linux_dsm_epyc7002/arch/powerpc/kernel/kprobes.c
Christophe Leroy 21f8b2fa3c powerpc/kprobes: Ignore traps that happened in real mode
When a program check exception happens while MMU translation is
disabled, following Oops happens in kprobe_handler() in the following
code:

	} else if (*addr != BREAKPOINT_INSTRUCTION) {

  BUG: Unable to handle kernel data access on read at 0x0000e268
  Faulting instruction address: 0xc000ec34
  Oops: Kernel access of bad area, sig: 11 [#1]
  BE PAGE_SIZE=16K PREEMPT CMPC885
  Modules linked in:
  CPU: 0 PID: 429 Comm: cat Not tainted 5.6.0-rc1-s3k-dev-00824-g84195dc6c58a #3267
  NIP:  c000ec34 LR: c000ecd8 CTR: c019cab8
  REGS: ca4d3b58 TRAP: 0300   Not tainted  (5.6.0-rc1-s3k-dev-00824-g84195dc6c58a)
  MSR:  00001032 <ME,IR,DR,RI>  CR: 2a4d3c52  XER: 00000000
  DAR: 0000e268 DSISR: c0000000
  GPR00: c000b09c ca4d3c10 c66d0620 00000000 ca4d3c60 00000000 00009032 00000000
  GPR08: 00020000 00000000 c087de44 c000afe0 c66d0ad0 100d3dd6 fffffff3 00000000
  GPR16: 00000000 00000041 00000000 ca4d3d70 00000000 00000000 0000416d 00000000
  GPR24: 00000004 c53b6128 00000000 0000e268 00000000 c07c0000 c07bb6fc ca4d3c60
  NIP [c000ec34] kprobe_handler+0x128/0x290
  LR [c000ecd8] kprobe_handler+0x1cc/0x290
  Call Trace:
  [ca4d3c30] [c000b09c] program_check_exception+0xbc/0x6fc
  [ca4d3c50] [c000e43c] ret_from_except_full+0x0/0x4
  --- interrupt: 700 at 0xe268
  Instruction dump:
  913e0008 81220000 38600001 3929ffff 91220000 80010024 bb410008 7c0803a6
  38210020 4e800020 38600000 4e800020 <813b0000> 6d2a7fe0 2f8a0008 419e0154
  ---[ end trace 5b9152d4cdadd06d ]---

kprobe is not prepared to handle events in real mode and functions
running in real mode should have been blacklisted, so kprobe_handler()
can safely bail out telling 'this trap is not mine' for any trap that
happened while in real-mode.

If the trap happened with MSR_IR or MSR_DR cleared, return 0
immediately.

Reported-by: Larry Finger <Larry.Finger@lwfinger.net>
Fixes: 6cc89bad60 ("powerpc/kprobes: Invoke handlers directly")
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/424331e2006e7291a1bfe40e7f3fa58825f565e1.1582054578.git.christophe.leroy@c-s.fr
2020-03-25 12:09:51 +11:00

601 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Kernel Probes (KProbes)
*
* Copyright (C) IBM Corporation, 2002, 2004
*
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
* Probes initial implementation ( includes contributions from
* Rusty Russell).
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
* interface to access function arguments.
* 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
* for PPC64
*/
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/preempt.h>
#include <linux/extable.h>
#include <linux/kdebug.h>
#include <linux/slab.h>
#include <asm/code-patching.h>
#include <asm/cacheflush.h>
#include <asm/sstep.h>
#include <asm/sections.h>
#include <linux/uaccess.h>
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
bool arch_within_kprobe_blacklist(unsigned long addr)
{
return (addr >= (unsigned long)__kprobes_text_start &&
addr < (unsigned long)__kprobes_text_end) ||
(addr >= (unsigned long)_stext &&
addr < (unsigned long)__head_end);
}
kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
{
kprobe_opcode_t *addr = NULL;
#ifdef PPC64_ELF_ABI_v2
/* PPC64 ABIv2 needs local entry point */
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
if (addr && !offset) {
#ifdef CONFIG_KPROBES_ON_FTRACE
unsigned long faddr;
/*
* Per livepatch.h, ftrace location is always within the first
* 16 bytes of a function on powerpc with -mprofile-kernel.
