m[NR_INFO];
|
|
u16 __read_mostly tlb_lli_4m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_4k[NR_INFO];
|
|
u16 __read_mostly tlb_lld_2m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_4m[NR_INFO];
|
|
u16 __read_mostly tlb_lld_1g[NR_INFO];
|
|
|
|
static void cpu_detect_tlb(struct cpuinfo_x86 *c)
|
|
{
|
|
if (this_cpu->c_detect_tlb)
|
|
this_cpu->c_detect_tlb(c);
|
|
|
|
pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
|
|
tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
|
|
tlb_lli_4m[ENTRIES]);
|
|
|
|
pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
|
|
tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
|
|
tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
|
|
}
|
|
|
|
int detect_ht_early(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_HT))
|
|
return -1;
|
|
|
|
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
|
|
return -1;
|
|
|
|
if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
|
|
return -1;
|
|
|
|
cpuid(1, &eax, &ebx, &ecx, &edx);
|
|
|
|
smp_num_siblings = (ebx & 0xff0000) >> 16;
|
|
if (smp_num_siblings == 1)
|
|
pr_info_once("CPU0: Hyper-Threading is disabled\n");
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void detect_ht(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
int index_msb, core_bits;
|
|
|
|
if (detect_ht_early(c) < 0)
|
|
return;
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
|
|
|
|
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
|
|
core_bits = get_count_order(c->x86_max_cores);
|
|
|
|
c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
|
|
((1 << core_bits) - 1);
|
|
#endif
|
|
}
|
|
|
|
static void get_cpu_vendor(struct cpuinfo_x86 *c)
|
|
{
|
|
char *v = c->x86_vendor_id;
|
|
int i;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++) {
|
|
if (!cpu_devs[i])
|
|
break;
|
|
|
|
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
|
|
(cpu_devs[i]->c_ident[1] &&
|
|
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
|
|
|
|
this_cpu = cpu_devs[i];
|
|
c->x86_vendor = this_cpu->c_x86_vendor;
|
|
return;
|
|
}
|
|
}
|
|
|
|
pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
|
|
"CPU: Your system may be unstable.\n", v);
|
|
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
this_cpu = &default_cpu;
|
|
}
|
|
|
|
void cpu_detect(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Get vendor name */
|
|
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
|
|
(unsigned int *)&c->x86_vendor_id[0],
|
|
(unsigned int *)&c->x86_vendor_id[8],
|
|
(unsigned int *)&c->x86_vendor_id[4]);
|
|
|
|
c->x86 = 4;
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
u32 junk, tfms, cap0, misc;
|
|
|
|
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
|
|
c->x86 = x86_family(tfms);
|
|
c->x86_model = x86_model(tfms);
|
|
c->x86_stepping = x86_stepping(tfms);
|
|
|
|
if (cap0 & (1<<19)) {
|
|
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void apply_forced_caps(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
|
|
c->x86_capability[i] &= ~cpu_caps_cleared[i];
|
|
c->x86_capability[i] |= cpu_caps_set[i];
|
|
}
|
|
}
|
|
|
|
static void init_speculation_control(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
|
|
* and they also have a different bit for STIBP support. Also,
|
|
* a hypervisor might have set the individual AMD bits even on
|
|
* Intel CPUs, for finer-grained selection of what's available.
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
|
|
set_cpu_cap(c, X86_FEATURE_IBRS);
|
|
set_cpu_cap(c, X86_FEATURE_IBPB);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
|
|
set_cpu_cap(c, X86_FEATURE_STIBP);
|
|
|
|
if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
|
|
cpu_has(c, X86_FEATURE_VIRT_SSBD))
|
|
set_cpu_cap(c, X86_FEATURE_SSBD);
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
|
|
set_cpu_cap(c, X86_FEATURE_IBRS);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_IBPB))
|
|
set_cpu_cap(c, X86_FEATURE_IBPB);
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
|
|
set_cpu_cap(c, X86_FEATURE_STIBP);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
|
|
set_cpu_cap(c, X86_FEATURE_SSBD);
|
|
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
|
|
clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
|
|
}
|
|
}
|
|
|
|
void get_cpu_cap(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_1_ECX] = ecx;
|
|
c->x86_capability[CPUID_1_EDX] = edx;
|
|
}
|
|
|
|
/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
|
|
if (c->cpuid_level >= 0x00000006)
|
|
c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
