linux_dsm_epyc7002/arch/arm64/include/asm/spinlock.h
Will Deacon 9511ca19da arm64: rwlocks: don't fail trylock purely due to contention
STXR can fail for a number of reasons, so don't fail an rwlock trylock
operation simply because the STXR reported failure.

I'm not aware of any issues with the current code, but this makes it
consistent with spin_trylock and also other architectures (e.g. arch/arm).

Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-07-27 14:26:34 +01:00

237 lines
5.3 KiB
C

/*
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ASM_SPINLOCK_H
#define __ASM_SPINLOCK_H
#include <asm/spinlock_types.h>
#include <asm/processor.h>
/*
* Spinlock implementation.
*
* The memory barriers are implicit with the load-acquire and store-release
* instructions.
*/
#define arch_spin_unlock_wait(lock) \
do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
static inline void arch_spin_lock(arch_spinlock_t *lock)
{
unsigned int tmp;
arch_spinlock_t lockval, newval;
asm volatile(
/* Atomically increment the next ticket. */
" prfm pstl1strm, %3\n"
"1: ldaxr %w0, %3\n"
" add %w1, %w0, %w5\n"
" stxr %w2, %w1, %3\n"
" cbnz %w2, 1b\n"
/* Did we get the lock? */
" eor %w1, %w0, %w0, ror #16\n"
" cbz %w1, 3f\n"
/*
* No: spin on the owner. Send a local event to avoid missing an
* unlock before the exclusive load.
*/
" sevl\n"
"2: wfe\n"
" ldaxrh %w2, %4\n"
" eor %w1, %w2, %w0, lsr #16\n"
" cbnz %w1, 2b\n"
/* We got the lock. Critical section starts here. */
"3:"
: "=&r" (lockval), "=&r" (newval), "=&r" (tmp), "+Q" (*lock)
: "Q" (lock->owner), "I" (1 << TICKET_SHIFT)
: "memory");
}
static inline int arch_spin_trylock(arch_spinlock_t *lock)
{
unsigned int tmp;
arch_spinlock_t lockval;
asm volatile(
" prfm pstl1strm, %2\n"
"1: ldaxr %w0, %2\n"
" eor %w1, %w0, %w0, ror #16\n"
" cbnz %w1, 2f\n"
" add %w0, %w0, %3\n"
" stxr %w1, %w0, %2\n"
" cbnz %w1, 1b\n"
"2:"
: "=&r" (lockval), "=&r" (tmp), "+Q" (*lock)
: "I" (1 << TICKET_SHIFT)
: "memory");
return !tmp;
}
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
asm volatile(
" stlrh %w1, %0\n"
: "=Q" (lock->owner)
: "r" (lock->owner + 1)
: "memory");
}
static inline int arch_spin_value_unlocked(arch_spinlock_t lock)
{
return lock.owner == lock.next;
}
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
{
return !arch_spin_value_unlocked(READ_ONCE(*lock));
}
static inline int arch_spin_is_contended(arch_spinlock_t *lock)
{
arch_spinlock_t lockval = READ_ONCE(*lock);
return (lockval.next - lockval.owner) > 1;
}
#define arch_spin_is_contended arch_spin_is_contended
/*
* Write lock implementation.
*
* Write locks set bit 31. Unlocking, is done by writing 0 since the lock is
* exclusively held.
*
* The memory barriers are implicit with the load-acquire and store-release
* instructions.
*/
static inline void arch_write_lock(arch_rwlock_t *rw)
{
unsigned int tmp;
asm volatile(
" sevl\n"
"1: wfe\n"
"2: ldaxr %w0, %1\n"
" cbnz %w0, 1b\n"
" stxr %w0, %w2, %1\n"
" cbnz %w0, 2b\n"
: "=&r" (tmp), "+Q" (rw->lock)
: "r" (0x80000000)
: "memory");
}
static inline int arch_write_trylock(arch_rwlock_t *rw)
{
unsigned int tmp;
asm volatile(
"1: ldaxr %w0, %1\n"
" cbnz %w0, 2f\n"
" stxr %w0, %w2, %1\n"
" cbnz %w0, 1b\n"
"2:\n"
: "=&r" (tmp), "+Q" (rw->lock)
: "r" (0x80000000)
: "memory");
return !tmp;
}
static inline void arch_write_unlock(arch_rwlock_t *rw)
{
asm volatile(
" stlr %w1, %0\n"
: "=Q" (rw->lock) : "r" (0) : "memory");
}
/* write_can_lock - would write_trylock() succeed? */
#define arch_write_can_lock(x) ((x)->lock == 0)
/*
* Read lock implementation.
*
* It exclusively loads the lock value, increments it and stores the new value
* back if positive and the CPU still exclusively owns the location. If the
* value is negative, the lock is already held.
*
* During unlocking there may be multiple active read locks but no write lock.
*
* The memory barriers are implicit with the load-acquire and store-release
* instructions.
*/
static inline void arch_read_lock(arch_rwlock_t *rw)
{
unsigned int tmp, tmp2;
asm volatile(
" sevl\n"
"1: wfe\n"
"2: ldaxr %w0, %2\n"
" add %w0, %w0, #1\n"
" tbnz %w0, #31, 1b\n"
" stxr %w1, %w0, %2\n"
" cbnz %w1, 2b\n"
: "=&r" (tmp), "=&r" (tmp2), "+Q" (rw->lock)
:
: "memory");
}
static inline void arch_read_unlock(arch_rwlock_t *rw)
{
unsigned int tmp, tmp2;
asm volatile(
"1: ldxr %w0, %2\n"
" sub %w0, %w0, #1\n"
" stlxr %w1, %w0, %2\n"
" cbnz %w1, 1b\n"
: "=&r" (tmp), "=&r" (tmp2), "+Q" (rw->lock)
:
: "memory");
}
static inline int arch_read_trylock(arch_rwlock_t *rw)
{
unsigned int tmp, tmp2 = 1;
asm volatile(
"1: ldaxr %w0, %2\n"
" add %w0, %w0, #1\n"
" tbnz %w0, #31, 2f\n"
" stxr %w1, %w0, %2\n"
" cbnz %w1, 1b\n"
"2:\n"
: "=&r" (tmp), "+r" (tmp2), "+Q" (rw->lock)
:
: "memory");
return !tmp2;
}
/* read_can_lock - would read_trylock() succeed? */
#define arch_read_can_lock(x) ((x)->lock < 0x80000000)
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
#endif /* __ASM_SPINLOCK_H */