*/
faddr = ftrace_location_range((unsigned long)addr,
(unsigned long)addr + 16);
if (faddr)
addr = (kprobe_opcode_t *)faddr;
else
#endif
addr = (kprobe_opcode_t *)ppc_function_entry(addr);
}
#elif defined(PPC64_ELF_ABI_v1)
/*
* 64bit powerpc ABIv1 uses function descriptors:
* - Check for the dot variant of the symbol first.
* - If that fails, try looking up the symbol provided.
*
* This ensures we always get to the actual symbol and not
* the descriptor.
*
* Also handle <module:symbol> format.
*/
char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
bool dot_appended = false;
const char *c;
ssize_t ret = 0;
int len = 0;
if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
c++;
len = c - name;
memcpy(dot_name, name, len);
} else
c = name;
if (*c != '\0' && *c != '.') {
dot_name[len++] = '.';
dot_appended = true;
}
ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
if (ret > 0)
addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
/* Fallback to the original non-dot symbol lookup */
if (!addr && dot_appended)
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
#else
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
#endif
return addr;
}
int arch_prepare_kprobe(struct kprobe *p)
{
int ret = 0;
kprobe_opcode_t insn = *p->addr;
if ((unsigned long)p->addr & 0x03) {
printk("Attempt to register kprobe at an unaligned address\n");
ret = -EINVAL;
} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
ret = -EINVAL;
}
/* insn must be on a special executable page on ppc64. This is
* not explicitly required on ppc32 (right now), but it doesn't hurt */
if (!ret) {
p->ainsn.insn = get_insn_slot();
if (!p->ainsn.insn)
ret = -ENOMEM;
}
if (!ret) {
memcpy(p->ainsn.insn, p->addr,
MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
p->opcode = *p->addr;
flush_icache_range((unsigned long)p->ainsn.insn,
(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
}
p->ainsn.boostable = 0;
return ret;
}
NOKPROBE_SYMBOL(arch_prepare_kprobe);
void arch_arm_kprobe(struct kprobe *p)
{
patch_instruction(p->addr, BREAKPOINT_INSTRUCTION);
}
NOKPROBE_SYMBOL(arch_arm_kprobe);
void arch_disarm_kprobe(struct kprobe *p)
{
patch_instruction(p->addr, p->opcode);
}
NOKPROBE_SYMBOL(arch_disarm_kprobe);
void arch_remove_kprobe(struct kprobe *p)
{
if (p->ainsn.insn) {
free_insn_slot(p->ainsn.insn, 0);
p->ainsn.insn = NULL;
}
}
NOKPROBE_SYMBOL(arch_remove_kprobe);
static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
enable_single_step(regs);
/*
* On powerpc we should single step on the original
* instruction even if the probed insn is a trap
* variant as values in regs could play a part in
* if the trap is taken or not
*/
regs->nip = (unsigned long)p->ainsn.insn;
}
static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
}
static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
kcb->kprobe_status = kcb->prev_kprobe.status;
kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
}
static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, p);
kcb->kprobe_saved_msr = regs->msr;
}
bool arch_kprobe_on_func_entry(unsigned long offset)
{
#ifdef PPC64_ELF_ABI_v2
#ifdef CONFIG_KPROBES_ON_FTRACE
return offset <= 16;
#else
return offset <= 8;
#endif
#else
return !offset;
#endif
}
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
{
ri->ret_addr = (kprobe_opcode_t *)regs->link;
/* Replace the return addr with trampoline addr */
regs->link = (unsigned long)kretprobe_trampoline;
}
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
{
int ret;
unsigned int insn = *p->ainsn.insn;
/* regs->nip is also adjusted if emulate_step returns 1 */
ret = emulate_step(regs, insn);
if (ret > 0) {
/*
* Once this instruction has been boosted
* successfully, set the boostable flag
*/
if (unlikely(p->ainsn.boostable == 0))
p->ainsn.boostable = 1;
} else if (ret < 0) {
/*
* We don't allow kprobes on mtmsr(d)/rfi(d), etc.