|
|
|
|
/* Additional Intel-defined flags: level 0x00000007 */
|
|
if (c->cpuid_level >= 0x00000007) {
|
|
cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_7_0_EBX] = ebx;
|
|
c->x86_capability[CPUID_7_ECX] = ecx;
|
|
c->x86_capability[CPUID_7_EDX] = edx;
|
|
}
|
|
|
|
/* Extended state features: level 0x0000000d */
|
|
if (c->cpuid_level >= 0x0000000d) {
|
|
cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_D_1_EAX] = eax;
|
|
}
|
|
|
|
/* Additional Intel-defined flags: level 0x0000000F */
|
|
if (c->cpuid_level >= 0x0000000F) {
|
|
|
|
/* QoS sub-leaf, EAX=0Fh, ECX=0 */
|
|
cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_F_0_EDX] = edx;
|
|
|
|
if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
|
|
/* will be overridden if occupancy monitoring exists */
|
|
c->x86_cache_max_rmid = ebx;
|
|
|
|
/* QoS sub-leaf, EAX=0Fh, ECX=1 */
|
|
cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_F_1_EDX] = edx;
|
|
|
|
if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
|
|
((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
|
|
(cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
|
|
c->x86_cache_max_rmid = ecx;
|
|
c->x86_cache_occ_scale = ebx;
|
|
}
|
|
} else {
|
|
c->x86_cache_max_rmid = -1;
|
|
c->x86_cache_occ_scale = -1;
|
|
}
|
|
}
|
|
|
|
/* AMD-defined flags: level 0x80000001 */
|
|
eax = cpuid_eax(0x80000000);
|
|
c->extended_cpuid_level = eax;
|
|
|
|
if ((eax & 0xffff0000) == 0x80000000) {
|
|
if (eax >= 0x80000001) {
|
|
cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_8000_0001_ECX] = ecx;
|
|
c->x86_capability[CPUID_8000_0001_EDX] = edx;
|
|
}
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x80000007) {
|
|
cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_capability[CPUID_8000_0007_EBX] = ebx;
|
|
c->x86_power = edx;
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x80000008) {
|
|
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
|
|
c->x86_capability[CPUID_8000_0008_EBX] = ebx;
|
|
}
|
|
|
|
if (c->extended_cpuid_level >= 0x8000000a)
|
|
c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
|
|
|
|
init_scattered_cpuid_features(c);
|
|
init_speculation_control(c);
|
|
|
|
/*
|
|
* Clear/Set all flags overridden by options, after probe.
|
|
* This needs to happen each time we re-probe, which may happen
|
|
* several times during CPU initialization.
|
|
*/
|
|
apply_forced_caps(c);
|
|
}
|
|
|
|
static void get_cpu_address_sizes(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (c->extended_cpuid_level >= 0x80000008) {
|
|
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->x86_virt_bits = (eax >> 8) & 0xff;
|
|
c->x86_phys_bits = eax & 0xff;
|
|
}
|
|
#ifdef CONFIG_X86_32
|
|
else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
|
|
c->x86_phys_bits = 36;
|
|
#endif
|
|
}
|
|
|
|
static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
int i;
|
|
|
|
/*
|
|
* First of all, decide if this is a 486 or higher
|
|
* It's a 486 if we can modify the AC flag
|
|
*/
|
|
if (flag_is_changeable_p(X86_EFLAGS_AC))
|
|
c->x86 = 4;
|
|
else
|
|
c->x86 = 3;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++)
|
|
if (cpu_devs[i] && cpu_devs[i]->c_identify) {
|
|
c->x86_vendor_id[0] = 0;
|
|
cpu_devs[i]->c_identify(c);
|
|
if (c->x86_vendor_id[0]) {
|
|
get_cpu_vendor(c);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static const __initconst struct x86_cpu_id cpu_no_speculation[] = {
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CEDARVIEW, X86_FEATURE_ANY },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CLOVERVIEW, X86_FEATURE_ANY },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_LINCROFT, X86_FEATURE_ANY },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PENWELL, X86_FEATURE_ANY },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PINEVIEW, X86_FEATURE_ANY },
|
|
{ X86_VENDOR_CENTAUR, 5 },
|
|
{ X86_VENDOR_INTEL, 5 },
|
|
{ X86_VENDOR_NSC, 5 },
|
|
{ X86_VENDOR_ANY, 4 },
|
|
{}
|
|
};
|
|
|
|
static const __initconst struct x86_cpu_id cpu_no_meltdown[] = {
|
|
{ X86_VENDOR_AMD },
|
|
{}
|
|
};
|
|
|
|
/* Only list CPUs which speculate but are non susceptible to SSB */
|
|
static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = {
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT1 },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT2 },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_MERRIFIELD },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_CORE_YONAH },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNL },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNM },
|
|
{ X86_VENDOR_AMD, 0x12, },
|
|
{ X86_VENDOR_AMD, 0x11, },
|
|
{ X86_VENDOR_AMD, 0x10, },
|
|
{ X86_VENDOR_AMD, 0xf, },
|
|
{}
|
|
};
|
|
|
|
static const __initconst struct x86_cpu_id cpu_no_l1tf[] = {
|
|
/* in addition to cpu_no_speculation */
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT1 },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT2 },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_MERRIFIELD },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_MOOREFIELD },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_DENVERTON },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GEMINI_LAKE },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNL },
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNM },
|
|
{}
|
|
};
|
|
|
|
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 ia32_cap = 0;
|
|
|
|
if (x86_match_cpu(cpu_no_speculation))
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
|
|
setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
|
|
|
|
if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
|
|
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
|
|
|
|
if (!x86_match_cpu(cpu_no_spec_store_bypass) &&
|
|
!(ia32_cap & ARCH_CAP_SSB_NO) &&
|
|
!cpu_has(c, X86_FEATURE_AMD_SSB_NO))
|
|
setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
|
|
|
|
if (ia32_cap & ARCH_CAP_IBRS_ALL)
|
|
setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
|
|
|
|
if (x86_match_cpu(cpu_no_meltdown))
|
|
return;
|
|
|
|
/* Rogue Data Cache Load? No! */
|
|
if (ia32_cap & ARCH_CAP_RDCL_NO)
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
|
|
|
|
if (x86_match_cpu(cpu_no_l1tf))
|
|
return;
|
|
|
|
setup_force_cpu_bug(X86_BUG_L1TF);
|
|
}
|
|
|
|
/*
|
|
* The NOPL instruction is supposed to exist on all CPUs of family >= 6;
|
|
* unfortunately, that's not true in practice because of early VIA
|
|
* chips and (more importantly) broken virtualizers that are not easy
|
|
* to detect. In the latter case it doesn't even *fail* reliably, so
|
|
* probing for it doesn't even work. Disable it completely on 32-bit
|
|
* unless we can find a reliable way to detect all the broken cases.
|
|
* Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
|
|
*/
|
|
static void detect_nopl(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
setup_clear_cpu_cap(X86_FEATURE_NOPL);
|
|
#else
|
|
setup_force_cpu_cap(X86_FEATURE_NOPL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Do minimum CPU detection early.
|
|
* Fields really needed: vendor, cpuid_level, family, model, mask,
|
|
* cache alignment.
|
|
* The others are not touched to avoid unwanted side effects.
|
|
*
|
|
* WARNING: this function is only called on the boot CPU. Don't add code
|
|
* here that is supposed to run on all CPUs.
|
|
*/
|
|
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_clflush_size = 64;
|
|
c->x86_phys_bits = 36;
|
|
c->x86_virt_bits = 48;
|
|
#else
|
|
c->x86_clflush_size = 32;
|
|
c->x86_phys_bits = 32;
|
|
c->x86_virt_bits = 32;
|
|
#endif
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
|
|
memset(&c->x86_capability, 0, sizeof c->x86_capability);
|
|
c->extended_cpuid_level = 0;
|
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/
|
|
if (have_cpuid_p()) {
|
|
cpu_detect(c);
|
|
get_cpu_vendor(c);
|
|
get_cpu_cap(c);
|
|
get_cpu_address_sizes(c);
|
|
setup_force_cpu_cap(X86_FEATURE_CPUID);
|
|
|
|
if (this_cpu->c_early_init)
|
|
this_cpu->c_early_init(c);
|
|
|
|
c->cpu_index = 0;
|
|
filter_cpuid_features(c, false);
|
|
|
|
if (this_cpu->c_bsp_init)
|
|
this_cpu->c_bsp_init(c);
|
|
} else {
|
|
identify_cpu_without_cpuid(c);
|
|
setup_clear_cpu_cap(X86_FEATURE_CPUID);
|
|
}
|
|
|
|
setup_force_cpu_cap(X86_FEATURE_ALWAYS);
|
|
|
|
cpu_set_bug_bits(c);
|
|
|
|
fpu__init_system(c);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Regardless of whether PCID is enumerated, the SDM says
|
|
* that it can't be enabled in 32-bit mode.
|
|
*/
|
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
|
#endif
|
|
|
|
/*
|
|
* Later in the boot process pgtable_l5_enabled() relies on
|
|
* cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
|
|
* enabled by this point we need to clear the feature bit to avoid
|
|
* false-positives at the later stage.
|
|
*
|
|
* pgtable_l5_enabled() can be false here for several reasons:
|
|
* - 5-level paging is disabled compile-time;
|
|
* - it's 32-bit kernel;
|
|
* - machine doesn't support 5-level paging;
|
|
* - user specified 'no5lvl' in kernel command line.