* So, we should never get here... but, its still
* good to catch them, just in case...
*/
printk("Can't step on instruction %x\n", insn);
BUG();
} else {
/*
* If we haven't previously emulated this instruction, then it
* can't be boosted. Note it down so we don't try to do so again.
*
* If, however, we had emulated this instruction in the past,
* then this is just an error with the current run (for
* instance, exceptions due to a load/store). We return 0 so
* that this is now single-stepped, but continue to try
* emulating it in subsequent probe hits.
*/
if (unlikely(p->ainsn.boostable != 1))
p->ainsn.boostable = -1;
}
return ret;
}
NOKPROBE_SYMBOL(try_to_emulate);
int kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
int ret = 0;
unsigned int *addr = (unsigned int *)regs->nip;
struct kprobe_ctlblk *kcb;
if (user_mode(regs))
return 0;
if (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR))
return 0;
/*
* We don't want to be preempted for the entire
* duration of kprobe processing
*/
preempt_disable();
kcb = get_kprobe_ctlblk();
p = get_kprobe(addr);
if (!p) {
if (*addr != BREAKPOINT_INSTRUCTION) {
/*
* PowerPC has multiple variants of the "trap"
* instruction. If the current instruction is a
* trap variant, it could belong to someone else
*/
kprobe_opcode_t cur_insn = *addr;
if (is_trap(cur_insn))
goto no_kprobe;
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
*/
ret = 1;
}
/* Not one of ours: let kernel handle it */
goto no_kprobe;
}
/* Check we're not actually recursing */
if (kprobe_running()) {
kprobe_opcode_t insn = *p->ainsn.insn;
if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
/* Turn off 'trace' bits */
regs->msr &= ~MSR_SINGLESTEP;
regs->msr |= kcb->kprobe_saved_msr;
goto no_kprobe;
}
/*
* We have reentered the kprobe_handler(), since another probe
* was hit while within the handler. We here save the original
* kprobes variables and just single step on the instruction of
* the new probe without calling any user handlers.
*/
save_previous_kprobe(kcb);
set_current_kprobe(p, regs, kcb);
kprobes_inc_nmissed_count(p);
kcb->kprobe_status = KPROBE_REENTER;
if (p->ainsn.boostable >= 0) {
ret = try_to_emulate(p, regs);
if (ret > 0) {
restore_previous_kprobe(kcb);
preempt_enable_no_resched();
return 1;
}
}
prepare_singlestep(p, regs);
return 1;
}
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
set_current_kprobe(p, regs, kcb);
if (p->pre_handler && p->pre_handler(p, regs)) {
/* handler changed execution path, so skip ss setup */
reset_current_kprobe();
preempt_enable_no_resched();
return 1;
}
if (p->ainsn.boostable >= 0) {
ret = try_to_emulate(p, regs);
if (ret > 0) {
if (p->post_handler)
p->post_handler(p, regs, 0);
kcb->kprobe_status = KPROBE_HIT_SSDONE;
reset_current_kprobe();
preempt_enable_no_resched();
return 1;
}
}
prepare_singlestep(p, regs);
kcb->kprobe_status = KPROBE_HIT_SS;
return 1;
no_kprobe:
preempt_enable_no_resched();
return ret;
}
NOKPROBE_SYMBOL(kprobe_handler);
/*
* Function return probe trampoline:
* - init_kprobes() establishes a probepoint here
* - When the probed function returns, this probe
* causes the handlers to fire
*/
asm(".global kretprobe_trampoline\n"
".type kretprobe_trampoline, @function\n"
"kretprobe_trampoline:\n"
"nop\n"
"blr\n"
".size kretprobe_trampoline, .-kretprobe_trampoline\n");
/*
* Called when the probe at kretprobe trampoline is hit
*/
static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head, empty_rp;
struct hlist_node *tmp;
unsigned long flags, orig_ret_address = 0;
unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
INIT_HLIST_HEAD(&empty_rp);
kretprobe_hash_lock(current, &head, &flags);
/*
* It is possible to have multiple instances associated with a given
* task either because an multiple functions in the call path
* have a return probe installed on them, and/or more than one return
* return probe was registered for a target function.