|
|
*/
|
|
if (!pgtable_l5_enabled())
|
|
setup_clear_cpu_cap(X86_FEATURE_LA57);
|
|
|
|
detect_nopl();
|
|
}
|
|
|
|
void __init early_cpu_init(void)
|
|
{
|
|
const struct cpu_dev *const *cdev;
|
|
int count = 0;
|
|
|
|
#ifdef CONFIG_PROCESSOR_SELECT
|
|
pr_info("KERNEL supported cpus:\n");
|
|
#endif
|
|
|
|
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
|
|
const struct cpu_dev *cpudev = *cdev;
|
|
|
|
if (count >= X86_VENDOR_NUM)
|
|
break;
|
|
cpu_devs[count] = cpudev;
|
|
count++;
|
|
|
|
#ifdef CONFIG_PROCESSOR_SELECT
|
|
{
|
|
unsigned int j;
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
if (!cpudev->c_ident[j])
|
|
continue;
|
|
pr_info(" %s %s\n", cpudev->c_vendor,
|
|
cpudev->c_ident[j]);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
early_identify_cpu(&boot_cpu_data);
|
|
}
|
|
|
|
static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Empirically, writing zero to a segment selector on AMD does
|
|
* not clear the base, whereas writing zero to a segment
|
|
* selector on Intel does clear the base. Intel's behavior
|
|
* allows slightly faster context switches in the common case
|
|
* where GS is unused by the prev and next threads.
|
|
*
|
|
* Since neither vendor documents this anywhere that I can see,
|
|
* detect it directly instead of hardcoding the choice by
|
|
* vendor.
|
|
*
|
|
* I've designated AMD's behavior as the "bug" because it's
|
|
* counterintuitive and less friendly.
|
|
*/
|
|
|
|
unsigned long old_base, tmp;
|
|
rdmsrl(MSR_FS_BASE, old_base);
|
|
wrmsrl(MSR_FS_BASE, 1);
|
|
loadsegment(fs, 0);
|
|
rdmsrl(MSR_FS_BASE, tmp);
|
|
if (tmp != 0)
|
|
set_cpu_bug(c, X86_BUG_NULL_SEG);
|
|
wrmsrl(MSR_FS_BASE, old_base);
|
|
#endif
|
|
}
|
|
|
|
static void generic_identify(struct cpuinfo_x86 *c)
|
|
{
|
|
c->extended_cpuid_level = 0;
|
|
|
|
if (!have_cpuid_p())
|
|
identify_cpu_without_cpuid(c);
|
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/
|
|
if (!have_cpuid_p())
|
|
return;
|
|
|
|
cpu_detect(c);
|
|
|
|
get_cpu_vendor(c);
|
|
|
|
get_cpu_cap(c);
|
|
|
|
get_cpu_address_sizes(c);
|
|
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
|
|
#ifdef CONFIG_X86_32
|
|
# ifdef CONFIG_SMP
|
|
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
|
|
# else
|
|
c->apicid = c->initial_apicid;
|
|
# endif
|
|
#endif
|
|
c->phys_proc_id = c->initial_apicid;
|
|
}
|
|
|
|
get_model_name(c); /* Default name */
|
|
|
|
detect_null_seg_behavior(c);
|
|
|
|
/*
|
|
* ESPFIX is a strange bug. All real CPUs have it. Paravirt
|
|
* systems that run Linux at CPL > 0 may or may not have the
|
|
* issue, but, even if they have the issue, there's absolutely
|
|
* nothing we can do about it because we can't use the real IRET
|
|
* instruction.
|
|
*
|
|
* NB: For the time being, only 32-bit kernels support
|
|
* X86_BUG_ESPFIX as such. 64-bit kernels directly choose
|
|
* whether to apply espfix using paravirt hooks. If any
|
|
* non-paravirt system ever shows up that does *not* have the
|
|
* ESPFIX issue, we can change this.
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
# ifdef CONFIG_PARAVIRT
|
|
do {
|
|
extern void native_iret(void);
|
|
if (pv_cpu_ops.iret == native_iret)
|
|
set_cpu_bug(c, X86_BUG_ESPFIX);
|
|
} while (0);
|
|
# else
|
|
set_cpu_bug(c, X86_BUG_ESPFIX);
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
static void x86_init_cache_qos(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* The heavy lifting of max_rmid and cache_occ_scale are handled
|
|
* in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
|
|
* in case CQM bits really aren't there in this CPU.
|
|
*/
|
|
if (c != &boot_cpu_data) {
|
|
boot_cpu_data.x86_cache_max_rmid =
|
|
min(boot_cpu_data.x86_cache_max_rmid,
|
|
c->x86_cache_max_rmid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Validate that ACPI/mptables have the same information about the
|
|
* effective APIC id and update the package map.
|
|
*/
|
|
static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned int apicid, cpu = smp_processor_id();
|
|
|
|
apicid = apic->cpu_present_to_apicid(cpu);
|
|
|
|
if (apicid != c->apicid) {
|
|
pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
|
|
cpu, apicid, c->initial_apicid);
|
|
}
|
|
BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
|
|
#else
|
|
c->logical_proc_id = 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This does the hard work of actually picking apart the CPU stuff...
|
|
*/
|
|
static void identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
c->loops_per_jiffy = loops_per_jiffy;
|
|
c->x86_cache_size = 0;
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
c->x86_model = c->x86_stepping = 0; /* So far unknown... */
|
|
c->x86_vendor_id[0] = '\0'; /* Unset */
|
|
c->x86_model_id[0] = '\0'; /* Unset */
|
|
c->x86_max_cores = 1;
|
|
c->x86_coreid_bits = 0;
|
|
c->cu_id = 0xff;
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_clflush_size = 64;
|
|
c->x86_phys_bits = 36;
|
|
c->x86_virt_bits = 48;
|
|
#else
|
|
c->cpuid_level = -1; /* CPUID not detected */
|
|
c->x86_clflush_size = 32;
|
|
c->x86_phys_bits = 32;
|
|
c->x86_virt_bits = 32;
|
|
#endif
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
memset(&c->x86_capability, 0, sizeof c->x86_capability);
|
|
|
|
generic_identify(c);
|
|
|
|
if (this_cpu->c_identify)
|
|
this_cpu->c_identify(c);
|
|
|
|
/* Clear/Set all flags overridden by options, after probe */
|
|
apply_forced_caps(c);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Vendor-specific initialization. In this section we
|
|
* canonicalize the feature flags, meaning if there are
|
|
* features a certain CPU supports which CPUID doesn't
|
|
* tell us, CPUID claiming incorrect flags, or other bugs,
|
|
* we handle them here.
|
|
*
|
|
* At the end of this section, c->x86_capability better
|
|
* indicate the features this CPU genuinely supports!
|
|
*/
|
|
if (this_cpu->c_init)
|
|
this_cpu->c_init(c);
|
|
|
|
/* Disable the PN if appropriate */
|
|
squash_the_stupid_serial_number(c);
|
|
|
|
/* Set up SMEP/SMAP/UMIP */
|
|
setup_smep(c);
|
|
setup_smap(c);
|
|
setup_umip(c);
|
|
|
|
/*
|
|
* The vendor-specific functions might have changed features.
|
|
* Now we do "generic changes."
|
|
*/
|
|
|
|
/* Filter out anything that depends on CPUID levels we don't have */
|
|
filter_cpuid_features(c, true);
|
|
|
|
/* If the model name is still unset, do table lookup. */
|
|
if (!c->x86_model_id[0]) {
|
|
const char *p;
|
|
p = table_lookup_model(c);
|
|
if (p)
|
|
strcpy(c->x86_model_id, p);
|
|
else
|
|
/* Last resort... */
|
|
sprintf(c->x86_model_id, "%02x/%02x",
|
|
c->x86, c->x86_model);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
detect_ht(c);
|
|
#endif
|
|
|
|
x86_init_rdrand(c);
|
|
x86_init_cache_qos(c);
|
|
setup_pku(c);
|
|
|
|
/*
|
|
* Clear/Set all flags overridden by options, need do it
|
|
* before following smp all cpus cap AND.
|
|
*/
|
|
apply_forced_caps(c);
|
|
|
|
/*
|
|
* On SMP, boot_cpu_data holds the common feature set between
|
|
* all CPUs; so make sure that we indicate which features are
|
|
* common between the CPUs. The first time this routine gets
|
|
* executed, c == &boot_cpu_data.
|
|
*/
|
|
if (c != &boot_cpu_data) {
|
|
/* AND the already accumulated flags with these */
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
|
|
|
|
/* OR, i.e. replicate the bug flags */
|
|
for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
|
|
c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
|
|
}
|
|
|
|
/* Init Machine Check Exception if available. */
|
|
mcheck_cpu_init(c);
|
|
|
|
select_idle_routine(c);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
numa_add_cpu(smp_processor_id());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
|
|
* on 32-bit kernels:
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
void enable_sep_cpu(void)
|
|
{
|
|
struct tss_struct *tss;
|
|
int cpu;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_SEP))
|
|
return;
|
|
|
|
cpu = get_cpu();
|
|
tss = &per_cpu(cpu_tss_rw, cpu);
|
|
|
|
/*
|
|
* We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
|
|
* see the big comment in struct x86_hw_tss's definition.