*
* We can handle this because:
* - instances are always inserted at the head of the list
* - when multiple return probes are registered for the same
* function, the first instance's ret_addr will point to the
* real return address, and all the rest will point to
* kretprobe_trampoline
*/
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
if (ri->rp && ri->rp->handler)
ri->rp->handler(ri, regs);
orig_ret_address = (unsigned long)ri->ret_addr;
recycle_rp_inst(ri, &empty_rp);
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_assert(ri, orig_ret_address, trampoline_address);
/*
* We get here through one of two paths:
* 1. by taking a trap -> kprobe_handler() -> here
* 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
*
* When going back through (1), we need regs->nip to be setup properly
* as it is used to determine the return address from the trap.
* For (2), since nip is not honoured with optprobes, we instead setup
* the link register properly so that the subsequent 'blr' in
* kretprobe_trampoline jumps back to the right instruction.
*
* For nip, we should set the address to the previous instruction since
* we end up emulating it in kprobe_handler(), which increments the nip
* again.
*/
regs->nip = orig_ret_address - 4;
regs->link = orig_ret_address;
kretprobe_hash_unlock(current, &flags);
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
hlist_del(&ri->hlist);
kfree(ri);
}
return 0;
}
NOKPROBE_SYMBOL(trampoline_probe_handler);
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the "breakpoint"
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*/
int kprobe_post_handler(struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (!cur || user_mode(regs))
return 0;
/* make sure we got here for instruction we have a kprobe on */
if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
return 0;
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
cur->post_handler(cur, regs, 0);
}
/* Adjust nip to after the single-stepped instruction */
regs->nip = (unsigned long)cur->addr + 4;
regs->msr |= kcb->kprobe_saved_msr;
/*Restore back the original saved kprobes variables and continue. */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
goto out;
}
reset_current_kprobe();
out:
preempt_enable_no_resched();
/*
* if somebody else is singlestepping across a probe point, msr
* will have DE/SE set, in which case, continue the remaining processing
* of do_debug, as if this is not a probe hit.
*/
if (regs->msr & MSR_SINGLESTEP)
return 0;
return 1;
}
NOKPROBE_SYMBOL(kprobe_post_handler);
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
const struct exception_table_entry *entry;
switch(kcb->kprobe_status) {
case KPROBE_HIT_SS:
case KPROBE_REENTER:
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the nip points back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
regs->nip = (unsigned long)cur->addr;
regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
regs->msr |= kcb->kprobe_saved_msr;
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
reset_current_kprobe();
preempt_enable_no_resched();
break;
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/*
* We increment the nmissed count for accounting,
* we can also use npre/npostfault count for accounting
* these specific fault cases.
*/
kprobes_inc_nmissed_count(cur);
/*
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it first.
*/
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
return 1;
/*
* In case the user-specified fault handler returned
* zero, try to fix up.
*/
if ((entry = search_exception_tables(regs->nip)) != NULL) {
regs->nip = extable_fixup(entry);
return 1;
}
/*
* fixup_exception() could not handle it,
* Let do_page_fault() fix it.
*/
break;
default:
break;
}
return 0;
}
NOKPROBE_SYMBOL(kprobe_fault_handler);
unsigned long arch_deref_entry_point(void *entry)
{
#ifdef PPC64_ELF_ABI_v1
if (!kernel_text_address((unsigned long)entry))
return ppc_global_function_entry(entry);
else
#endif
return (unsigned long)entry;
}
NOKPROBE_SYMBOL(arch_deref_entry_point);
static struct kprobe trampoline_p = {
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
.pre_handler = trampoline_probe_handler
};
int __init arch_init_kprobes(void)
{
return register_kprobe(&trampoline_p);
}
int arch_trampoline_kprobe(struct kprobe *p)
{
if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
return 1;
return 0;
}
NOKPROBE_SYMBOL(arch_trampoline_kprobe);