|
|
*/
|
|
|
|
tss->x86_tss.ss1 = __KERNEL_CS;
|
|
wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
|
|
wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
|
|
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
|
|
|
|
put_cpu();
|
|
}
|
|
#endif
|
|
|
|
void __init identify_boot_cpu(void)
|
|
{
|
|
identify_cpu(&boot_cpu_data);
|
|
#ifdef CONFIG_X86_32
|
|
sysenter_setup();
|
|
enable_sep_cpu();
|
|
#endif
|
|
cpu_detect_tlb(&boot_cpu_data);
|
|
}
|
|
|
|
void identify_secondary_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
BUG_ON(c == &boot_cpu_data);
|
|
identify_cpu(c);
|
|
#ifdef CONFIG_X86_32
|
|
enable_sep_cpu();
|
|
#endif
|
|
mtrr_ap_init();
|
|
validate_apic_and_package_id(c);
|
|
x86_spec_ctrl_setup_ap();
|
|
}
|
|
|
|
static __init int setup_noclflush(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
|
|
setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
|
|
return 1;
|
|
}
|
|
__setup("noclflush", setup_noclflush);
|
|
|
|
void print_cpu_info(struct cpuinfo_x86 *c)
|
|
{
|
|
const char *vendor = NULL;
|
|
|
|
if (c->x86_vendor < X86_VENDOR_NUM) {
|
|
vendor = this_cpu->c_vendor;
|
|
} else {
|
|
if (c->cpuid_level >= 0)
|
|
vendor = c->x86_vendor_id;
|
|
}
|
|
|
|
if (vendor && !strstr(c->x86_model_id, vendor))
|
|
pr_cont("%s ", vendor);
|
|
|
|
if (c->x86_model_id[0])
|
|
pr_cont("%s", c->x86_model_id);
|
|
else
|
|
pr_cont("%d86", c->x86);
|
|
|
|
pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
|
|
|
|
if (c->x86_stepping || c->cpuid_level >= 0)
|
|
pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
|
|
else
|
|
pr_cont(")\n");
|
|
}
|
|
|
|
/*
|
|
* clearcpuid= was already parsed in fpu__init_parse_early_param.
|
|
* But we need to keep a dummy __setup around otherwise it would
|
|
* show up as an environment variable for init.
|
|
*/
|
|
static __init int setup_clearcpuid(char *arg)
|
|
{
|
|
return 1;
|
|
}
|
|
__setup("clearcpuid=", setup_clearcpuid);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
DEFINE_PER_CPU_FIRST(union irq_stack_union,
|
|
irq_stack_union) __aligned(PAGE_SIZE) __visible;
|
|
EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union);
|
|
|
|
/*
|
|
* The following percpu variables are hot. Align current_task to
|
|
* cacheline size such that they fall in the same cacheline.
|
|
*/
|
|
DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
|
|
&init_task;
|
|
EXPORT_PER_CPU_SYMBOL(current_task);
|
|
|
|
DEFINE_PER_CPU(char *, irq_stack_ptr) =
|
|
init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
|
|
|
|
DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
|
|
|
|
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
|
|
EXPORT_PER_CPU_SYMBOL(__preempt_count);
|
|
|
|
/* May not be marked __init: used by software suspend */
|
|
void syscall_init(void)
|
|
{
|
|
extern char _entry_trampoline[];
|
|
extern char entry_SYSCALL_64_trampoline[];
|
|
|
|
int cpu = smp_processor_id();
|
|
unsigned long SYSCALL64_entry_trampoline =
|
|
(unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
|
|
(entry_SYSCALL_64_trampoline - _entry_trampoline);
|
|
|
|
wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
|
|
if (static_cpu_has(X86_FEATURE_PTI))
|
|
wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
|
|
else
|
|
wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
|
|
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
|
|
/*
|
|
* This only works on Intel CPUs.
|
|
* On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
|
|
* This does not cause SYSENTER to jump to the wrong location, because
|
|
* AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
|
|
*/
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
|
|
#else
|
|
wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
|
|
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
|
|
#endif
|
|
|
|
/* Flags to clear on syscall */
|
|
wrmsrl(MSR_SYSCALL_MASK,
|
|
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
|
|
X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
|
|
}
|
|
|
|
/*
|
|
* Copies of the original ist values from the tss are only accessed during
|
|
* debugging, no special alignment required.
|
|
*/
|
|
DEFINE_PER_CPU(struct orig_ist, orig_ist);
|
|
|
|
static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
|
|
DEFINE_PER_CPU(int, debug_stack_usage);
|
|
|
|
int is_debug_stack(unsigned long addr)
|
|
{
|
|
return __this_cpu_read(debug_stack_usage) ||
|
|
(addr <= __this_cpu_read(debug_stack_addr) &&
|
|
addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
|
|
}
|
|
NOKPROBE_SYMBOL(is_debug_stack);
|
|
|
|
DEFINE_PER_CPU(u32, debug_idt_ctr);
|
|
|
|
void debug_stack_set_zero(void)
|
|
{
|
|
this_cpu_inc(debug_idt_ctr);
|
|
load_current_idt();
|
|
}
|
|
NOKPROBE_SYMBOL(debug_stack_set_zero);
|
|
|
|
void debug_stack_reset(void)
|
|
{
|
|
if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
|
|
return;
|
|
if (this_cpu_dec_return(debug_idt_ctr) == 0)
|
|
load_current_idt();
|
|
}
|
|
NOKPROBE_SYMBOL(debug_stack_reset);
|
|
|
|
#else /* CONFIG_X86_64 */
|
|
|
|
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
|
|
EXPORT_PER_CPU_SYMBOL(current_task);
|
|
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
|
|
EXPORT_PER_CPU_SYMBOL(__preempt_count);
|
|
|
|
/*
|
|
* On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
|
|
* the top of the kernel stack. Use an extra percpu variable to track the
|
|
* top of the kernel stack directly.
|
|
*/
|
|
DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
|
|
(unsigned long)&init_thread_union + THREAD_SIZE;
|
|
EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
|
|
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
|
|
#endif
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Clear all 6 debug registers:
|
|
*/
|
|
static void clear_all_debug_regs(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
/* Ignore db4, db5 */
|
|
if ((i == 4) || (i == 5))
|
|
continue;
|
|
|
|
set_debugreg(0, i);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_KGDB
|
|
/*
|
|
* Restore debug regs if using kgdbwait and you have a kernel debugger
|
|
* connection established.
|
|
*/
|
|
static void dbg_restore_debug_regs(void)
|
|
{
|
|
if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
|
|
arch_kgdb_ops.correct_hw_break();
|
|
}
|
|
#else /* ! CONFIG_KGDB */
|
|
#define dbg_restore_debug_regs()
|
|
#endif /* ! CONFIG_KGDB */
|
|
|
|
static void wait_for_master_cpu(int cpu)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* wait for ACK from master CPU before continuing
|
|
* with AP initialization
|
|
*/
|
|
WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
|
|
while (!cpumask_test_cpu(cpu, cpu_callout_mask))
|
|
cpu_relax();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* cpu_init() initializes state that is per-CPU. Some data is already
|
|
* initialized (naturally) in the bootstrap process, such as the GDT
|
|
* and IDT. We reload them nevertheless, this function acts as a
|
|
* 'CPU state barrier', nothing should get across.
|
|
* A lot of state is already set up in PDA init for 64 bit
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
|
|
void cpu_init(void)
|
|
{
|
|
struct orig_ist *oist;
|
|
struct task_struct *me;
|
|
struct tss_struct *t;
|
|
unsigned long v;
|
|
int cpu = raw_smp_processor_id();
|
|
int i;
|
|
|
|
wait_for_master_cpu(cpu);
|
|
|
|
/*
|
|
* Initialize the CR4 shadow before doing anything that could
|
|
* try to read it.
|
|
*/
|
|
cr4_init_shadow();
|
|
|
|
if (cpu)
|
|
load_ucode_ap();
|
|
|
|
t = &per_cpu(cpu_tss_rw, cpu);
|
|
oist = &per_cpu(orig_ist, cpu);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
if (this_cpu_read(numa_node) == 0 &&
|
|
early_cpu_to_node(cpu) != NUMA_NO_NODE)
|
|
set_numa_node(early_cpu_to_node(cpu));
|
|
#endif
|
|
|
|
me = current;
|
|
|
|
pr_debug("Initializing CPU#%d\n", cpu);
|
|
|
|
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
|
|
|
|
/*
|
|
* Initialize the per-CPU GDT with the boot GDT,
|
|
* and set up the GDT descriptor:
|
|
*/
|
|
|
|
switch_to_new_gdt(cpu);
|
|
loadsegment(fs, 0);
|
|
|
|
load_current_idt();
|
|
|
|
memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
|
|
syscall_init();
|
|
|
|
wrmsrl(MSR_FS_BASE, 0);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, 0);
|
|
barrier();
|
|
|
|
x86_configure_nx();
|
|
x2apic_setup();
|
|
|
|
/*
|
|
* set up and load the per-CPU TSS
|
|
*/
|
|
if (!oist->ist[0]) {
|
|
char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
|
|
|
|
for (v = 0; v < N_EXCEPTION_STACKS; v++) {
|
|
estacks += exception_stack_sizes[v];
|
|
oist->ist[v] = t->x86_tss.ist[v] =
|
|
(unsigned long)estacks;
|
|
if (v == DEBUG_STACK-1)
|
|
per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
|
|
}
|
|
}
|
|
|
|
t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
|
|
|
|
/*
|
|
* <= is required because the CPU will access up to
|
|
* 8 bits beyond the end of the IO permission bitmap.
|
|
*/
|
|
for (i = 0; i <= IO_BITMAP_LONGS; i++)
|
|
t->io_bitmap[i] = ~0UL;
|
|
|
|
mmgrab(&init_mm);
|
|
me->active_mm = &init_mm;
|
|
BUG_ON(me->mm);
|
|
initialize_tlbstate_and_flush();
|
|
enter_lazy_tlb(&init_mm, me);
|
|
|
|
/*
|
|
* Initialize the TSS. sp0 points to the entry trampoline stack
|
|
* regardless of what task is running.
|
|
*/
|
|
set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
|
|
load_TR_desc();
|
|
load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
|
|
|
|
load_mm_ldt(&init_mm);
|
|
|
|
clear_all_debug_regs();
|
|
dbg_restore_debug_regs();
|
|
|
|
fpu__init_cpu();
|
|
|
|
if (is_uv_system())
|
|
uv_cpu_init();
|
|
|
|
load_fixmap_gdt(cpu);
|
|
}
|
|
|
|
#else
|
|
|
|
void cpu_init(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct task_struct *curr = current;
|
|
struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
|
|
|
|
wait_for_master_cpu(cpu);
|
|
|
|
/*
|
|
* Initialize the CR4 shadow before doing anything that could
|
|
* try to read it.
|
|
*/
|
|
cr4_init_shadow();
|
|
|
|
show_ucode_info_early();
|
|
|
|
pr_info("Initializing CPU#%d\n", cpu);
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_VME) ||
|
|
boot_cpu_has(X86_FEATURE_TSC) ||
|
|
boot_cpu_has(X86_FEATURE_DE))
|
|
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
|
|
|
|
load_current_idt();
|
|
switch_to_new_gdt(cpu);
|
|
|
|
/*
|
|
* Set up and load the per-CPU TSS and LDT
|
|
*/
|
|
mmgrab(&init_mm);
|
|
curr->active_mm = &init_mm;
|
|
BUG_ON(curr->mm);
|
|
initialize_tlbstate_and_flush();
|
|
enter_lazy_tlb(&init_mm, curr);
|
|
|
|
/*
|
|
* Initialize the TSS. sp0 points to the entry trampoline stack
|
|
* regardless of what task is running.
|
|
*/
|
|
set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
|
|
load_TR_desc();
|
|
load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
|
|
|
|
load_mm_ldt(&init_mm);
|
|
|
|
t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
|
|
|
|
#ifdef CONFIG_DOUBLEFAULT
|
|
/* Set up doublefault TSS pointer in the GDT */
|
|
__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
|
|
#endif
|
|
|
|
clear_all_debug_regs();
|
|
dbg_restore_debug_regs();
|
|
|
|
fpu__init_cpu();
|
|
|
|
load_fixmap_gdt(cpu);
|
|
}
|
|
#endif
|
|
|
|
static void bsp_resume(void)
|
|
{
|
|
if (this_cpu->c_bsp_resume)
|
|
this_cpu->c_bsp_resume(&boot_cpu_data);
|
|
}
|
|
|
|
static struct syscore_ops cpu_syscore_ops = {
|
|
.resume = bsp_resume,
|
|
};
|
|
|
|
static int __init init_cpu_syscore(void)
|
|
{
|
|
register_syscore_ops(&cpu_syscore_ops);
|
|
return 0;
|
|
}
|
|
core_initcall(init_cpu_syscore);
|
|
|
|
/*
|
|
* The microcode loader calls this upon late microcode load to recheck features,
|
|
* only when microcode has been updated. Caller holds microcode_mutex and CPU
|
|
* hotplug lock.
|
|
*/
|
|
void microcode_check(void)
|
|
{
|
|
struct cpuinfo_x86 info;
|
|
|
|
perf_check_microcode();
|
|
|
|
/* Reload CPUID max function as it might've changed. */
|
|
info.cpuid_level = cpuid_eax(0);
|
|
|
|
/*
|
|
* Copy all capability leafs to pick up the synthetic ones so that
|
|
* memcmp() below doesn't fail on that. The ones coming from CPUID will
|
|
* get overwritten in get_cpu_cap().
|
|
*/
|
|
memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
|
|
|
|
get_cpu_cap(&info);
|
|
|
|
if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
|
|
return;
|
|
|
|
pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
|
|
pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
|
|
}
|